压缩成型工艺讲解

铝挤压成型的工艺特点及其优缺点分析

发布时间:2017-05-12 铝挤压成型定义 铝挤压成型是对放在模具型腔(或挤压筒)内的金属坯料施加强大的压力,迫使金属坯料产生定向塑性变形,从挤压模具的模孔中挤出,从而获得所需断面形状、尺寸并具有一定力学性能的零件或半成品的塑性加工方法。 铝挤压成型的分类 按金属塑变流动方向,挤压可以分为以下几类: 正挤压:生产时,金属流动方向与凸模运动方向相同 反挤压:生产时,金属流动方向与凸模运动方向相反 复合挤压:生产时,坯料一部分金属流动方向与凸模运动方向相同,另一部分金属流动方向与凸模运动方向相反 径向挤压:生产时,金属流动方向与凸模运动方向成90度 铝挤压成型的工艺特点 1、在挤压过程中,被挤压金属在变形区能获得比轧制锻造更为强烈和均匀的三向压缩应力状态,这就可以充分发挥被加工金属本身的塑性; 2、挤压成型不但可以生产截面形状简单的棒、管、型、线产品,还可以生产截面形状复杂的型材和管材; 3、挤压成型灵活性大,只需要更换模具等挤压工具,即可在一台设备上生产形状规格和品种不同的制品,更换挤压模具的操作简便快捷、省时、高效; 4、挤压制品的精度高,制品表面质量好,还提高了金属材料的利用率和成品率; 5、挤压过程对金属的力学性能有良好的影响; 6、工艺流程短,生产方便,一次挤压即可或得比热模锻或成型轧制等方法面积更大的整体结构件,设备投资少、模具费用低、经济效益高; 7、铝合金具有良好的挤压特性,特别适合于挤压加工,可以通过多种挤压工艺和多种模具结构进行加工。

铝挤压成型的优点 1、提高铝的变形能力。铝在挤压变形区中处于强烈的三向压应力状态,可以充分发挥其塑性,获得大变形量。 2、制品综合质量高。挤压成型可以改善铝的组织,提高其力学性能,其挤压制品在淬火时效后,纵向(挤压方向)力学性能远高于其他加工方法生产的同类产品。与轧制、锻造等加工方法相比,挤压制品的尺寸精度高、表面质量好。 3、产品范围广。挤压成型不但可以生产断面形状简单的管、棒、线材,而且还可以生产断面形状非常复杂的实心和空心型材、制品断面沿长度方向分阶段变化的和逐渐变化的变断面型材,其中许多断面形状的制品是采用其他塑性加工方法所无法成形的。挤压制品的尺寸范围也非常广,从断面外接圆直径达500-1000mm 的超大型管材和型材,到断面尺寸有如火柴棒大小的超小型精密型材。 4、生产灵活性大。挤压成型具有很大的灵活性,只需更换模具就可以在同一台设备上生产形状、尺寸规格和品种不同的产品,且更换工模具的操作简单方便、费时小、效率高。 5、工艺流程简单、设备投资少。相对于穿孔轧制、孔型轧制等管材与型材生产工艺,挤压成型具有工艺流程短、设备数量与投资少等优点。 铝挤压成型的缺点 1、制品组织性能不均匀。由于挤压时金属的流动不均匀(在无润滑正向挤压时尤为严重),致使挤压制品存在表层与中心、头部与尾部的组织性能不均匀现象。 2、挤压工模具的工作条件恶劣、工模具耗损大。挤压时坯料处于近似密闭状态,三向压力高,因而模具需要承受很高的压力作用。同时,热挤压时工模具通常还要受到高温、高摩擦作用,从而大大影响模具的强度和使用寿命。 3、生产效率较低。除近年来发展的连续挤压法外,常规的各种挤压方法均不能实现连续生产。一般情况下,挤压速度远远低于轧制速度,且挤压生产的几何废料损失大、成品率较低。 总结 近年来,由于各行业对小型化、轻量化的追求,铝及铝合金型材被广泛应用于建筑、交通运输、电子电器、航天航空等行业。因此铝挤压制品的比例也迅速增加,据资料显示,挤压加工制品中铝及铝合金制品约占70%以上。

注塑工艺的技术――注射压缩成型知识简介

注塑工艺的技术――注射压缩成型知识简介 注射压缩成型(injection compression moulding/icm)是传统注塑成型的一种高级形式。 它能增加注塑零件的流注长度/壁厚的比例;采用更小的锁模力和注射压力;减少材料内应力;以及提高加工生产率。 注射压缩成型适用于各种热塑性工程塑胶制作的产品,如:大尺寸的曲面零件,薄壁、微型化零件,光学镜片,以及有良好抗袭击特性要求的零件。 注射压缩成型的主要特点与传统注塑过程相比较,注射压缩成型的显著特点是,其模具型腔空间可以按照不同要求自动调整。例如,它可以在材料未注入型腔前,使模具导向部分有所封闭,而型腔空间则扩大到零件完工壁厚的两倍。另外,还可根据不同的操作方式,在材料注射期间或在注射完毕之后相应控制型腔空间的大小,使之与注射过程相配合,让聚合物保持适当的受压状态,并达到补偿材料收缩的效果。 根据注塑零件的几何形状、表面质量要求、以及不同的注塑设备条件,有四种注射收缩防护司可供选择。 它们是:顺序式;共动式;呼吸式和局部加压。 顺序式icm(seq-icm)顺序式注射压缩成型过程,其注射操作和模具型腔的推合是顺序进行的。开始时,模具导引部分略有闭合,并有一个约为零件壁厚两倍的型腔空间。而当树脂注入模具型腔后,即推动模具活动部分直至完全闭合,并使聚合物在型腔内受到压缩。在此过程中,由于从完成注入到开始压缩会有一个聚合物流动暂停和静止的瞬间,其可能会在零件表面形成一个流线痕迹,其可见程度取决于聚合物材料的颜色,以及零件成型时的纹理结构和材料种类。 该种方式的操作过程。可以采用曲柄杆式设备来进行这种icm。 共动式icm(sim-icm) 与顺序式icm相同,共动式icm开始、时模具导引部分也是略有闭合的,不同的是在材料开始注入型腔的同时,模具即开始推合施压。而挤料螺杆和模具型腔在共同运动期间,可能会有一个的s2或s2的延迟。由于聚合物流动前方一直保持着稳定的流动状态,它不会出现如seq-icm过程的暂停和表面的流线痕迹。 由于上述两种方式都在操作开始时留有较大的型腔空间,而在熔融聚合物注入型腔尚未遇到方向压力之时,它可能因为重力作用而首先流入型腔的较低一侧,并可以能因暂时处于未承受压力状态而出现不希望有的泡沫。而且,零件壁厚越大,型腔空间也会越大,而流注长度的延长也会增加模具完全闭合的时间周期,这些都可能会使上述现象加剧。 呼吸式icm(breath-icm)

冷挤压成形过程的有限元分析

冷挤压成形过程的有 限元分析 姓名:某某 班级: 学号: 指导老师: 完成时间:

摘要:本文以汽车铝合金缸套作为研究对象,对其挤压成型工艺进行了有限元分析。研究不同的挤压速度对合金的等效应力、挤压力、等效塑性应变和最大剪切应力的影响。研究结果表明,在挤压过程中,挤压速度对等效塑性应变和挤压力有明显影响,并且在模具拐角处产生了应力集中。 关键字:挤压速度;有限元分析;冷挤压;铝合金缸套;挤压力。引言: 在铝合金缸套的成形工艺中,将喷射沉积成形高硅铝合金管挤压成厚壁管是关键性技术。由于工艺复杂,参数较多,使用传统实验方法,将需要大量的时间、人力、物力,从而导致成本高、制造周期厂长。采用数值模拟技术则可以很好的解决这一问题。通过数值模拟,可以对成形过程进行分析,研究不同工艺参数对成形的影响,从而确定工艺参数,继而降低生产成本,极高经济效益。在金属塑性成形的数值模拟方法上主要有上限元法(Upper Bound Method)、边界元法(Boundary Element Method)和有限元法(Finite Element Method)。上限元法常用于较为简单的准稳态变形问题;而边界元法主要用于模具设计分析和温度计算;对于大变形的体积成形,变形过程呈非稳态,形状、边界、材料性质等都会发生很大的变化,有限元法可由实验和理论方法给出的本构关系、边界条件、摩擦关系式,按变分原理推导出场方程根据离散技术建立模型,从而实现对复杂成形问题进行数值模拟、分析成形过程中应力应变分布及其变化规律,由此提供较为

可靠的主要成形参数。 ANSYS软件是由美国ANSYS公司研制、开发的大型通用有限元分析软件。该软件提供了丰富的结构单元、接触单元、热分析单元及其它特殊单元,能解决结构静力、结构动力、结构非线性、结构屈曲、疲劳与断裂力学、复合材料分析、压电分析、热分析、流体动力学、声学分析、电磁场分析、耦合场分析、优化设计等诸多问题,它广泛地应用于国防、航空航天、汽车、船舶、能源、机械电子工程等领域中,是应用最为广泛的有限元软件。此外,ANSYS具有友好的图形用户界面和强大的二次开发功能,使用方便。 冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。目前,冷挤压技术紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日

冷挤压技术

冷挤压技术工艺与发展 班级:材加11-A2 姓名:于鸿超 学号:120113203002

冷挤压技术工艺与发展 摘要:模具是现代工业生产的主要工艺设备之一,其设计制造技术代表了一个国家的工业设计制造技术的发展水平。本文对冷冲压相关概念和技术进行了论述,明确了冲压工艺与模具制造技术的发展方向。 关键词:模具冷冲压工业设计 挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。如果毛坯不经加热就进行挤压,便称为冷挤压。冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。温挤压仍具有少无切屑的优点。 改革开放以来,随着国民经济的高速发展,市场对模具的需求量不断增长。近年来,模具工业一直以15%左右的增长速度快速发展,模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。浙江宁波和黄岩地区的“模具之乡”;广东一些大集团公司和迅速崛起的乡镇企业,科龙、美的、康佳等集团纷纷建立了自己的模具制造中心;中外合资和外商独资的模具企业现已有几千家。 随着与国际接轨的脚步不断加快,市场竞争的日益加剧,人们已经越来越认识到产品质量、成本和新产品的开发能力的重要性。而模具制造是整个链条中最基础的要素之一,模具制造技术现已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定企业的生存空间。 冷挤压技术发展的初期是非常缓慢的,长期以来只对几种软金属(铅和锡)进行挤压。直到19纪末20世纪初,才开始挤压较硬的有色金属(锌、铝、紫铜、黄铜等)至于钢的挤压,由于冷挤压时需要很大的压力,在当时不能解决挤压钢用的模具材料、合适的润滑剂与大吨位的压力机等问题,长时间一直认为挤压钢是十分困难甚至是不可能的。 1906年,英国人科斯利特(T.W.coslett)发现用磷酸盐处理钢件制品是一种较理想的防锈方法,但工序繁多,而经济效益又差,故未被广泛采用。不过,这种防锈法的出现却极大地激发了人们去研究更简单而有效的新方法的积极性。到后来,用自动连续装置对钢毛坯进行磷酸锌防锈处理只需要两分钟。经磷酸锌处

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

挤压成型工艺基本介绍

5 挤压成型工艺 5.1 挤压概述 定义:所谓挤压,就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 优点:: (1 )具有最强烈的三向压应力状态; (2 )生产范围广,产品规格、品种多; (3 )生产灵活性大,适合小批量生产; (4 )产品尺寸精度高,表面质量好; (5 )设备投资少,厂房面积小; (6 )易实现自动化生产。 缺点: (1 )几何废料损失大; (2 )金属流动不均匀; (3 )挤压速度低,辅助时间长; (4 )工具损耗大,成本高。 适用范围: (1)品种规格繁多,批量小; (2)复杂断面,超薄、超厚、超不对)复杂断面,超薄、超厚、超不对称; (3)低塑性、脆性材料。 5.2挤压的基本方法及特点 挤压的方法可按照不同的特征进行分类,有几十种。 最常见的有6种方法:正向挤压、反向挤压、侧向挤压、连续挤压、玻璃润滑挤压和静液挤压。 最基本的方法仍然是正向挤压(简称正挤压)和反向挤压(简称反挤压)。 如下所示为挤压的分类

a.正向挤压 b.方向挤压 c.侧向挤压 d.连续挤压 e.玻璃润滑挤压 f.静液挤压 正向挤压: 定义:金属的流动方向与挤压杆(挤压轴)的运动方向相同的挤压生产方法。 特征:变形金属与挤压筒壁之间有相对运动,二者之间有很大的滑动摩擦。引起挤压力增大;使金属变形流动不均匀,导致组织性能不均匀;限制了挤压速度提高;加速工模具的 磨损。

反向挤压: 定义:金属的流动方向与挤压杆(或模子轴)的相对运动方向相反的挤压生产方法。 特征:变形金属与挤压筒壁之间无相对运动,二者之间无外摩擦。 特点:挤压力小;金属变形流动均匀;挤压速度快。但制品表面较正挤压差;外接圆尺寸较小;设备造价较高;辅助时间较长。 5.3 热挤压、冷挤压、温挤压 5.4 挤压设备、挤压模具及设计 5.4.1 挤压设备 按传动类型分液压和机械传动两大类。 (1)机械传动挤压机又分为统机械传动挤压机和现代机械传动挤压机。 传统机械传动挤压机以前曾用于挤压钢材和冷挤压方面,现在已不采用。钢材和冷挤压方面,现在已不采用。 目前以CONFORM挤压机为代表的新一代机械传动挤压机得到了广泛应用。 (2)液压传动挤压机是当前应用最广泛的挤压设备。又分为水压机和油压机,目前应用最广泛的是油压机,但大吨位设备仍以水压机为主。 5.5挤压模设计

第5章、模压成型工艺..

第5章、模压成型工艺 §5-1、概述 定义:将一定量的模压料放入金属对模中,在一定的温度和压力作用下,固化成型制品的一种方法。 工艺过程:加热和加压(高压) 物料角度:塑化,流动,固化三阶段。 模具要求:高强度,高精度,耐高温。 树脂在成型过程中的两个特定阶段: (1)粘流阶段:树脂受热熔化,在压力作用下粘裹纤维一起流动至填满模腔的过程。——即物料塑化、流动阶段。 (2)硬固阶段:树脂发生交联,硬固的过程。——即物料固化阶段。 工艺分类:是根据增强材料物态和模压料品种(模压方式)分类。 按模压材料物态分类: 纤维料模压预混、预浸纤维料加热、加压成型。(单向、线性) 织物模压两向、三向、多向织物浸渍树脂后,加热、加压成型。(平面) 优点:剪切强度明显提高,质量稳定。缺点:成本高碎布料模压预浸碎布料加热、加压成型。(多块,小平面) SMC模压SMC片材按制品尺寸、形状、厚度等要求剪裁下料,多层片材叠合加压而成型。(大面积,多层平面) 预成型坯模压短切纤维制成与制品形状和尺寸相似的预成型坯,放入模中,倒入树脂混合物,压力成型。(大型、深型、高强、异型、体形、均厚度制品) 按模压成型方式分类: 层压预浸胶布或毡剪成所需形状,层叠后放入金属模内,压制成型。 缠绕预浸的玻纤或布带,缠绕在一定模型上,加热、加压。

(管材) 定向铺设单向预浸料(纤维或无维布)沿制品主应力方向铺设,然后模压成型。 §5-2、模压料 树脂、增强材料、辅助剂构成模压料的三大块。 §5-2-1、原料 1、树脂: 酚醛型(镁、氨酚醛,改性聚乙烯醇缩丁醛),环氧型(634,648,F-46),环氧酚醛型(也可列为酚醛型),聚酯型。 2、增强材料: 纤维型(玻纤,碳纤,尼龙纤),(形状有纤维状,短切毡,布或绳) 3、辅助材料: 稀释剂,玻纤表面处理剂,填料,脱模剂及颜料等。 目的:使模压料具有良好的工艺性和制品的特殊要求。 (1)稀释剂:丙酮、乙醇(非活性) 用途:降低树脂粘度,改进树脂浸渍性能,有活性与非活性之分。 (2)表面处理剂:改进树脂与增强材料的粘结及树脂——纤维界面状态。 种类:对环氧及酚醛模压料,常用的玻纤表面处理剂有KH-550,用量为纯树脂重量的1%,不宜过多或过少。 (3)粉状填料:提高模压料的流动性,降低制品收缩率,提高制品表面的光泽度、质量和均匀性及赋予制品以某种特殊性能。MoS2可提高制品的耐磨性。 §5-2-2、模压料的制备 分为预混法和预浸法两种。 1、短切纤维模压料制备 (1)预混法(手混和机混) 工艺流程:树脂调配

内花键冷挤压成型工艺浅论

内花键冷挤压成形工艺应用 浅析 浙江XX机电有限公司技术部 二〇一五年十月一日

目录 内容页次概述: (3) 一、冷挤压技术的发展趋势 (3) 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 (3) 三、冷挤压成形模具制造难点 (4) 四、冷挤压模具制造分析研究 (4) 五、挤压件材料研究和分析 (5) 六、冷挤压工艺流程的研究和分析 (6) 七.总结 (6)

内花键冷挤压成形工艺浅析 概述: 冷挤压是精密属性体积成型技术中的一个重要组织部分。冷挤压是指在冷态下金属毛坯放入模具腔内,在强大的压力和一定的速度作用下迫使金属在模具腔中流动挤出,从而获得所需要形状、尺寸以及具有一定力学性能的挤压件。 一、冷挤压技术的发展趋势 在有关技术资料获悉,冷挤压技术早在18世纪末制造过程中就采用了这门技术。这门工艺已经在机械、仪表、电器、重轻工、军工等工业中较广泛的应用,已成为金属属性体积成形技术中不可缺少的重要加工手段之一,发达国家在轿车制造中约达到30%~40%是采用冷挤压工艺生产。我国工艺制造在60~70年代落后时期后通过改革开放期间大量的发达国家的制造业进入我国推动了我国制造业工艺水平,推动了我国在冷挤压这门工艺技术领域里发展,通过吸取国外的先进工艺使我国冷挤压生产工艺技术不断提高,逐渐成为中小锻件精化生产的发展方向。 二、充分发挥冷挤压工艺优势内花键加工难题得到解决 丰立公司是一家具备技术研究、生产、销售服务于一体的国家高新技术企业,是我国小模数锥齿轮行业的领军者;是国际知名厂商的优秀供应商;公司所生产的气动工具系列产品的机械传动结构是以齿轮传动。公司在发展过程积极的学习国内外的先进工艺技术与世界并举,研造客户需求的产品。对产品工艺设计积极采用冷挤压成型,发挥冷挤压节约原材料、提高劳动生产率、通过冷挤压的产品毛坯在少切削向不切削为目的来降低制造成本,更使产品的表面粗糙度Ra1.6~Ra0.8。公司近年快速的扩大采用冷挤压工艺赢得同行业、世界知名厂商的认可。通过这几年来,我们公司采用冷挤压工艺从筒状冷挤压扩张到齿轮坯挤压,对形状较复杂、切削加工较困难的产品,运用冷挤压工艺很容易加工成型。现已有三十余种产品采用冷挤压成形工艺,为公司生产率的提高起到很大作用。内花键是机械传动中的重要零部件,主要起连接和传动作用,广泛应用在机械制造领域,传统内花键形成方法主要有拉齿和插齿加工,起生产效率底,材料利用率底不能满足大批量生产需求。尤其是不串通盲孔内花键,无论是效率,质量都达不到用户满意。为保证内花键精度的同时提高花键的力学性能,公司采取冷挤压工艺解决

压制成型的工艺原理

1、粉料的工艺性质 干压法或半干压法都是采用压力将陶瓷粉料压制烦忧一定形状的坯体。通常将粒径小于1㎜的固体颗粒级成的物料称为粉料,它属于粗分散物系,有一些特殊物理性能。 a.粒度及粒度分布粒度是指粉料的颗粒大小,通常经r表示其半径,d表示其直径。实际上并非所有粉料颗粒都为球状,一般将非球状颗粒的大小用等效半径来表示。即将不规则的颗粒换算成和它同体积的球体,以相当的球体半径作为其粒度的量度。粒度分布是指各种不同大小颗粒所占的百分比。 从生产实践中得知:一定压力下,很细或很粗的粉料被压紧成型的能力较差,亦即在相同压力下坯体的密度和强度相差很大。此外,细粉加压成型时,颗粒间分布着大量空气会沿着加压方向垂直的平面逸出,产生坯体分层。而含有不同粒度的粉料成型后密度和强度均高,这可用粉料的堆积性质来说明。 b.粉料的堆积特性由于粉料的形状不规则,表面粗糙,使堆积起来的粉料颗粒间存在大量空隙。 若采用不同大小的球体堆积,则小球可填充在等径球体的空隙中。因此,采用一定粒度分布的粉粒可减少其孔隙,提高自由堆积的密度。例如,单一粒度的粉料堆积时的最低孔隙率为40%,若用两种粒度(平均粒径比为10:1)配合,则其堆积密度增大,如图5-26所示。AB线表示粗细颗粒混合物的真实体积。CD线表示粗细颗粒未混合前的外观体积(即真实体积与气孔体积之和)。单一颗粒(即纯粗或纯细颗粒)的总体积为1.4,即孔隙率约40%。若将粗细颗粒混合则其外观体积按照COD线变化,即粗颗粒约占70%、细颗粒约占30%的混合粉料其总体积约1.25,孔隙率最低约25%。若采用三级颗粒配合,则可得到更大的堆积密度,图5-27所示为粗颗粒50%、中颗粒10%、细颗粒40%的粉料的孔隙率仅23%。 然而,压制成型粉料的粒度是经过“造粒”工序得到的,由许多小固体组成的粒团,即“假颗粒”。这些粒团比真实固体颗粒大得多。如半干压法生产墙地砖时,泥浆细度为万孔筛筛余1%~2%,即固体颗粒大部分小于60μm。实际压砖时粉料的假颗粒度通过的为0.16~0.24㎜筛网。 c.粉料的拱桥效应(或称桥接)实际粉料颗粒不是理想的球形,加上表面粗糙,结果颗粒互相交错咬合,形成拱桥空间,增大孔隙度,使粉料自由堆积的孔隙率往往比理论计算值大得多,这种现象就称为拱桥效应。图5-28所示为粉料堆积的拱桥效应示意图。 当粉料颗粒B落在A上进,若粉料B的自重为G,则在接触处产生反作用力,其合力为P,大小与G相等,但方向相反。若颗粒间附着力较小,则P不足以维持B的自重G,便不会开成拱桥,颗粒B落入空隙中。因此,粗大而光滑的颗粒堆积在一起时,孔隙率不会很大。然而,由于细颗粒的自重小,比表面大,颗粒间的附着力大,故易形成拱桥。例如,气流粉碎的Al2O3粉料,颗粒多为不规则的棱角形,自由堆积时的孔隙比球磨后的Al2O3颗粒要大些。 d.粉料的流动性粉料虽然由固体小颗粒组成,但因其分散度较高,具有一定的流动性。当堆积到一定高度后,粉料会向四周流动,始终保持圆锥体,其自然安息角(偏角)α保持不变。当粉料堆的斜度超过其固有的α角时,粉料向四周流泻,直到倾斜角降至α角为止。因此,可用α角来反映粉料的流动性,一般粉料的自然安息角α约为20°~40°。如粉料呈球形,表面光滑,易于向四周流动,α角值就小。 粉料的流动性决定于它的内摩擦力。设P点的颗粒自重为G(如图5-29所示),它可分解为两个力,即沿自然斜面发生的推动力F(F=Gsinα)和垂直斜面的正压力N(N= Gcosα),且当粉料维持安息角α时,颗粒不再流动。这时必然产生与F力大小相等、方向相反的摩擦力f才能维持平衡。F=μN,μ为分类料的内摩擦系数。由此可见,μ=tanα,粉料的流动与其粒度分布、颗粒的形状、大小、表面状态等诸多因素有关。

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

压缩、压注成型原理与工艺

湖南工业高级技工学校教案

压缩成型原理与工艺 一、压缩成型原理和特点 1.压缩模塑原理 压缩模塑——又称为模压成型或压制。主要用于热固性塑料的成型,也可以用于热塑性塑料的成型。 2.压缩模塑特点 ⑴塑料直接加入型腔,加料腔是型腔的延伸。 ⑵模具是在塑件最终成型时才完全闭合 ⑶压力通过凸模直接传给塑料 有利于成型流动性较差的以纤维为填料的聚合物、不能压制带有精细、易断嵌件及较多嵌件的塑件。不易获得尺寸精度尤其是高精度的塑件 ⑷操作简单,模具结构简单。 没有浇注系统,料耗少;可压制较大平面塑件或一次压制多个塑件;塑件收缩小、变形小、各向性能均匀、强度高。 ⑸生产周期长、效率低

二、压缩模塑工艺过程 1. 模压前的准备 ⑴预压 ①预压方法:为方便操作和提高塑件的质量,先用预压模将粉状、纤维状的塑料粉在预压机上压成重量一定、形状一致的锭料。 ②采用预压锭料的优点: 加料快而准确 降低压缩率,减小压料腔尺寸,空气含量少,不仅传热快且气泡少。 锭料与塑件形状类似,便于成型复杂或带细小嵌件的塑件。 可提高预热温度,缩短预热和固化时间。 避免加料过程粉尘飞扬,改善劳动条件。 生产过程复杂,实际生产中一般不进行预压。 ③对压塑粉的要求: 颗粒最好大小相间、压缩率(塑料/锭料)宜为3.0左右、含有润滑剂 ④预压条件: 温度:室温或50~90℃预压 压力:压力范围40~200MPa 原则:锭料的密度达到塑件最大密度的80% ⑵预热和干燥 塑料成型前加热的目的: 去除水分和挥发物(干燥) 为压缩模提供热塑料(预热) 塑料成型前加热的方法: 热板预热烘箱预热 红外线预热高频加热 ⑶嵌件的安放 嵌件:作为塑件中导电部分或使塑件与其它零件相连接的零件。 用嵌件有轴套、螺钉、螺帽、接线柱等等 大嵌件在模具装上压机后要先预热、嵌件的安放要求位置正确、平稳

冷挤压成型工艺及模具设计作业

华中科技大学 课程考试答题本 姓名 学号 专业班级 考试科目 考试日期 评分 评阅人

冷挤压成型工艺及模具设计作业 一、结构分析 此零件为一个较长的阶梯轴,单向、多阶梯、无孔,有24°倒角X2,相对简明。材料为20Cr(合金结构钢)。 二、坯料设计与挤压前处理 下料:由零件结构分析可知:加工此零件宜选用实心棒状坯料,在锯床上锯切下料。

挤压前处理 1.软化处理:查表知,加热到860℃,保温14h,随炉冷却至300℃后空冷,密封光亮退火,硬度达到120-130HBS。 2.表面处理:参选碳钢与合金钢坯料的表面处理,即采用磷化处理,把钢坯料放在磷酸盐溶液中进行处理,金属表面发生溶解和腐蚀,形成一层很薄的磷酸盐盖层。 3.润滑处理:工业猪油或机油拌二硫化钼

三、工艺设计与对比分析 工艺方案一:A 正挤压+B 镦粗 (1)由UG 三维图测得零件体积Vp=256506.9079mm 3 修边余量体积Vx=Vp*(3%~5%) 毛坯体积取V0=Vx+Vp=(264202~269322mm 3) 由零件尺寸可以初步选取毛坯直径d0=36mm , h=260mm ,经验算知所选毛坯直径在上述范围之内。则设计第一步正挤压和第二步镦粗的模 具示意图如下图所示: 毛坯 凸模1 凹模1 凸模2 凹模2

则其相应的工步图为: 成形力计算与设备选择: A正挤压第一步:εA=(362-27.52)/27.52=41.6% 由下表知,单位挤压力取下端小值p=1400Mpa 则F=pA0=1400x3.14x362/4=1424KN B镦粗第二步:εA=(79.1-33.3)/79.1=57.8% 由下表可知,单位挤压力p=950Mpa 则F=pA0=950x3.14x362/4=966KN

冷 挤 压 成 形 技 术

冷挤压成形技术 冷挤压是精密塑性体积成形技术中的一个重要组成部分。冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。 冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。 目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:1)节约原材料。冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。冷挤压的材料利用率一般可达到80%以上。 2)提高劳动生产率。用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。 3)制件可以获得理想的表面粗糙度和尺寸精度。零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。 4)提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。 5)可加工形状复杂的,难以切削加工的零件。如异形截面、复杂内腔、内齿及表面看不见的内槽等。 6)降低零件成本。由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。 冷挤压技术在应用中存在的难点主要有: 1)对模具要求高。冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达2000MPa~2500MPa。例如制造一个直径38mm,壁厚5.6mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃

复合材料成型工艺

树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。模压成型工艺的主要优点:①生产效率高,便于实现专业化和自动化生产;②产品尺寸精度高,重复性好;③表面光洁,无需二次修饰;④能一次成型结构复杂的制品;⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种:①纤维料模压法是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。⑥片状塑料(SMC)模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。

复杂壳体冷挤压成形工艺与模具设计

1 绪论 (3) 1.1 本课题的目的和意义 (3) 1.2 本课题的主要研究内容 (4) 1.3 小结 (5) 2 复杂壳体冷挤压工艺的确定 (5) 2.1 冷挤压工艺概述 (5) 2.2挤压零件分析 (7) 3、挤压工艺分析 (9) 3.1 坯料尺寸的确定 (9) 3.2 毛坯软化处理 (10) 3.3 冷挤压毛坯表面处理与润滑 (10) 3.4变形程度计算 (13) 3.5确定挤压次数 (13) 4 挤压设备选择 (14) 4.1挤压力的确定 (14) 4.2挤压设备类型选择 (14) 4.3液压式压力机型号选择 (14) 5模具的结构型式及其主要零部件的设计 (15) 5.1冷挤压模具的结构分析 (15) 5.1.1冷挤压模具的组成部分 (16) 5.1.2对模具设计的要求 (16) 5.2冷挤压模具的结构特点 (17) 5.3 模具材料的选择 (17) 5.3.1冷挤压模具工作零件的材料要求 (17) 5.3.2冷挤模零件材料选取 (18) 5.4凸模设计 (18) 5.4.1 分流控制腔的设计 (19) 5.4.1.1 分流控制腔的结构形式及位置确定 (19) 5.4.1.2 控制腔高度尺寸(i h )的确定 (20) 5.4.2凸模的结构及尺寸 (20) 5.5凹模的设计 (21) 5.6卸料和顶出装置的设计 (23) 5.7 挤压模具模座的设计 (24) 5.7.1上模座的设计 (24) 5.7.2 下模座的设计 (26) 5.8导柱导套的设计 (27) 6、装配图 (29) 7 复杂壳体成形过程的有限元仿真 (31) 7.1有限元分析软件的背景介绍 (31) 7.1.1 DEFORM 的介绍 (31) 7.1.2 DEFORM 的功能 (32)

挤出机和挤出成型工艺样本

挤出成型工艺和挤出机 1.挤出成型工艺 1.1 挤出成型工艺: 在挤出机中经过加热、加压而使物料以流动状态连续经过口模( 即机头) 成型的方法称挤出成型或挤塑。是塑料重要的成型方法之一。 1.2 挤出成型的特点: ①设备成本低, 制造容易, 投资少, 上马快。 ②生产效率高, 挤出机的单机产量较高, 产率一般在几公斤~5吨/小时。 ③连续化生产。能制造任意长度的薄膜、管、片、板、棒、单丝、异型材以及塑料与其它材料的复合制品等。 ④生产操作简单, 工艺控制容易, 易于实现自动化。占地面积小, 生产环境清洁, 污染少。 ⑤能够一机多用。挤出机也能进行混合、造粒。 1.3 挤出成型可分为两个阶段: 第一阶段是使固态塑料变成粘性流体( 即塑化) , 并在加压情况下, 使其经过特殊形状的口模, 而成为截面与口模形状相仿的连续体。 第二阶段则是用适当的处理方法使挤出的连续体失去塑性状态而变为固体, 即得到所需制品。 1.4 挤出成型工艺分类: 干法( 熔融法) —经过加热使塑料熔融成型 ①塑化方式 湿法( 溶剂法) —用溶剂将塑料充分软化成型( CN、 CA 及纺丝)

连续式: ②加压方式 间歇式: 2. 挤出设备 塑料的挤出, 绝大多数都是热塑性塑料, 而且又是采用连续操作和干法塑化的。故在设备方面多用螺杆式挤出机。螺杆式挤出机有单、双( 或多螺杆) 之分。大部分用单螺杆挤出机, 只是粉料, RPVC 95%以上都用双螺杆挤出机。 2.1 单螺杆挤出机 2.1.1 单螺杆挤出机的组成: 螺杆式挤出机, 借助螺杆旋转产生的压力和剪切力, 使物料充分塑化和均匀混合, 经过口模 柱塞式挤出机, 借助柱塞压力, 将事先塑化好 的物料挤出口模而成型。仅用于粘度特别大, 流动性极差的塑料。如: PTFE, 成型温度下, 粘度为1010~1014泊( 一般熔融塑料的粘度

注塑成型工艺流程及工艺参数详解

注塑成型工艺流程及工艺参数详解 注塑成型 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 ◆◆1.填充阶段◆◆ 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微

观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 ◆◆2.保压阶段◆◆ 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。 在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。 由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,

冷挤压成形设计

冷挤压课程作业 结构分析: 冷挤压件图如下图所示: 分析可知,挤压零件结构简单,为典型单向多台阶阶梯轴,并且除55Φ处有较大直径突变外,其余的直径变化均较小,且为倾斜台阶面过渡。 工艺设计: 根据零件结构特征,55Φ处台阶需要通过镦粗成形,其余台阶面可采用减径挤压方式,所以采用减径挤压和镦粗相结合的方式,具体选取以下两种方案对比分析: 1.镦挤复合,加工出55Φ,27.5Φ圆柱面,减径挤压出30.4Φ。工步图如下: 2.镦粗出55Φ圆柱面,依次减径挤压出30.4Φ,27.5Φ圆柱面。工步图如下:

坯料设计及挤压前处理: 坯料设计: 1.坯料形状和尺寸: 根据零件结构分析采用棒状坯料如图a 所示: 0P X V V V =+,取0.04X P V V = 由冷挤压件图可知P V =256478.64813 mm ,则0=V 266737.83 mm ,取坯料直径为d=36mm 由体积不变原则可得坯料尺寸为36262.1mm Φ?。 坯料如下所示: 2.坯料制备方法:毛坯直径较大且长,为保证毛坯的尺寸精度及形状精度,采用锯切下料。 材料:20Cr ,(合金结构钢):前处理如下: 1.软化处理:球化退火(加热到860°C ,保温14h ,随炉冷至300°C 后空冷) 2.表面处理:磷化处理(具体过程为化学去油(85℃)→流动冷水洗→酸洗去锈(65~75℃)→流动冷水洗→热水洗→磷化处理(85~95℃)→流动冷水洗→中和处理。) 3.润滑处理:皂化处理(工业皂片) 成形力计算及设备选择: 对于实心圆柱件,断面减缩率0`101 000000 100100A A A D D A D ε--= *=*,式中,A0为挤压变形前毛坯的横断面积,A1为挤压变形后工件的横断面积,D0为挤压变形前毛坯的横断直径,

相关文档
最新文档