气溶胶反演

气溶胶反演
气溶胶反演

气溶胶反演方法

利用环境小卫星多光谱数据反演:

方法一:

1. 利用SPSS计算出大气光学厚度与大气参数(ρ

(大气的路径辐射项等效反

射率)、S(大气下界的半球反射率)、T(μ

s )T(μ

v

)(大气上行下行透过率))的对

应关系,据此建立查找表,然后利用多波段数据进行地气解耦,得到大气光学厚度。

2. 构建查询表利用6S模型构建气溶胶光学厚度查询表,输入参数为:太阳天顶角,气溶胶模式,550nm波长处气溶胶光学厚度的等级,查找表计算的波段(第一和第三波段),海拔高度。

3. 数据预处理(1)重采样,为了加快运算速度和提高信噪比;(2)辐射定标,将图像的DN值转化为表观反射率。

4. 结果反演根据获得的表观反射率计算出NDVI(用于识别暗目标),利用获得的太阳高度角对查找表进行插值,得到要计算波段的不同大气光学厚度下的大

气参数:ρ

0、S、T(μ

s

)T(μ

v

)。

5. 图像平滑与成图输出在获得大气光学厚度后,对结果图像进行平滑处理,达到内插部分非暗目标点的监测值并抑制异常点的目的,采用9×9像元的距离加权平均的滤波方法进行;将结果导入ArcMap中,进行叠加矢量图,分等定级以及添加图名图例等操作,制成专题图。

方法二:

1.对要反演气溶胶光学厚度的卫星图像惊醒地理和辐射率校正

2.然后用MODTRAN模型模拟生成τ(气溶胶光学厚度)和ρ(地表反射率)的

查找表

3.接着判断卫星观测到的地表像元反射率L

obs

与MODTRAN模拟的大气总辐射

L

total

是否相等。

4.如果不等,就改变ρ,再用MODTRAN重新计算L

total

,再判断是否相等。

5.如果相等,则根据ρ和τ的关系曲线,由反演出的地表反射率ρ

map

,计算到

气溶胶光学厚度分布τ

map

利用环境小卫星高光谱数据反演:

方法:

1.选择用于反演的波段

2.假设利用某种气溶胶模式条件下,计算红波段和近红外波段表观反射率,不

考虑临近效应影响。大气散射在可见—近红外波段影响是比较大的,在可见波段影响最大,其次是近红外波段,在中波红外接近于零,因此,在利用近红外波段反演气溶胶光学特性之前,可以在清洁大气的假设下利用6S或者MODTRAN辐射传输模型进行大气校正。

3.利用NDVI识别出浓密植被作为暗像元。

4.根据红波段反射率与近红外波段反射率的对应关系,确定红波段的地表反射

率。

5. 确定气溶胶模式

6. 辐射传输计算,利用MODTRAN 模型可以反演出各种模式下的气溶胶厚度散点

图,为了提高反演的精度,可在编程中实现,将MODTRAN 辐射传输模型通过COM 组建直接内嵌入VC 程序中,而不是通过查找表进行反演计算。

7. 采用遗传算法优化最优解得到气溶胶光学厚度。P

使用法国CIMEL 公司研制的自动跟踪太阳光度计CE318进行反演

方法:

1. CE318在地面测量直射太阳辐射和天空辐射,在可见光和近红外的独立通道

上进行测量,来确定大气透过率和散射特性。通过两个量的测量来推算反演大气气溶胶光学辐射特性(光学厚度、粒子谱分布、单次散射反照率、相函数和折射指数)。

2. 根据以往研究经验可以知道对于水汽,只在936nm 波段上考虑,对于O 3则

在每个波段上340—1020nm 之间的波段都考虑,而其他一些吸收气体诸如NO 2和CO 2在太阳光度计所配置的波段上影响非常小,因此可以忽略。

3. 先计算不考虑水汽时候的气溶胶光学厚度

4. 根据公式τa (λ)=τtotal (λ)-τr (λ)-τoz (λ),可以得出计算大

气光学厚度的方法。其中τa (λ)为气溶胶光学厚度,τtotal (λ)为大气

总光学厚度,τr (λ)为大气分子瑞利散射光学厚度,τoz (λ)为臭氧的

光学厚度。

A. 由于太阳分光光度计的探测元件是线性元件,仪器输出的DN 值与太阳辐照度之间是线性关系的所以:τtotal (λ)=(1/m)*ln[DN 0(λ)d s /DN(λ)]。

(m 为大气质量,DN 0为CIMEL 公司提供的定标数据)

B. τr (λ)=0.008569λ-4(1+0.0113λ-2+0.00013λ-4)×(P /1013.25)

e -0.125h ,在公式中h 为观测点的海拔,P 为观测点在观测期间的大气气压。

C. τoz (λ)=a oz (λ)×U /1000,在公式中a oz (λ)为臭氧吸收系数(由

CIMEL 公司提供)。U 为臭氧含量(单位为DU ,可以从NASA 网站提供的地球探测遥感器TOMS 的遥感数据处获取)。

5. 根据以上公式可以计算出不考虑水汽情况下的气溶胶光学厚度。接下来计算

考虑水汽情况下的气溶胶光学厚度。

6. 当没有水汽影响的波段上的气溶胶光学厚度反演实现之后,在气溶胶粒子的

谱分布满足Junge 分布的情况下,Angstrom 指出气溶胶的光学厚度跟波长之间的关系可以用下面的公式表示:τa (λ)=βλ—α;其中α为反粒子大

小,β为大气浑浊度指数(与气溶胶粒子总数、粒子谱分布和折射指数有关)。 设λ1,λ2没有水汽影响则有:

τa (λ1)=βλ1—α;τa (λ2)=βλ2—α

通过以上公式可以得出:

α=-ln[τa (λ1)/τa (λ2)]/ln (λ1/λ2)

β=τa (λ1)/λ1—α

从而可以得到936nm 的气溶胶光学厚度。

使用NOAA-14极轨卫星甚高分辨率辐射计(AVHRR )可见光单通道资料反演气溶胶光学厚度

方法:

1.定标: AVHRR的可见和红外通道的定标系数是卫星发射前在实验室里确定

的。该辐射计的敏感度随日久而降低.如果假设卫星发射后其定标系数不变。

由AVHRR第一通道观测的原始数据(DN)求出的相对反射率因子就会越来越被过低的估计。

2.滤云:由于云层对可见光能强烈反射,对红外光波能强烈吸收,反演时顽避

开云的影响而选取晴空大气区。就利用AVHRR各通道资料滤云而言,主要有以下五种方法:

A.第五通道亮温阈值法

B.第二和第一通道反射率比值法

C.第四和第五通道亮温差值法

D.相邻相素点第四通道亮温标准差法

E.新相关技术

对白天或夜间的不同云型,这些方法各有自己的优缺点:

1).第五通道亮温阈值法滤云的效果取决于对所处理区域下垫面温度的估计,比较适合在温度年际变化不大的热带海洋地区使用。

2).由于AVHRR第一通道为可见光通道,比值法只能在白天运用。

3).第四和第五通道亮温差值法是AVHRR滤云技术中能识别卷云的唯一方法。

4).亮温标准差法滤云主要依据相邻相紊点上由于云的影响而引起的第四通道亮温的差异,不易运用于温度梯度较大的下垫面,因为此时相邻相素点上的下垫面温度的差异会混淆云的影响。

5).新相关技术不易用于识别海上低云。

此外,由于大气平均状况随纬度而变化,上述各方法的滤云指标在高、中和低纬度也略有不同。

3.大气因子参数化:可以采用LOWTRAN-7程序的光谱总透过率模式、太阳光谱

的单词散射模式、透过太阳辐射模式和入射太阳辐射模式。考虑到LOWTRAN-7程序的光谱分辨率为20cm-1,为提高反演精度,利用总滤波响应函数进行滤波时,最好采用相同的光谱分辨率。

选取LOWTRAN-7的大气模式,并且输入CO

2的体积混合比,O

3

的含量(短时间

内其含量可以认为是常量)。利用AVHRR第四和第五通道亮温差与水汽吸收的关系可以获得误差为±5kg/m2的水汽含量(W

H2O

)。

运用逐线积分法可得水汽的光学厚度(δ

H2O

)与水汽含量的关系: δH2O=0.102Log(W H2O)-0.0346

4.气象能见度和气溶胶光学厚度的获得:气象视距VR可以从LOWTRAN一7程序直

接给出。从VR-1.3V可以求得气象能见度V。进而可通过VR与近地面水平消光系数β(0)的关系求出β(0)。由水平消光系数β(0)求取气溶胶光学厚度δ的方法的好坏直接影响着δ值的精确程度。

1).估计法:由于大气气溶胶主要集中在对流层下部,如此由公式: δ=β(0)×ΔZ,Z为海拔高度

2).计算法:设气溶胶粒子谱呈常见的幂定律分布,则可得任意高度上的消光系数,就有如此公式:

β(Z)=(N(Z)/N(0))×(3.912/VR-0.0116)×(0.55/λ)ψ3 此处Z为海拔高度在海洋上3≤ψ≤5;N (Z),N (0)分别为海拔高度Z

和海平面上气溶胶粒子数密度。

根据Junge分布和上述气溶胶粒子数密度分布的拟合曲线推出了气象视距VR和δ(z)的关系,从而计算出气溶胶光学厚度。

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

遥感反演PM2.5的文献阅读笔记

一、PM2.5遥感反演基本原理 卫星遥感反演大气气溶胶是基于卫星传感器探测到的大气上界的表观反射率,也是卫星传感器接收到的辐射值L 。 ))(1/(),(),(),,,(''0ρτρμτμτμμτa s a s a d v s a S T F L L -?+Φ= 0L 为整层大气反射的太阳辐射,主要来自于大气中分子和气溶胶的散射贡献; ) ,(s a d F μτ为太阳下行总辐射;),(s a T μτ为传感器和目标物之间的透过率;'ρ为地表反射率; )(a S τ为大气半球反照率。 由上式可看出卫星观测到的反射率既是AOD 的函数,又是下垫面反射率的函数,如果知道下垫面反射率,并根据不同地区的气溶胶特征确定大气气溶胶的模型就可以得到AOD 。 因此利用AOD 与地面监测指标之间的数学关系,进而建立相应的数学统计模型,这就是基于卫星遥感反演AOD 进而通过统计模型预测PM2.5的基本原理和思路。 二、遥感数据源 目前能用于反演PM2.5的遥感传感器主要有云-气溶胶光达和红外探险者卫星观测器CALIPSO 、中分辨率成像光谱仪MODIS 、多角度成像光谱仪MISR 、多角度多通道偏振探测器 POLDER 、大气臭氧总量绘图仪TOMS 和TOMS 的后继者臭氧监测仪OMI 。 目前应用最多的传感器主要是MODIS 和MISR 。 三、PM2.5时空分布计算方法 利用遥感反演的AOD 结合影响PM2.5的其他因素,采用统计方法间接计算PM2.5时空分布是当前主要的方法。 其计算方法大体可以分为简单线性模型、多元线性回归模型、人工智能模型和广义加法模型4种。 简单线性模型是利用近地面监测站的PM2.5浓度与AOD 之间的简单二元关系建立的,是较早用于PM2.5反演的模型构建方法。 多元线性回归模型除了考虑AOD 外,还将与PM2.5有相关性的湿度、温度、风速、气溶胶类型、大气边界层高度等因素作为自变量,因此多自变量进行PM2.5多元线性回归,其精度得到显著的提高。 由于PM2.5浓度的时空分布受到气象场、排放源、复杂下垫面、理化生过程的耦合等多种因素的影响,具有较强的非线性特性。有学者采用神经网络模型、支持向量机模型、贝叶斯网络算法、基因算法等人工智能算法进行PM2.5时空分布计算,取得较好的应用效果。 广义相加模型GAM 是线性模型非参数化的扩展将一些与因变量间存在的复杂非线性关系的自变量以不同函数加和的形式拟合入模型可以探索到变量间非单调非线性关系从中找

遥感反演土壤湿度的主要方法

遥感反演土壤湿度的主要方法 遥感反演土壤湿度根据波段的不同分为3类:微波遥感土壤湿度法;作物植被指数法;热红外遥感监测法(主要是应用热惯量模型)。 1.1 微波遥感土壤湿度法 分主动微波遥感监测法和被动微波遥感监测法两种。此方法物理基础坚实,即土壤的介电特性 和土壤含水量密切相关,水分的介电常数大约为80,干土仅为3,它们之间存在较大的反差。土壤的介电常数随土壤湿度的变化而变化,表现于卫星遥感图像上将是灰度值G亮度温度Tb的变化。因此,微波遥感土壤水分的方法被广泛地应用于实际的监测工作中。 1.1.1 主动微波遥感监测法 以应用x波段侧视雷达为主,主要是后向反射系数法。因为含水量的多少直接影响土壤的介电常数,使雷达回波对土壤湿度反映极为敏感,据此可建立后向散射系数和土壤水分含量之间的函数关系。国内李杏朝据微波后向反射系数法,用x波段散射计测量土壤后向反射系数,与同步获得的X 波段、HH极化机载SAR图像一起试验监测土壤水分;田国良等在河南也应用此方法也进行土壤水分研究。主动微波遥感土壤水分精度较高,且可以全天候使用,成为监测水分最灵活、最适用、最有 效的方法,随着大量的主动微波遥感器的卫星(ERS系列、EOS、SAR、Radar sat、ADEOS、TRMM 等)的发射升空,将使微波遥感的成本不断下降,逐渐被应用于实践 1.1.2 被动微波遥感监测法 原理同主动微波遥感法。值得指出,植被在地表过程研究中的影响突出,为了消除植被的影响,必须同时重视植被的遥感监测,建立相关的计算模型。Teng等通过实验得出在浓密植被覆盖区土壤湿度监测中应避免使用19GHZ波段,此时SMMR 的6.6GHZ波段比SSM/I的19GHZ在遥感监测土壤湿度信息方面的精度更高。说明在植被较密时,为了消除植被对土壤湿度反演的影响,应尽量 选择波段较长的微波辐射计。 1.2 作物植被指数法 采用此方法是基于植被在可见光部分叶绿素吸收了70%-90%红光,反射了大部分绿光,而由 于叶肉组织的作用,后行叶片在近红外波段的反射较强。通过各光谱波段所反射的太阳辐射的比来 表达,这就叫植被指数。常用的植被指数有:归一化植被指数(Normal Difference Vegetation Index, NDVI)、比值植被指数(Ratio Vegetation Index, RVI)距平植被指数(Average Vegetation Index, AVI)和植被条件指数(Vegetation Condition Index,VCI)。 1.3 热红外遥感监测法 土壤热惯量和土壤水分的关系密切,即土壤水分高,热惯量大,土壤表面的昼夜温差小,反之 亦然。热红外遥感手段主要利用地表温度日变化幅度、植被冠层和冠层空气温差、表观热惯量、热 模型(蒸散比)估测土壤含水量[5]。 土壤热惯量法是土壤热特性的综合性参数,定义为: P = tCm (1) (1)式中:P为热惯量(J/m2 k?S1/2);ρ为密度(kg/m3 );C为比热(J/kg?k);λ为热导率。在实际工作中,常用表观热惯量来代替P: ATI=(1一A)/(Td-Tn) (2) 式中:Td、Tn分别为昼夜温度,A为全波段反照率。

利用MODIS的L1B数据反演气溶胶的流程如下

利用MODIS的L1B数据反演气溶胶的流程如下: 该方案中的数据和算法介绍: 1、MODIS数据是采用的MODIS L1B 1KM数据。应严格按照说明进行操作,例如数据是1km的,数据的合成是反射率在上,发射率在下等,下面将详细介绍各个步骤。 2、这是在ENVI 5.0下做的北京市气溶胶反演,具体包括MODIS影像(HDF)的辐射校正、几何校正、云检测、气溶胶反演。 3、气溶胶反演算法采用经典的暗像元法(DDV)也叫浓密植被法,因此对于冬季反演的气溶胶效果不好。 4、气溶胶反演的查找表是利用IDL调用6S辐射模型得到的,采用的是一般的参数,因此3-9月期间都可以用这一个查找表进行气溶胶反演,也可以自己制定查找表。 5、七纬查找表,从左向右,依次为太阳天顶角,卫星天顶角,相对方位角,P0、T、 S (辐射传输方程参数),最后一列为气溶胶光学厚度(AOD) 6.感兴趣的可以提供用到的modis云检测工具和气溶胶反演工具以及详细的pdf文档。 MODIS数据下载地址:https://www.360docs.net/doc/547023023.html,/data/search.html

一、MODIS影像的辐射校正 在ENVI 5.0中打开MODIS影像的HDF文件就已经做了辐射校正,打开HDF文件的方法是File->Open As->EOS->MODIS,打开后在数据列表中可以看到三个文件,第一个是发射率Emissive(band20-band36),第二个是辐射率Radiance(band1-band26),第三个是反射率Reflectance(band1-band26),如图1所示。 图1 ENVI5.0打开HDF文件 二、几何校正 2.1发射率文件的几何校正 (1)Georeference MODIS工具 ENVI5.0下有对特定传感器进行几何校正的工具,其中就有专门针对MODIS数据的几何校正,如图2 Georeference MODIS工具的位置。

气溶胶与雾霾天气的关系

气溶胶与雾霾天气的关系 学生: 指导教师: 专业:给排水科学与工程 院系:城市建设与环境工程 论文提交时间:2015年4月29日TheRelationshipBetween Aerosol And

Fogweather Studnt:Zhang Shuai Guidance teachers:Zuo Zhao Hong Major:Water science and Engineering Department:Urban Construction and Environmental Engineering Submit Time:29th April,2015

摘要 此文立足当代社会雾霾已经对人类生产生活造成严重影响的现实基础上已解析气溶胶与雾霾之间的关系为目的,在查阅大量相关资料的后分析得到雾霾与气溶胶之间的种种联系,依次点明了雾霾与气溶胶的定义,气溶胶的物理化学性质及其分类和来源,气溶胶与大气颗粒物之间的作用关系,及气溶胶与雾霾能见度之间的关系,并得到了一定成果,气溶胶与大气颗粒物浓度息息相关,是雾霾能见度的关键因素,降低气溶胶浓度,能够显著降低雾霾发生的可能性与危害性。气溶胶可以通过雾的凝结来降低气溶胶浓度,但当城市污染严重时效率低下,将形成雾霾。当代社会人类生活生产活动大大增加了气溶胶的化学成分,不过科学家已经认识到气溶胶是雾霾的幕后黑手,并且采取了一定措施来降低气溶胶浓度。 关键词:雾霾,气溶胶,大气颗粒物,能见度,pm2.5

Abstrct This article based on the contemporary social reality thatf haze has a serious impact on the production and life of human beings. In order to analysis the relationship between aerosol and haze , after reading a lot of relevant data to analysis the connections between the haze and aerosol pointed out, that the definition of the haze aerosols, aerosol and its physical and chemical properties of the source and classification and interaction between aerosol and atmospheric particles, and the relationship between aerosol and visibility of the fog and haze, and obtained the certain achievement, aerosol and atmospheric particulate matter concentration is closely linked, which is the key factor to reduce haze visibility, aerosol concentration, it can significantly reduce the possibility and harmfulness of haze . Aerosol can be reduced by fog condensation , but when the severe pollution of the city when the efficiency is low, it will form haze. Contemporary social and human activities greatly increased the aerosol chemical composition, but scientists have been aware of the aerosol is behind the haze, some measures have been taken to reduce the aerosol concentration . Key word:Fog and haze, Aerosol ,Atmosphere Grain,Visibility ,pm2.5

多源遥感数据反演土壤水分方法

多源遥感数据反演土壤水分方法 张友静1,王军战2,鲍艳松3 (11河海大学水文水资源与水利工程科学国家重点实验室,江苏南京 210098;21中国科学院寒区旱区环境与工程研究所, 甘肃兰州 730000;31南京信息工程大学大气物理学院,江苏南京 210044) 摘要:基于AS AR 2APP 影像数据和光学影像数据,根据水云模型研究了小麦覆盖下地表土壤含水量的反演方法。利用T M 和MOD I S 影像构建的植被生物、物理参数与实测小麦含水量进行回归分析,发现T M 影像提取的归一化水分指数(NDW I )反演精度较好,相关系数达到0187。根据这一关系,结合水云模型并联立裸露地表土壤湿度反演模型,建立了基于多源遥感数据的土壤含水量反演模型和参数统一求解方案。反演结果表明:该方案可得到理想的土壤水分反演精度,并可控制参数估计的误差。反演土壤含水量和准同步实测数据的相关系数为019,均方根误差为3183%。在此基础上,分析了模型参数的敏感性,并制作了研究区土壤缺水量分布图。 关键词:土壤含水量;多源遥感数据;水云模型;AS AR;多尺度 中图分类号:P33819 文献标志码:A 文章编号:100126791(2010)022******* 收稿日期:2009203209 基金项目:国家自然科学基金资助项目(40701130;40830639) 作者简介:张友静(1955-),男,江苏南京人,教授,主要从事遥感机理与方法研究。E 2mail:zhangyj@hhu 1edu 1cn 土壤含水量是地表和大气界面的重要状态参数,并直接影响地表的热量和水量平衡,因而受到水文、气象和农业灌溉等多个学科的关注。微波土壤水分遥感研究始于20世纪80年代,其中最具代表性的是U laby 利用试验数据得出土壤后向散射系数的主导因素为粗糙度和含水量 [1]。80年代后,Dobs on 和U laby 利用车载、高塔、航空平台的微波数据研究了土壤湿度反演的最佳工作模式,并一致认为小角度入射后向散射系数对土壤湿度最敏感[2]。随着微波散射模型不断发展,相继出现微波散射的小扰动模型、几何光学模型、物 理光学模型、两尺度模型和积分方程模型A I E M 。Dobos on 等在物理模型和试验研究的基础上各自建立了经验和半经验模型,成功地反演了裸土的土壤含水量 [324]。2000年以来,随着Rardrsat,E NV I S AT AS AR 传感器发射,基于卫星雷达数据的土壤湿度反演逐步开展。李震等综合主动和被动微波数据,建立一种半经验模型,用于估算地表土壤水分的变化 [526]。研究表明AS AR 数据在半干旱区农田土壤湿度反演方面具有独特的优势[729]。 在植被覆盖条件下,微波信号的组成十分复杂。研究提取植被覆盖下的土壤湿度信息的重点在于如何有效的分离出植被对微波的散射信号,以便用土壤的后向散射信号估算植被覆盖下的土壤含水量。直接用多频同步微波遥感数据通过理论模型或数值模拟求解植被对微波的散射信号[9],具有很好的同步性和物理意义。但遥感数据获取较为困难,同时求解所需的地面同步观测的数据要求很高,因而区域尺度的监测应用还有待深入研究。根据植被的生物、物理特征与植被散射信号之间的关系,采用同步光学遥感数据反演植被散射信号是近年来的研究热点[9211]。但在植被特征参数表达农作物后向散射信号的能力评价、模型参数的识别以及整体求解方案等方面的研究较少。此外,为满足土壤水分监测和灌溉决策的需求,还需研究不同时空分辨率数据反演植被散射信号的能力。本文根据水云模型,研究多尺度下不同植被特征参数与小麦含水量的关系,采用将所有参数放入统一框架下估算的策略,构建了结合光学和微波遥感数据的土壤水分估算模型,并分析了模型参数的敏感性。经准同步实测数据检验,小麦覆盖下土壤水分的估算达到了较高的精度。 第21卷第2期 2010年3月 水科学进展ADVANCES I N WATER SC I ENCE Vol 121,No 12 M ar .,2010

大气气溶胶相关研究综述

摘要 近日,环保部公布了我国第一部综合性大气污染防治规划——《重点区域大气污染防治“十二五”规划》。事实上,随着大气污染给人民生活带来的不便增多,人们空前关注大气科学进展以及PM2.5治理的理论依据。本文将从三个方面对大气气溶胶的研究做出总结和分析:大气气溶胶的基本特征,大气气溶胶的气候效应,国内外相关的大气气溶胶研究计划。 关键词:大气气溶胶;气候效应;环境健康;研究综述 前言 气溶胶是指长时间悬浮在空气中能被观察或测量的液体或固体粒子,其实际直径一般为0.001~100μm,动力学直径为0.002~100μm,对人体、环境、气候等产生着重要的影响。 [4] 由于大气气溶胶在气候、环境等方面的重要作用,近年来越来越引起科学界的重视。 很多过程可以产生气溶胶,根据来源可分为自然气溶胶和人为气溶胶。自然源主要是海洋、土壤和生物圈以及火山等;人为源主要来自化石燃料的燃烧、工农业生产活动等。工业革命以来,人类活动不仅直接向大气排放大量粒子,更重要的是向大气排放大量的SO2和SO X,NO2和NO X在大气中通过非均相化学反应逐渐转化成硫酸盐和硝酸盐粒子,形成二次气溶胶。污染气体形成的大气气溶胶自工业革命以来有大幅度增加。来自自然源的气溶胶如沙尘,也由于人类活动利用土地变化而发生着改变。尽管气溶胶只是地球大气成分中含量很少的组分,但由于其在许多大气过程中的重要作用而日益受到重视。随着环境污染问题的发展,人们已认识到大气气溶胶自身的污染特性与其物理化学性质以及在大气中的非均相化学反应有着密切的关系。[5] 气溶胶还与其他环境问题如臭氧层的破坏、酸雨的形成、烟雾事件的发生等密切相关。此外,气溶胶对人体和其他生物的生理健康也有其特有的影响。[1] 由于气溶胶的气候效应问题,气溶胶再次成为国际学术界的研究热点之一,大气气溶胶是当今大气化学研究中前沿的领域。国际大气化学研究计划(IGAC)科学指导委员会于1994年将国际全球大气化学研究计划和国际气溶胶计划(ICAP)合并重组,大气气溶胶研究被列为3大研究方向之一。大气气溶胶的研究内容,发展到包括物理和化学的性状、来源和形成、时空分布、对气候变化和环境质量的影响以及对大气化学过程的影响等多方面、多层次的综合研究,也涉及到大气科学的各个领域,具有很强的综合性。

北京市气溶胶(PM10、PM2.5)反演与预警系统

说明:此文件为报名时必须要提交的文件,作为报名的一个重要组成部分不可缺少,如参赛小组不提交该文档,则报名无效 Esri 2012 中国大学生GIS软件开发竞赛 项目计划书 (D-ENVI/IDL开发组适用) 参赛作品名称北京市气溶胶(PM10、PM2.5)反演与预警系统 团队成员姓名 学校/院系聊城大学环境与规划学院 队长及联系电话 快递地址 邮编252059 队长电子邮箱 (说明:2012年4月30日集中报名截至后,选手仍然可以报名参赛,但组委会将不再提供参赛软件。) 竞赛官方讨论站点:https://www.360docs.net/doc/547023023.html, 参赛须知: 所有参赛作品必须是原创作品,并且参赛者均须保证其提交的作品是由其本人或所属参赛团队原创并拥有、以前从未被发表或发布或许可给第三方发表或发布、以及不损害任何第三方的名誉权、隐私权等任何权利。参赛作品的原创版权归参赛团队所有,竞赛组委会仅拥有对获奖作品进行展示及推广的权利。如果提交作品,则意味着接受并遵守参赛要求和参赛规则。

项目计划书提交时间: 即日起至2012年4月30日截止。 项目计划书提交流程: (1)在报名系统选择报名小组,并依次填加小组成员及指导老师; (2)下载该项目计划书,完整填写后,在报名小组信息中相应位置进行上载(请注意项目计划书文件的大小,尽量不要超过1.5m); (3)组委会在收到该文件后,会给予审核,审核通过后,系统自动赋予参赛编号。 项目计划书应包括如下内容(请以此为模板填写): 一、项目概述 1. 引言 近二十多年来,随着我国工业化和城市化进程加快,各种大气污染物高强度、集中性的排放,大大超过了环境承载力, 导致空气质量严重下降。大气污染不仅影响城市景观,还会严重危害公众健康,已成为影响我国城市和区域可持续发展的重 要因素。 气溶胶即悬浮在气体中的固体颗粒物和液体微粒与气体载体共同组成的多相体系,其动力学直径大约在0.001um—100um 之间,直径<10um的可吸入颗粒物(PM10)和直径小于2.5um的可入肺颗粒物(PM2.5)对人体健康有巨大危害。气溶胶颗粒的增 加是近年来城市及郊区频现“灰霾”天气的一个重要原因。而且,气溶胶(PM10、PM2.5)的污染会严重影响人的身体健康, 据统计由于气溶胶的污染,北京市人口寿命平均减少五年左右。 2. 项目背景/选题动机/目的 目前国内对气溶胶的监测依靠环保部门地面采集、监测网络等方式获得数据,这种方式费时、费力、昂贵,对于发展中 国家更是如此。同时气溶胶的时空特征存在巨大差异,而地基测站很少,所以地基观测方式难以实现大范围监测。 相比于传统的监测手段,卫星遥感技术具有宏观性强,能快速获取地表的空间变化和时间动态变化信息等特点,在环境 质量现状和应急监测方面具有明显的优势,卫星观测反演气溶胶的方法已成为越来越重要的气溶胶监测手段。 二、需求分析 1. 概要 【指出项目的需求,该系统主要解决的实际问题】 由于地面监测的局限性,辅以遥感动态监测气溶胶成为不二之选,本系统基于高时间分辨率的MODIS 影像和高空间分辨率的环境减灾卫星影像、TM影像反演北京市气溶胶时空分布,在反演气溶胶的基础上分析气溶胶与PM10和PM2.5的关系,从而得到PM10和PM2.5的时空分布图。结合植被覆盖度、地表温度、相对湿度、地形(DEM)以及气象等多种影响因子来综合分析与气溶胶和PM10、PM2.5的关系。最后利用数据挖掘CART算法以多种影响因子为自变量实现气溶胶的预警。从而帮助受污染城市对气溶胶(PM10、PM2.5)进行预防和治理,给城市人民一个清爽的空气,一个健康的身体。 2. 应用领域/实用性分析 【指出项目的应用领域及实用性】 本系统是对城市气溶胶进行动态监测与预警,可以用来监测城市大气状况,尤其是对人身体健康影响很大的PM10、PM2.5。以此来帮助城市人民预防和治理大气污染,还城市人民一个清新的家园。 三、系统功能概述 【针对需求,对系统的设计概念和功能进行描述】 本系统是C/S和B/S相结合的,在C/S端系统主要分为三大功能模块:1.基于多种影像的气溶胶反演 2.分析影响气溶胶产生以及分布的因子 3.利用CART算法对气溶胶进行预警;在B/S端主要是发布气溶胶 现状分布图、和各种因子之间的分析结果以及预测的气溶胶时空分布图供不同用户(林业局、交通局、国土资源局、城市普通人民)浏览与分析。图1是基于StarUML软件制作的用例图(Use Case Diagram)。

气溶胶力学

课程名称:气溶胶力学

一、绪论 研究气溶胶粒子的形成、运动、沉降和凝并的科学成为气溶胶力学。其研究内容对人类的生产和生活有着重大的影响。自然界中云的形成对气候的影响;水蒸发凝结而降雨;风所造成的固体颗粒的迁移与沉积;风对植物花粉的传播以及空气中微生物的散布等都是气溶胶力学的研究内容。气溶胶的形成对人们的生产和生活有着有害和有利的双面,如一些尘粒会造成呼吸性疾病,生产过程中尘粒的发散会对产品的质量造成影响;但是,液体燃料在燃烧前喷成雾状以及固体燃料在燃烧前磨成粉末可以提高燃烧效率。 目前,研究气溶胶粒子的沉降过程比研究粒子的形成更有意义。控制粉尘污染的方法和手段是多样的,一般有重力式、惯性式、离心式、纤维过滤式、织物过滤式、静电式以及各种湿式除尘设备。而气溶胶力学所研究的内容是他们手机气溶胶粒子的机理以及在收集过程中气流的流场和能量损失。气溶胶力学的研究内容是气象、环境保护、劳动保护等科学的理论基础。为除尘净化的目的,从气溶胶粒子的物理性质及其运动;气溶胶粒子的空气动力捕获、扩散运动与沉降;气溶胶粒子的凝并、经典沉降以及气溶胶粒子的其他沉降机理讲解。 二、当前气溶胶科学发展动向 在应用方面,气溶胶工程技术发展很快。首先,微电子这一尖端高技术的发展,要求超纯净的工作环境,例如,在大规模和超大规模集成电路超纯净工作室,要求空气中所含气溶胶粒子浓度低于每立方英尺个粒子。因此,气溶胶粒子的过滤与分离的间题,以及超微量粒子浓度的测量问题,就成为当代气溶胶研究 中的重大课题。另外一个气溶胶工程技术的新发展,是利用气溶胶技术制备新材料。这是一个引人注目的气溶胶科学与材料科学交叉的新发展。按照人们预先规定好的力学性质、光学性质和电学性质来制备新材料,本来是材料科学的一个中心课题现在气溶胶科学深入到这一领域,与材料科学相互交叉、相互合作,就出现了一些技术上最激动人心、科学上最富挑战性的新的人工合成物。例如氧化物与非氧化物,以及金属粉末等,被烧结成不同形状,不同大小的新的固休材料。这之中有低温超导体材料,人造金刚石薄膜、碳黑、二氧化硅、二氧化铁、硅、碳化硅、光导纤维、汽车钢材、磁带与录相带上的薄膜、感光片薄膜等。这些新材料正以其高纯度、低成本而令人瞩目。

外文文献翻译-:上海冬季亚微米级气溶胶吸湿性增长特性说课讲解

冬季上海地区亚微米级城市气溶胶的吸湿性增长 摘要: 吸湿性增长因子和混合状态的信息对理解被严重污染的长三角地区的雾的形成机制具有重要的作用。在此研究了环境气溶胶的吸湿性增长。用HTDMA测量了复旦大学校园中粒径在30-250nm的干粒子的吸湿性增长因子,研究两种模式化的表面混合物。较少吸湿组在85%的相对湿度下的吸湿性增长因子为1.10。较少吸湿组的平均数部分在0.33-0.17范围内呈现多样化,随着干粒子的尺度的增长有轻微的减少。较多吸湿组的吸湿性增长因子显示出爱根核与积聚模态的粒子有显著的不同。爱根核为接近1.3,而积聚模态为1.4以上。在以硫酸铵盐为基础的模式中,较多吸湿组的吸湿体积增长分数在0.47-0.70这个范围内,而且爱根核和积聚模态的粒子的吸湿性增长分数的界限很清晰。以相对湿度测试为背景的吸湿性增长不仅显示出潮解相对湿度决定于粒子大小,同时也显示出硝酸盐粒子的增长最初是由硫酸盐的凝结提升的。结果也表明了大多数积聚模态的粒子在有雾的情况下都会潮解。 1前言: 近20年来,随着经济的快速增长和城市化进程的加快,中国超大城市的空气污染问题越来越受到关注。由化石燃料燃烧排放的一次污染物和由光化学氧化和多相反应而来的二次污染物对城市居民的环境和健康造成了极大地威胁。雾这种能见度小于十公里的现象是由于高浓度的微粒排放造成的。长江三角洲是中国四大雾区之一。作为长三角的经济中心,上海为国家GDP做出了4.6%的贡献。作为全国最大的超大城市,上海有1800万的常住居民和280万的流动人口(Geng等人,2008)。由当前研究为基础做出结论,上海雾天能见度的下降主要是由于PM2.5浓度升高造成的(Fu等人,2008)。 很多因素影响着大气能见度,比如化学组成、粒子大小的贡献、气溶胶的构成和气溶胶的混合状态。水相、海盐和矿物尘埃的参与促进了硝酸的吸湿反应。N2O5在对流层表面的水解(Dentener和Crutzen,1993;Mongili等人,2006),硫酸盐在有雾状态下的组成(Tursic等人,2004)。环境气溶胶的吸湿增长会改变粒子大小和光学特性(Gasso等人,2000;Kotchenruther等人,1999;Swietlicki等人,1999)。作为相对湿度RH的功能之一的光散射性质是衡量大气气溶胶直接影响气候的衡量参数之一,有些人已经试图将吸湿性增长因子包含到全球气候模型中去(Boucher 和

近地表气温遥感反演方法(定)

近地表气温遥感反演方法研究进展 摘要:气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。结合遥感的空间分辨率高,覆盖面广,资料同步性强的特点,运用遥感方法反演气温弥补了传统方法的缺点,气象卫星的发展,为其提供了技术平台支持。本文从近地表气温反演的各种不同的方法进行阐述,分别从半统计方法、统计方法、多因子分析方法和遗传算法方面进行叙述。 关键词:气温;遥感;反演方法这 1.引言 气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。由于近地球表面气温控制着大部分陆地表面过程(如光合作用、呼吸作用及陆地表面蒸散过程等),因此,气温是各种植物生理、水文、气象、环境等模式或模型中的一个非常重要的近地表气象参数输入因子[1,2]。高山、水体、植被以及土壤含水量等,以至于表现出很大的空间异质性。我们常常听说的气温,是有气象观测站在植有草皮的观测场所中离地面1.5米高的百叶箱中的温度表测得的。由于温度表保持了良好的通风性并避免了阳光直接照射,因而具有较好的代表性,这个温度基本上反映了观测地点(当地)的气温。但是随着数值预报的发展,常规的探测手段越来越不能满足现代业务预报的需要。特别是在海洋,沙漠,沙漠等的荒僻的地区,基本不可能设立气象站点,即使设立站点也十分稀疏,这就使得我们所获取的气温资料十分有限,要想研究特定位置的气温水平空间分布状况及其内部结构特征等都有一定的困难。同时在不同地形和不同景观条件下,一个气象站观测的数据能够代表的范围有很大差别,即使通过空间内插过程也不能够获得满意的气温空间分布,从影响模型模拟结果[3]。 而遥感具有覆盖面广,空间分辨率高,资料同步性强的特点,所以利用卫星遥感手段资料反演近地表的大气温度就弥补了传统手段的缺陷,不论在现实意义还是经济意义上,都是非常重要的。随着大气科学理论和遥感探测技术的迅速发展,在全球大气观测系统中,卫星探测技术将会成为中流砥柱。同时,从60年代有了气象卫星之后,给遥感反演温度提供了可靠的现实依据。 目前反演大气参数的方法基本可以分为三类:物理方法、半统计方法和统计方法。物理方法是从辐射传输方程出发,根据已知的一些大气知识对方程进行简化,从而达到求解的目的,至今对它们的物理机制认识得还很不清楚,所以极大地限制了该方法的应用与发展。半统计方法是采用物理方法与实测资料的结合,建立个大气参数间的关系,然后利用实测资料进行各参数的反演。目前在该领域采用比较多的是统计方法,它主要包括单因子线性回归分析方法、多元统计方法、Bowen 比分析方法、遗传算法和神经网络方法等,利用这些方法时需考虑多种影响因素,从而建立各因素之间的相互关系[4]。 本文具体从半统计方法和统计方法对气温反演进行研究,着重论述了统计方法反演近地表气温,考虑了热红外和微波两个波段对气温的反演。

陆地气溶胶光学厚度反演原理与方法

陆地气溶胶光学厚度遥感监测原理与方法 大气气溶胶是由大气介质和混合于其中的固体或液体颗粒物共同组成的多相体系。粒子的直径多在10-3~102μm之间。气溶胶光学厚度指无云大气铅直气柱中气溶胶散射造成的消光程度,是大气遥感的重要指标,也是衡量大气污染的重要指标。 利用卫星遥感进行气溶胶监测主要有暗目标法(Kaufman et al,1988)、结构函数法(Tanré et al.,1988)、多角度偏振法(Herman et al,1997)等。目前环境一号卫星CCD相机和超光谱相机的波段设置条件下,暗目标法可得到较好的应用,同时环境一号卫星CCD相机的高空间分辨率,为结构函数法的应用提供了可能。由于环境一号卫星各相机的工作方式的(非偏振)限制,目前尚无法应用多角度偏振方法,环境一号后续星将加入偏振传感器。 1.暗目标法 在可见近红外波段,传感器接收到的信号,既是气溶胶光学厚度的函数,又是下垫面地表反射率的函数。当地表反射率很小时,卫星观测的辐射值主要是大气的贡献,能够提取大气气溶胶信息,暗目标法就是利用浓密植被地区红蓝波段的辐射值和气溶胶光学厚度的这种关系反演气溶胶光学厚度。 2.结构函数法 对于高反射率地区,地表反射率较大,传感器测量的辐射值主要是地表的贡献项,对气溶胶的变化不再敏感,这时使用基于地表反射率的方法反演气溶胶光学厚度非常困难。 结构函数法是早期研究陆地污染气溶胶采用的卫星遥感算法。该算法假设同一个地区一段时间内地表反射率是不变的,利用“清洁日”大气作为参考,反演“污染日”大气的气溶胶光学厚度。利用结构函数法可以反演城市地区的气溶胶分布状况。 3.多角度偏振方法 大气中的气溶胶和大气分子与入射太阳辐射相互作用,除了可以散射和吸收入射辐射,还可以使入射辐射发生偏振,卫星通过测量后向散射的偏振特性,可以得到气溶胶信息。利用偏振信息进行气溶胶反演,具有受地表影响小、能够反演气溶胶物理性质的优势。

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat 数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“进行辐射定标。 Settings ,如下图。 2、大气校正

本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取; 6) 设置研究区域的地面高程数据; 7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间; 注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:; 8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择); 9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T); 10) 其他参数按照默认设置即可。 11) 多光谱参数设置中, K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100) 波谱响应函数:默认指向.. \Program Files\Exelis\ENVI51\classic\filt_func\ 把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\ 注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将

操作-大气校正,辐射定标,气溶胶反演

基于RS\GIS监测洪灾变化上机操作实例 基本原理: ①大气校正 遥感图像在获取过程中,受到大气吸收与散射、传感器定标、地形等因素的影响,且会随时间的不同而有所差异。利用多时相遥感图像的光谱信息检测地物变化的重要前提是要消除不变地物的辐射值差异。 大气校正的目的是消除大气和光照等因素对地物反射的影响,大多数情况下,大气校正是反演地物真实反射率的过程。 目前可以进行大气校正的模块有很多种,如最早的MODTRAN 4+,6S (Second Simulation of the Satellite Signal in the Solar Spectrum),ACORN,ATREM,在ERDAS IMAGINE 8.7上的模块ATCOR,以及ENVI上的模块FLAASH(基于MODTRAN)。 FLAASH可对LANDSAT,SPOT,A VHRR,ASTER,MODIS,MERIS,AATSR,IRS等多光谱、高光谱数据、航空影像及自定义格式的高光谱影像进行快速大气校正分析。下面的大气纠正步骤,都是基于FLAASH进行的。 ②辐射定标 当我们拿到一幅原始影像,先要进行辐射定标,目的是把图像上的DN(Digital Number)值转为辐亮度或者是反射率。辐射定标的结果可以是表观辐亮度(L),也可以是表观反射率(ρ)。 计算表观辐亮度(L)的公式为: Radiance=((Lmax-Lmin)/(Qcalmax-Qcalmin)*(Qcal-Qcalmin)+Lmin ① 其中:Radiance 是表观辐亮度,注意单位是W/m2·sr·μm;Qcal为像元DN 值(也就是影像数据本身);Qcalmax为传感器处最大辐亮度值所对应的DN值,一般为255;Qcalmin 为传感器处最大辐亮度值所对应的DN值,一般为0;Lmax 和Lmin是从参数表中查询,Lmin为光谱辐亮度的最小值,单位同L;Lmax为光谱辐亮度的最大值,单位同L。 计算表观反射率(ρ)的公式为: ρ =π*L*d2/(ESUN*cos(θ))② 其中:ρ为表观反射率;L为①式中计算出来的表观辐亮度;d为日地距离;ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射;θ为太阳天顶角(这个可以通过影像的元数据获取)。以上参数可以查询下表获得。

气溶胶的光学特性参数

气溶胶的光学特性参数 (1)气溶胶光学厚度 气溶胶光学厚度,英文名称为AOD(Aerosol Optical Depth)或AOT(Aerosol Optical Thickness),表示的是单位截面的垂直气柱上的透过率,有时候又叫大气混浊度,它是一个无量纲的正值。数值范围在0-1之间,0代表完全不透明大气,1代表完全透明的大气,气溶胶光学厚度越大,大气透过率越低。值的大小主要由气溶胶质粒的数密度、尺度分布、气溶胶类型等物理、光学属性来决定。 气溶胶光学厚度的反演: 公式:L=L0+F*T*P/[1-S*P] L:传感器收到的辐射;L0:大气路径辐射;F:下行辐射 P:地表反射率;T:大气透过率;S:大气半球反射率 F*T*P/[1-S*P]:地表反射辐射 对于大气路径辐射项L0,它只是大气气溶胶光学厚度和几何参数的函数,假如地表反射辐射比较小或为零,就可以通过大气路径辐射项来反演获得气溶胶光学厚度,对于地表反射辐射(F*T*P/[1-S*P])来说,仅是气溶胶光学厚度的函数,如果消去路径辐射信息,便可以通过它来反演气溶胶光学厚度。 (2)散射相函数 散射相函数反映的是电磁波入射能量经粒子散射后在方向上的分布,或者称相函数是粒子(散射体)将某个方向的入射波散射到其他方向的概率。定义相函数P(θ)为在θ角方向的散射辐射能量与各向同性散射时该方向的散射辐射能量之比。目前,常用的相函数有Mie散射相函数、HG相函数、双HG相函数和改进的HG*相函数等,这些函数各有优缺点。 Mie散射相函数: P Mie(θ)= [S1(θ)2 +S2(θ) 2]/ 2πα2 Qsca α=2πR/λ:球形气溶胶粒子的尺寸参数; S1(θ)、S2(θ):散射振幅矩阵元; Qsca:气溶胶粒子的散射效率因子; S1(θ)、S2(θ)和Qsca可由Mie展开系数求解,Mie散射相函数适合于球形粒子求解。 (3)单次散射反照率 单次散射反照率(single scattering albedo,SSA),在随机介质中传播的光将会被介质中的粒子散射和吸收而衰减,我们称之为消光,其中因散射而导致入射光消光在总消光中所占的比例,可以用粒子的平均单次散射反照率来表示,其定义为: 0(x,m)= Cs(x,m)/C(x,m) C、Cs:粒子的消光截面和散射截面,消光截面是粒子或粒子群在电磁波传播路径上对电磁波衰减能力的度量; x=2πr/λ:为粒子的尺度因子,r、λ分别为粒子的半径和入射光的波长; m:复折射率,为复数m=n–ki,式中实数部分n为介质的折射率,虚数部分的k为介质的吸收系数; 如果用Ca表示粒子的吸收截面,则应满足C=Cs+Ca;如果粒子对入射光完全无吸收,即Ca=0,于是C=Cs,反照率为1,达到它的最大值。粒子有吸收时,反照率介于0到1之间。

相关文档
最新文档