渗碳淬火热处理工艺教案资料

渗碳淬火热处理工艺教案资料
渗碳淬火热处理工艺教案资料

渗碳淬火热处理工艺

渗碳淬火工艺

1、钢的淬火

钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。

1.1 淬火的定义和目的

把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。

温 830℃

℃油

时间h

图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺

淬火的目的一般有:

1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。

1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。

淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。

1.2 钢的淬透性

2.2.1 淬透性的基本概念

所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属

性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo 钢三种试样,按相同条件淬火后(油冷却),经检测45钢能被淬透的最大直径(称临界直径)φ10mm;40Cr钢能被淬透的最大直径φ22mm; 42CrMo钢能被淬透的最大直径φ40mm。

实际工件的有效淬硬深度与钢的淬透性、工件尺寸及淬火介质的冷却能力等许多因素有关,例如,同一钢种在相同介质中淬火,小件比大件的淬硬层深;同一钢种相同尺寸时,水淬比油淬的淬硬层深。

同一种钢,其成分和冶炼质量必然在一定范围内波动,因而有关手册上所提供的某钢号的淬透性曲线往往不是一条线,而是一个范围,称淬透性带。图5为40Cr钢的淬透性带。

图5 40Cr钢的淬透性带

钢的淬透性值可用J(HRC/ d )表示,其中J表示末端淬透性,d表示至水冷端的距离,HRC为该处测得的硬度值。例如淬透性值J(42/5)表示距水冷端5mm处试样硬度值为42HRC;淬透性值J(30~35/10)表示距水冷端10mm处试样硬度值为30~35HRC。对淬透性值有具体要求的钢应根据GB/T5216-2004《保证淬透性结构钢》标准的规定订货,其钢号最后用H表示,例如42CrMoH。

2、钢的回火

2.1 回火的定义和目的

钢淬火后必须经过回火,回火是指将淬火钢加热到Ac1(钢件加热时的临界点)以下的某一温度,经过保温,然后以一定的冷却方法冷至室温的热处理工艺,见图4。回火的目的:

2.1.1 降低脆性,减少或消除内应力,防止工件变形或开裂。

2.1.2 获得工艺所要求的力学性能。淬火工件的硬度高且脆性大,通过适当回火可调整硬度,获得所需要的塑性、韧性。

,它们会自发地向稳定的平衡组织转变,从而引起工件尺寸和形状的改变,通过回火可使淬火马氏体和残余奥氏体转变为较稳定组织,以保证工件在使用过程中不发生尺寸和形状的变化。

2.1.4 对于某些高淬透性的合金钢,空冷便可淬成马氏体,如采用退火软化,则周期很长。此时可采用高温回火,降低硬度,以利切削加工。

淬火钢不经回火一般不能直接使用,为了避免工件在放置过程中发生变形和开裂,淬火后应及时回火。

2.2、回火的种类

淬火钢回火后组织性能决定于回火温度,根据回火温度范围,

可将回火分为三类:

2.2.1 低温回火低温回火的温度为150~250℃,回火后组织为回

火马氏体,低温回火主要降低钢的淬火内应力和脆性,同时保持钢

在淬火后的高硬度(一般为58~64HRC)和耐磨性,常用于处理各

种工具、模具、轴承、渗碳件及经表面淬火工件。

中温回火的温度为350~500℃,回火后不仅保持较高硬度(一

般为35~45HRC)和强度,而且具有高的弹性极限和足够的韧性。

中温回火主要用于各种弹簧的处理,还用于某些塑料模、热锻模以

及要求较高强度的轴、轴套等。

2.2.3 高温回火高温回火的温度为500~650℃。高温回火后的组

织为回火索氏体,这种组织具有良好的综合力学性能。

二、化学热处理

工件放在一定的化学介质中加热到一定温度,使其表面与介质

相互作用,吸收其中某些化学元素的原子(或离子),并自表面向

内部扩散的过程称为化学热处理。化学热处理包括渗碳、渗氮、碳

氮共渗等。化学热处理的结果是改变了金属表面的化学成分和性能。例如低碳钢经过表面渗碳淬火后,该钢种的工件表面就具有了

普通高碳钢淬火后的高硬度、高耐磨的性能特征,而心部仍保留低

碳钢淬火后良好的塑性、韧性的特征。显然这是单一的低碳钢或高

碳钢所不能达到的。

1、钢的渗碳

1.1钢的渗碳基本原理和气体渗碳工艺

在渗碳温度下(920℃)渗碳过程包括三个基本过程:一

是由介质(甲醇、煤油、异丙醇)分解出活性原子。如分解产生的

一氧化碳和甲烷分解出活性碳原子: 2CO —— CO2+[C] CH4—— 2H2+[C]

二是活性碳原子被工件表面吸收。

三是被吸收碳原子向工件内部扩散。

渗碳过程由分解、吸收、扩散三过程组成,三个过程又是同时

发生的,全部过程存在着复杂物理化学反应。

气体渗碳法是将工件放入密封

的渗碳炉内,图8为气体渗碳法示

意图,使工件在920℃高温的渗碳

气氛中进行渗碳。通入的有机物液

体(甲醇、煤油、异丙醇)在高温

下分解,产生活性碳原子,并被加

热到奥氏体状态的工件表面吸收,

而后向钢内部扩散。渗碳时最主要

的工艺参数是加热温度和保温时间。

加热温度愈高,渗碳速度就愈快,

且扩散层的厚度也愈深。图8 气体渗碳法示意图

温 920

排气

图9为气体渗碳典型工艺,从工艺中明显可见渗碳剂分解(含排气)、强渗(吸收)、扩散和炉冷到850℃直接油冷淬火的全过程。

1.2 渗碳件质量要求

对渗碳件质量要求在国标GB/T8539-2000中已有明确规定,这里对几个主要方面再说明一下。

1.2.1 表面硬度和心部硬度

轮指齿顶部表面硬度。

轮齿的心部硬度是指齿宽中部齿根

30o切线的法向上,深度为5倍硬化层

深,但不少于1倍模数。这是一个推荐

测量部位,为了便于可操作性,可按技

术条件或供需双方协议的图10 齿心部硬度示意图检查方法进行检查。一般检测齿宽中部法截面上,在轮齿的中心线与齿根圆相交处的硬度,见图10示意图。

表面硬度和心部硬度是工件耐磨性能的重要指标,也是材料抗接触疲劳和弯曲疲劳的一个特性。经渗碳淬火后表面硬度应达到

58~64HRC(大截面齿轮和齿轮轴一般56~62HRC),心部硬度根据不同质量要求按规定控制,一般在25~42HRC,MQ级齿轮要求

25HRC以上,ME级齿轮要求35HRC以上。硬度一般采用里氏硬度计或洛氏硬度计作为检测工具。

1.2.2 渗碳层表面碳浓度和碳浓度梯度

渗碳零件表面碳浓度要求控制在0.75~0.95%为宜,过低会使耐磨性下降,过高时脆性增大,强度不能满足要求。

碳浓度梯度反映了碳浓度沿渗层下降的指标,它间接地反映了渗层的硬度梯度。碳浓度下降得越平稳越好,以保证渗层与基体牢固结合,避免在使用过程中产生剥落现象。图11为相同渗碳层总深度(3 mm)三种碳浓度梯度状况。

图11 相同渗碳层总深度(3 mm)三种碳浓度梯度

a)好 b)不好 c)不好

1.2.3 有效硬化层深度(渗碳层深度)

有效硬化层深度取决于零件的工作条件和心部强度,是确定零件承载能力的重要参数。目前对有效硬化层深度我厂技术设计部推荐采用GC/SY01-10《渗碳淬火齿轮有效硬化层深度技术规范》的标准。有效硬化层深度是指零件渗碳淬火后,从零件表面到维氏硬度值为550HV1处的垂直距离。测定硬度所采用的试验力为9.807N(1 kgf)。

1.3、零件渗碳后的热处理

工件渗碳的目的在于使表面获得高的硬度和耐磨性,因此渗碳后的工件,必须通过热处理使表面获得马氏体组织,渗碳后的热处理方法有三种:

直接淬火法是将工件自渗碳温度炉冷到淬火温度后立即淬火,然后在160~190℃进行低温回火。这种方法不需要重新加热淬火,因而减小了热处理变形,节省了时间和降低成本,但由于渗碳温度高,渗碳加热时间长,因而奥氏体晶粒粗大,淬火后残余奥氏体量较多,使工件性能下降,所以直接淬火法只适用于本质细晶粒钢或性能要求较低的工件。这是一般工厂经常采用工艺。

1.3.2 一次淬火法一次淬火法是将工件自渗碳后以适当方式冷至室温,然后再重新加热淬火并低温回火。对于要求心部有较高强度和较好韧性的零件,可以细化晶粒。这是大型齿轮、齿轮轴等经常采用方法。

1.3.3 两次淬火法两次淬火法是将工件自渗碳后冷至室温后再进行两次淬火。第一次淬火目的是细化心部晶粒,淬火温度较高,第二次淬火目的是细化表层晶粒,淬火温度较低,这种方法适宜用使用性能要求很高的工件,缺点是工艺复杂,生产周期长,工件容易变形,工厂应用较少。

对于零件有不允许渗碳硬化部位应在设计图样上标明,该部位可采用防渗涂料进行保护。

近几年来,我厂为适应宝钢进口设备齿轮箱的国产化要求,对热处理进行了相应技术改造,添置具有国内外先进水平的计算机过程控制的大型渗碳炉,由工业计算机、进口智能控温仪、进口智能

碳控仪、氧探头等组成,炉温控制精度≤±3℃,炉温采用炉内主控,炉外辅控;碳浓度控制精度≤±0.05%;渗碳层深度偏差≤10%;渗碳硬化层深度范围1~6mm 。从而对炉内碳浓度、炉温、渗碳硬化层深度等实现精确控制,保证了产品渗碳质量。为减少盘形齿轮变形,从俄罗斯进口了淬火压床。目前我厂有φ3000×

2000mm、φ2000×2500mm、φ1700×2000mm、φ1200×2000mm、φ900×1200mm井式气体渗碳炉五台。

2、我国对齿轮用钢的冶金质量检验标准和要求

齿轮钢材的冶金质量不仅影响到产品的机械性能,特别是疲劳性能,而且还影响到齿轮生产过程中的冷热加工性能及热处理工艺性能。所以对齿轮钢材的冶金质量有各种规定和要求,现列出部份相关标准和要求,供有关人员查阅和使用。必须指出,随着对齿轮产品质量要求不断提高和与国外厂商合作的不断加强,对钢材的冶金质量要求会越来越高。我国对齿轮用钢的冶金质量一般要求见表3:

机械加工常见热处理工艺

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。 气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。

渗碳工艺介绍

渗碳 定义 渗碳是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 简介 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 原理渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解:渗碳介质的分解产生活性碳原子。 ②吸附:活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散:表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为 HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 渗碳工艺 1、直接淬火低温回火组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。

渗碳工艺的分类与选择

渗碳工艺的分类与选择 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低. 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2、预冷直接淬火、低温回火淬火温度800-850℃ 组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃ 组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。 4、渗碳高温回火,一次加热淬火,低温回火,淬火温度840-860℃ 组织及性能特点:高温回火使M和残余A分解,渗层中碳和合金元素以碳化物形式析出,便于切削加工及淬火后残余A减少。 适用范围:主要用于Cr-Ni合金渗碳工件 5、二次淬火低温回火 组织及性能特点:第一次淬火(或正火),可以消除渗碳层网状碳化物及细化心部组织(850-870℃),第二次淬火主要改善渗层组织,对心部性能要求不高时可在材料的Ac1-Ac3之间淬火,对心部性能要求高时要在Ac3以上淬火。 适用范围:主要用于对力学性能要求很高的重要渗碳件,特别是对粗晶粒钢。但在渗碳后需经过两次高温加热,使工件变形和氧化脱碳增加,热处理过程较复杂。 6、二次淬火冷处理低温回火 组织及性能特点:高于Ac1或Ac3(心部)的温度淬火,高合金表层残余A较多,经冷处理 (-70℃/-80℃)促使A转变从而提高表面硬度和耐磨性。 适用范围:主要用于渗碳后不进行机械加工的高合金钢工件。 7、渗碳后感应加热淬火低温回火 组织及性能特点:可以细化渗层及靠近渗层处的组织。淬火变形小,不允许硬化的部位不需预先防渗。 适用范围:各种齿轮和轴类。 8、钢的渗碳工艺参数 钢的渗碳工艺参数主要有以下三项: 1.渗碳介质的化学成分:渗碳介质可分为气体、液体、固体等三大类。 2.渗碳温度:常用温度为900~950℃。温度愈高,扩散速度愈快,渗层愈深,但温度过高会造成奥 氏体晶粒长大,降低零件的力学性能;增加工件的形状变形,降低设备的使用寿命。 3.渗碳时间:常用的渗碳时间近似计算多采用Harris公式

热处理工艺比较

退火 概念:将钢加热到低于或高于A c1 点温度,保持一定时间后随炉缓慢冷却,以获得接近于平衡状态的组织。 目的:降低钢的硬度、改善切削加工性能;消除应力或加工硬化、提高塑性,便于继续冷加工;消除组织缺陷,提高工艺性能和使用性能;细化晶粒、改善碳化物的分布和形态,为最终热处理作好组织准备。 常用退火工艺 扩散退火(均匀退火):为了改善或消除在冶金过程中形成的成分不均匀性及夹杂物偏聚而进行的退火。加热温度一般高于A c3 以上150~250℃,加热速度不宜过快,应控制在100~200℃,加热后随炉冷却至350℃左右出炉空冷。一般安排在钢锭开坯,锻轧之后进行。 完全退火:将钢加热到A c3 以上30~50℃,保持一定时间后缓慢冷却以获得接近于平衡状态组织的工艺。主要应用于消除亚共析钢中因停锻温度过高而引起粗大晶粒、铸件在浇注后冷却不当形成魏氏组织、轧制工艺不合要求而产生带状组织等缺陷。 等温退火:加热温度与完全退火大致相似,只是冷却方式不同,其冷却方式是使高温奥氏体以较快的速度冷却至A r1 以下某一温度等温一段时间,使奥氏体完全分解转变成珠光体,然后出炉空冷。 球化退火:将工件加热到A c1+30-50℃保温后缓冷或者加热后冷却到略低于A r1 的温度下保温。主要用于共析和过共析钢及合金工具钢,主要目 的在于降低硬度,改善切削加工系,为淬火处理作好组织准备。 低温退火(去应力退火):主要用于消除切削加工和铸件、锻件、焊接件中因快冷而引起的参与内应力以稳定尺寸,避免引起变形。碳钢和低合金钢为550~650℃,高合金钢为600~750℃,退火保温时间约1~2小时,退火后的冷却均应缓慢。 正火 定义:把钢加热到临界点A c3或A ccm 以上30~50℃或更高的温度,保温足够时间,然后再空气中冷却的工艺方法。

金属材料渗碳淬火工艺综述

金属材料渗碳淬火工艺综述 摘要:渗碳与淬火在金属材料热处理中占有很重要的地位,渗碳是目前机械制造工业中应用最广泛的一种化学热处理方法,能提高材料的耐磨性和疲劳强度;淬火是热处理工艺中最重要,也用途最广泛的工序,能显著提高金属材料的强度和硬度。 关键词:渗碳,淬火,耐磨性,强度,硬度 1、渗碳工艺 1.1、渗碳原理 将低碳钢件放入渗碳介质中,在850~950℃加热保温,使活性碳原子渗入钢件表面并获得高渗碳层的工艺方法叫做渗碳。齿轮、凸轮、轴类等许多重要机械零件还有模具经过渗碳及随后的淬火并低温回火后,可以获得很高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度,而心部仍保持低碳,具有良好的塑性和韧性,因此处理后的材料既能承受磨损和较高的表面接触应力及冲击负荷的作用。 渗碳属于化学热处理,过程由分解、吸附和扩散三个基本过程组成,发生的化学反应如下: 2CO→[C]+CO2 Fe+[C]→FeC CH4→[C]+2H2 1.2、渗碳分类 根据渗碳剂的不同,渗碳方法有固体渗碳、气体渗碳和离子渗碳。常用的是前两种,尤其是气体渗碳应用最为广泛。 固体渗碳是将低碳件放入装满固体渗碳剂的渗碳箱中,密封后送入炉中加热至渗碳温度保温,以便活性碳原子渗入工件表层。固体渗碳剂由一定颗粒度的木炭加碳酸盐混合而成。渗碳温度一般为900~930℃,渗碳保温时间视层深要求确定,一般需要十几个小时。固体渗碳加热时间长,生产效率低,劳动条件差,渗碳深度及质量不易控制。 气体渗碳是把零件放入含有气体渗碳介质的密封高温炉中进行碳的渗入过程的渗碳方法。这种渗碳方法通常是将煤油或丙酮等液态碳氢化合物直接滴入高温渗碳炉中,使其热裂分解为活性碳原子并渗入零件表面。气体渗碳温度一般为920~950℃。气体渗碳工艺过程通常可划分为升温排气、渗碳(包括强渗和扩散)、降温冷却三个阶段,如图1所示:

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温830℃ 度 ℃油 冷200℃ 8 空冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo钢三种

热处理工艺比较资料

热处理工艺比较

退火 概念:将钢加热到低于或高于A c1点温度,保持一定时间后随炉缓慢冷却,以获得接近于平衡状态的组织。 目的:降低钢的硬度、改善切削加工性能;消除应力或加工硬化、提高塑性,便于继续冷加工;消除组织缺陷,提高工艺性能和使用性能;细化晶粒、改善碳化物的分布和形态,为最终热处理作好组织准备。 常用退火工艺 扩散退火(均匀退火):为了改善或消除在冶金过程中形成的成分不均匀性及夹杂物偏聚而进行的退火。加热温度一般高于A c3以上 150~250℃,加热速度不宜过快,应控制在100~200℃,加热后随炉冷却至350℃左右出炉空冷。一般安排在钢锭开坯,锻轧之后进行。 完全退火:将钢加热到A c3以上30~50℃,保持一定时间后缓慢冷却以获得接近于平衡状态组织的工艺。主要应用于消除亚共析钢中因停锻温度过高而引起粗大晶粒、铸件在浇注后冷却不当形成魏氏组织、轧制工艺不合要求而产生带状组织等缺陷。 等温退火:加热温度与完全退火大致相似,只是冷却方式不同,其冷却方式是使高温奥氏体以较快的速度冷却至A r1以下某一温度等温一段时间,使奥氏体完全分解转变成珠光体,然后出炉空冷。 球化退火:将工件加热到A c1+30-50℃保温后缓冷或者加热后冷却到略低于A r1的温度下保温。主要用于共析和过共析钢及合金工具钢,主要目的在于降低硬度,改善切削加工系,为淬火处理作好组织准备。 收集于网络,如有侵权请联系管理员删除

低温退火(去应力退火):主要用于消除切削加工和铸件、锻件、焊接件中因快冷而引起的参与内应力以稳定尺寸,避免引起变形。碳钢和低合金钢为550~650℃,高合金钢为600~750℃,退火保温时间约1~2小时,退火后的冷却均应缓慢。 正火 定义:把钢加热到临界点A c3或A ccm以上30~50℃或更高的温度,保温足够时间,然后再空气中冷却的工艺方法。 目的:低碳钢正火的目的之一是提高切削性能;过共析钢正火,主要是为了消除网状碳化物。 工艺规范:含碳量低于0.2%的钢,应适当提高加热温度(A r1+100℃);过共析钢正火,加热温度应比正常值稍高出20~40℃,采用较大冷却速度;对于某些锻件中的过热组织或铸件的粗大组织,一次正火后不能达到细化组织的目的应进行两次重复正火,第一次正火采用高于A c3以上150~200℃,第二次正火采用正常加热温度进行。 淬火 定义:将钢加热到临界温度(A c3或A c1)以上,保温一定时间后随之以大于临界冷却速度(V c)的冷速进行冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的工艺方法。 目的:提高工件中硬度和耐磨性;提高强韧性;提高弹性;获得某些物理化学性能。 工艺规范 收集于网络,如有侵权请联系管理员删除

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

淬火工艺

淬火工艺 钢的淬火是将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或在一定范围内发生马氏体不稳定组织结构转变的热处理工艺。 一. 淬火工件的工艺流程 一般工件:淬火→清洗→回火→喷砂(或喷丸等)表面清理→检验。 轴类零件及易变形工件:淬火→清洗→回火→校直→去应力处理→喷砂→检验。 二. 淬火前的准备 (1)核对工件数量、材质及尺寸,并检查工件有无裂纹、碰伤、缺边、锐边、尖角及锈蚀等影响淬火质量的缺陷。 (2)根据图样及工艺文件,明确淬火的具体要求,如硬度、局部淬火范围等。(3)根据淬火要求,设计选用合适的工夹具,有的工件进行适当的绑扎,在易产生裂纹的部位,采取相应的防护措施,如用铁皮或石棉绳包扎及堵孔等。(4)表面不允许氧化、脱碳的工件,应在盐浴炉或预抽真空保护气氛炉中加热,或采取以下防护措施: a. 涂料防护 b. 将工件装入盛有木炭或已使用过的铸铁屑的铁箱中,加盖密封。 (5)大批工件必须作单件或小批量试淬,制订工艺后方可进行批量淬火,并在生产过程中经常抽检。 三. 装炉 (1)允许不同材质但具有相同加热工艺的工件装入同一炉中加热。 (2)装炉工件均应干燥、不得有油污及其他脏物。 (3)截面大小不同的工件装入同一炉时,大件应放在炉膛后部,大、小工件分别计算保温时间。(4)装炉时必须将工件有规律摆放在装炉架或炉底板上,用钩子、钳子或专用工具堆放,不得将工件直接抛入炉内,以免碰伤工件或损坏炉衬。 (5)细长工件必须在井式炉或盐炉中垂直吊挂加热,以减少变形。 (6)在箱式炉中装工件加热时,一般为单层排列,工件间隙10~30mm。小件允许适当堆放,但保温时间应适当增加。

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

热处理工艺规范资料

热处理工艺规范 一、淬火、回火工艺规范 1.淬火、回火准备工作:1)检查设备,仪表是否正常;2)正确选择夹具;3)检查零件表面是否有碰伤、裂纹、锈斑等缺陷;4)确认零件要求的淬火部位硬度、变形等的技术要求,核对零件的形状、材料的加工状态是否与图样及工艺文件相符合;5)表面不允许氧化、脱碳的零件,当在空气炉加热时,应采取防氧化脱碳剂装箱保护或采用真空炉加热;6)易开裂的部位如尖角靠边的孔,应采取预防措施,如塞石棉、耐火泥等。 2.常见材料淬火、回火工艺规范 1)加热温度 表1 常用材料的常规淬火、回火规范 注:Cr12Mo1V1 即 D2(美国)、1.2379(德国)、SLD(日立)、SKD11(日本)、K110(奥地利); 9CrWMn 即 O1(美国)、1.2510(德国)、K460(奥地利); 4Cr5MoSiV1 即 H13(美国)、1.2344(德国)、8407/8402(一胜百)、W302(奥地利); 7Cr7Mo3V2Si 即 LD1;

HS-1是高级火焰淬火,多用模具钢; 除45号钢或特别说明均采用回火两次的工艺。 2)淬火保温时间t =8~10 min+kαD k——装炉系数(1~1.5);α——保温系数(见表2);D——零件有效厚度。 表2 淬火保温系数 3)回火保温时间 ①工件有效厚度d<=50mm,保温2小时; ②工件有效厚度d>50mm,按照保温时间t=d/25(小时)计算; ③每次回火后空冷至室温,再进行下次回火。 4)去应力(入炉时效) ①高合金钢550~650℃,热透后,保温时间>3小时; 3.淬火和回火设备 1)淬火设备——真空淬火炉、中温箱式炉、高温箱式炉。 2)回火设备——真空回火炉、中温箱式炉。 3)冷却设备——水槽、油槽、风箱。 4.操作方法 1)零件应均匀摆放于炉内有效加热区,在箱式炉中一般为单层排列加热,工件间适当间隙。 小件可适当堆放,但要酌情增加保温时间。 2)细长零件加热要考虑装炉方法,以减少工件变形,如垂直吊挂,侧立放平支稳等。

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

热处理工艺的分类

热处理工艺的分类 金属热处理工艺大体可分为、表面热处理和化学热处理三大类。根据加热、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和四种基本工艺。 整体热处理工艺的手段 退火是将工件加热到适当温度,根据材料和工件采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的和使用性能,或者为进一步淬火作组织准备。 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进 行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得 一定的强度和韧性,把淬火和结合起来的工艺,称为。某些合金淬火形成后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为。 把形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为;在负压气氛或真空中进行的热处理称为,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和热处理,常用的热源有氧乙炔或氧丙烷等火焰、、激光和电子束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层 渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 热处理是和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善的组织和应力状态,以利于进行各种冷、。

金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺的对比 一、热处理发展历史 在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。 二、氨气的作用:提高淬透性 渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件

毛坯二次等温正火对渗碳淬火金相组织和硬度的影响

毛坯二次等温正火对渗碳淬火金相组织和硬度的影响 摘要:采用汽车齿轮毛坯二次等温正火,对渗碳淬火金相组织和硬度影响进行了分析,得出毛坯二次等温正火状态下的齿轮渗碳淬火后,无明显带状组织存在,同一水平线心部硬度均匀,无明显黑相存在,残余奥氏体级别小,有效硬化层均匀。 1.前言 汽车齿轮毛坯的正火常常影响渗碳淬火金相组织和硬度,导致废品率较高。我们通过对汽车齿轮毛坯的质量抽检,发现毛坯厂家有时供给的锻坯正火组织级别、晶粒度级别、带状级别和硬度超差不符合要求,这种毛坯加工的齿轮渗碳淬火后,金相组织不均匀。对毛坯进行二次等温正火试验,经二次等温正火后毛坯金相组织级别符合技术要求,齿轮渗碳淬火后金相组织比较均匀,硬度散差较小。本文针对汽车后桥从动锥齿轮2402037H1H试验进行了详细的分析,确定了毛坯二次等温正火对渗碳淬火金相组织和硬度的影响。 2402037H1H毛坯材料为22CrMoH。试验工艺:二次等温正火,高温炉内940℃保温2h,空冷(中速)至640℃左右,放入640℃低温炉等温2h后,出炉空冷。渗碳淬火,连续炉渗碳温度930℃,渗碳16h,840℃淬火。 2.渗碳淬火金相组织 2.1带状组织 将二次等温正火毛坯加工的齿轮经渗碳淬火处理,试样腐蚀后显微镜下发现心部无带状存在。而锻件毛坯加工的齿轮渗碳淬火后,发现心部有带状存在。 2.2黑相组织 二次等温正火毛坯加工齿轮经渗碳淬火后,显微镜下对切齿HV550处组织放大400倍观察,发现切齿组织无明显黑相存在。通过观察锻件毛坯加工的齿轮经渗碳淬火处理,发现切齿HV550处组织有明显黑相存在。 2.3马氏体及残余奥氏体级别 二次等温正火毛坯加工的齿轮经渗碳淬火,切齿试样腐蚀后显微镜下观察,金相组织级别稍低。锻件毛坯加工的齿轮直接渗碳淬火处理后,切齿试样金相组织级别稍高。 2.4同一水平线上有效硬化层 二次等温正火毛坯加工的齿轮经渗碳淬火处理后,对切齿试样同一水平线上

Cr热处理工艺

40Cr热处理工艺 淬火一般840-860度 回火一般480-520度,根据要求硬度确定 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。? ? ?调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。? ? ?调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度。?? ? ?工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。? 45钢的调质处理: ? ?45钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、

来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。? ? ?45钢淬火温度在A3+(30~50)℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如装炉量大于工艺文件的规定,加热保温时间需延长1/5。? ? ?因为45钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180℃左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。? ? ? 45钢调质件淬火后的硬度应该达到HRC56~59,截面大的可能性低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质

渗碳淬火热处理工艺教案资料

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温 830℃ 度 ℃油 冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属

渗碳工艺的几种常见方法)

渗碳工艺的几种常见方法 1、一次加热淬火低温回火,渗碳温度820~850oC或780~810oC 特点:对心部强度要求高者,采用820~850oC淬火,心部组织为低碳马氏体;表面要求硬度高者,采用780~810oC加热淬火可以细化晶粒 适用范围:适用于固体渗碳后的碳钢和低合金钢工件。气体、液体渗碳后的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件 2、渗碳、高温回火,一次加热淬火、低温回火,渗碳温度840~860oC 特点:高温回火使马氏体和残留奥氏体分解,渗层中碳和合金元素以碳化物形式析出,便于工削加工及淬火后渗层残留奥氏体减少 适用范围:主要用于CR-NI合金钢渗碳工件 3、二次淬火低温回火 特点:第一次淬火(或正火),可以消除渗层网状碳化物及细化心部组织。第二次淬火主要改善渗层组织,但对心部性能要求较高时应在心部AC3以上淬火 适用范围:主要用于对力学性能要求很高的重要渗碳工件,特别是对粗晶粒钢。但在渗碳后需进行两次高温加热,使工件变形及氧化脱碳增加,热处理过程较复杂 4、二次淬火冷处理低温回火 特点:高于AC1或AC3(心部)的温度淬火,高合金钢表层残留奥氏体较多,经冷处理(-70~80oC)促使奥氏体转变,从而提高表面硬度和耐磨性 适用范围:主要用于渗碳后不需要机械加工的高合金钢工件 5、直接淬火低温回火 特点:不能细化钢的晶粒。工件淬火畸变较大,合金钢渗碳件表面残留奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉。井式炉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺

6、预冷直接淬火低温回火,淬火温度800~850oC 特点:可以减少工件淬火畸变,渗碳层中残留奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化 适用范围:操作简单,工件氧化、脱碳及淬火变形均较小。广泛用于细晶粒钢制造的各种工件

相关文档
最新文档