基于风险与声发射检测数据分析的储罐底板腐蚀剩余寿命预测方法研究

基于风险与声发射检测数据分析的储罐底板腐蚀剩余寿命预测方法研究
基于风险与声发射检测数据分析的储罐底板腐蚀剩余寿命预测方法研究

原油储罐超声波壁厚检测测点选择改进方法应用

原油储罐超声波壁厚检测测点选择改进方法应用 目前原油储罐服役时间长、储装介质的腐蚀以及自然环境变化等共同作用,使得原油储罐存在不同程度的腐蚀,严重会导致穿孔。因此定期对储罐腐蚀情况进行检测评价至关重要。目前,多采用超声波壁厚检测方法了解储罐腐蚀情况,但是目前常用的检测方法存在一定的缺陷,将直接影响储罐腐蚀检测评价的准确性。文章通过研究提出了改进原油储罐超声波壁厚检测的方法,并将这一检测方法应用在了某一储罐的超声波壁厚检测中,结果证明,该方法的利用有利于更能准确地检测到储罐壁厚腐蚀减薄最严重的点,为腐蚀评价以及整改措施的提出提供更为准确的第一手评判依据。 标签:原油储罐;腐蚀评价;超声波;壁厚检测;应用 Abstract:At present,the long service time of crude oil storage tank,the corrosion of storage medium and the change of natural environment make the crude oil storage tank exist different degrees of corrosion,which will lead to serious perforation. Therefore,it is very important to inspect and evaluate the corrosion of storage tanks regularly. At present,most of the ultrasonic wall thickness detection methods are used to understand the corrosion of storage tanks,but there are some defects in the commonly used inspection methods,which will directly affect the accuracy of tank corrosion detection and evaluation. This paper puts forward a method to improve the ultrasonic wall thickness detection of crude oil storage tank,and applies this method to the ultrasonic wall thickness detection of a certain storage tank. The results show that,the use of this method is conducive to more accurate detection of the tank wall thickness corrosion thinnest or the most serious point,so as to provide a more accurate first-hand evaluation basis for the corrosion evaluation and correction measures. Keywords:crude oil tank;corrosion evaluation;ultrasonic wave;wall thickness detection;application 前言 地面鋼制储罐是石油、石化行业油品输送、储存及安全运营不可少的设施[1]。胜利油田现有原油储罐大部分建成于2000年以前,甚至有的已经服役超过20年。原油储罐在运行过程中,经常遭受内、外环境介质的腐蚀,不可避免地出现防腐层老化破损、罐壁及罐顶腐蚀等缺陷,因此极易引起介质泄漏,导致严重的经济损失和环境与生态污染[2]。2013年对胜利油田的常压储罐进行检测发现,油田钢质常压储罐均面临着罐底、罐顶、局部圈板内腐蚀严重的问题,检测过程中抽测测点384处,其中壁厚减薄量大于20%的测点占测点总数的41.4%;壁厚减薄量大于30%的测点占测点总数的19.3%;壁厚减薄量大于50%的测点占测点总数的4%,给常压储罐安全运行带来了巨大的安全隐患。因此在保证安全的前提下,采用有效的手段了解原油储罐腐蚀现状,及时发现安全隐患,并采取

运营数据分析指标

运营数据分析指标文档 一.流量分析 1.1概览 ①时间范围选择功能:以数据记录时间为筛选条件显示本页下数据,默认首个时间范围框为当前日期前30天,第二个时间范围框为当前日期前一日。点击每一个选择区域弹出日历,用户可选择年份、月份和日期,日历内日期默认选择为当前日期前一日,最终结果以两个选择区域内选择的时间的时间差为筛选标准,不分前后。有按照昨天、最近7天和最近30天的快速筛选按钮,点击对应按钮以对应时间进行数据筛选。选择范围最长为365天。选择范围最长为365天。 ②时间统计方式选择:可选择按小时和按单日来作为统计的维度,如选择小时则可显示每天12:00到13:00(或其他时间段内)网站浏览量(或访客数)的数据统计。 ③数据统计区域(表格):首行显示全网站昨日的浏览量、独立访客数、新独立访客数、ip、跳出率和平均访问时长,第二行对应显示全网站从统计之日起至昨日的上述平均数值。 ④折线图:可选指标为pv、uv、pv/uv、vv、平均访问时长,默认选中uv,指标支持单选。横坐标为时间轴,与1.1和1.2中的时间范畴相关;纵坐标为各项指标对应的数据。鼠标移至折线图上时会浮窗显示鼠标所处位置垂直线所对应的日期或时间段,以及选中指标的具体数值,默认选中uv。 ⑤在新页面查看完整数据:点击该按钮跳转至“概览信息详情页。” 1.1.1概览信息详情页 ①时间范围选择功能:以数据记录时间为筛选条件显示本页下数据,默认首个时间范围框为当前日期前30天,第二个时间范围框为当前日期前一日。点击每一个选择区域弹出日历,用户可选择年份、月份和日期,日历内日期默认选择为当前日期前一日,最终结果以两个选择区域内选择的时间的时间差为筛选标准,不分前后。有按照昨天、最近7

浅谈电工电子产品加速寿命试验

浅谈电工电子产品加速寿命试验 广州广电计量检测股份有限公司环境可靠性检测中心颜景莲 1概述 寿命试验是基本的可靠性试验方法,在正常工作条件下,常常采用寿命试验方法去评估产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。因此,在寿命试验的基础上形成的加大应力、缩短时间的加速寿命试验方法逐渐取代了常规的寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,激发产品在短时间内产生跟正常应力水平下相同的失效,缩短试验周期。然后运用加速寿命模型,评估产品在正常工作应力下的可靠性特征。加速环境试验是近年来快速发展的一项可靠性试验技术。该技术突破了传统可靠性试验的技术思路,将激发的试验机制引入到可靠性试验,可以大大缩短试验时间,提高试验效率,降低试验耗损。 2 常见的物理模型 元器件的寿命与应力之间的关系,通常是以一定的物理模型为依据的,下面简单介绍一下常用的几个物理模型。 2.1失效率模型 失效率模型是将失效率曲线划分为早期失效、随机失效和磨损失效三个阶段,并将每个阶段的产品失效机理与其失效率相联系起来,形成浴盆曲线。该模型的主要应用表现为通过环境应力筛选试验,剔除早期失效的产品,提高出厂产品的可靠性。 2.2应力与强度模型 该模型研究实际环境应力与产品所能承受的强度的关系。 应力与强度均为随机变量,因此,产品的失效与否将决定于应力分布和强度分布。随着时间的推移,产品的强度分布将逐渐发生变化,如果应力分布与强度分布一旦发生了干预,产品就会出现失效。因此,研究应力与强度模型对了解产品的环境适应能力是很重要的。 2.3最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。

石油储罐的腐蚀及防护情况

石油储罐的腐蚀及防护情况 摘要:文章主要就石油储罐的外部和内部腐蚀的概况、腐蚀机理以及按照 GB50393—28《钢质石油储罐防腐工程技术规范》要求采取的防腐措施进行了介绍,特别是对储罐边缘板的腐蚀原因、措施及最新进展等进行了较详细的阐述, 还就防腐涂层的质量控制等进行了论述。 关键词:油罐腐蚀原因防护措施 0边缘板防腐 防腐技术管理常压储罐是油品储运系统主要的储存设施,在生产中有着极其 重要的作用。储罐设施的运行状况直接影响储运系统生产安全运行。由于油品中 含有大量的S,cl、无机盐、水以及其它腐蚀性介质都会对储罐内壁造成腐蚀,加上厂区化工大气以及地处沿海等地理环境对储罐外壁的腐蚀,因此油罐的腐蚀是 影响油罐使用寿命最重要的因素。近年来罐底泄漏、罐顶穿孔和罐内浮顶严重腐 蚀等情况在各企业都常有发,随着炼制油品硫含量的进一步加大,储罐的腐蚀也 将 Et趋严重,采用有效的防腐措施是延长常压储罐使用寿命的最重要手段 1 油罐的腐蚀状况 油罐的设计寿命一般为 20a,由于油罐作为一个整体,其某一个部位发生腐蚀,油罐的使用寿命都会大幅缩短,严重的腐蚀更可以使油罐在一年左右发生腐 蚀穿孔。近几年,随着企业进口原油特别是进口高硫原油的数量逐年增长,油罐 腐蚀有加剧的趋势。主要是原油罐的腐蚀明显,石脑油、中间产品罐的腐蚀较重,成品油罐的腐蚀依然不容忽视。另外,部分储罐边缘板的腐蚀依然很严重,加上 浮顶罐浮盘的腐蚀、污油污水罐顶和罐底的腐蚀等,正进一步威胁企业的安全生产。 2 腐蚀原因分析 油罐的腐蚀实质上是化学腐蚀和电化学腐蚀,其中主要是电化学腐蚀,即金 属表面与介质因电化学作用而导致的金属氧化与破坏。按腐蚀环境又分为气体腐 蚀 (包括罐外壁、罐顶板、罐壁板上半部分)、液体腐蚀 (油品及油品沉积水对罐 壁板及底板的腐蚀)、与土壤接触的罐底部位的土壤腐蚀和细菌腐蚀。按腐蚀部位 主要分为外擘腐蚀和壁腐蚀。对储罐的腐蚀种类、腐蚀部位及腐蚀机等进行正确 的分析研究,是找到比较理想、经济防护措施的正确手段。 2.1 外壁腐蚀… 一般情况下外壁的腐蚀较轻,但是沿海地区的石油储罐的 外壁腐蚀相对较重,广东、海南等地的油罐腐蚀相对明显就是证明。另外从油罐 的检修情况来看,外腐蚀的情况应该引起足够的重视其原因是电化学腐蚀与化学 腐蚀的交叉腐蚀,还有选用涂层的类型不当或者涂料本身的性能比较差等原因。 2.2 罐底板外侧的腐蚀 罐底板外侧的腐蚀最为严重,是特征分明的电化学腐蚀,如某石化企业储运 一车问 T一124罐底泄漏,泄漏点在其北侧人孔附近的中幅板上。表面腐蚀状况 不明显,且通过…般的检测手段难以发现,从割下来的钢板发现,多处都是自下 而穿孔,腐蚀坑多而深。其主要原因是:油罐在施上时通常用沥青砂作为防水垫层,使罐底不与土壤等冉接接触,但是含盐的地下水还会从毛细管土壤上升到沥 青砂的底面,从沥青砂中渗透到罐底直接腐蚀,还有罐底的四周雨水或顺罐壁流 下的水也很容易浸入罐底的周围造成严重的腐蚀,叮见罐底的腐蚀比其余部位要 严重得多。还有罐底的氧浓差电池腐蚀,在罐底板下暗,氧浓差主要表现在罐底 板与砂基础接触不良,如满载和空载比较,空载时接触不良;再有罐周和罐中心

腐蚀测试方法

一、 填空题 1. 腐蚀的定义:物质(通常是金属)或其性能由于与环境发生反应所引起的变质。 2. 金属腐蚀测试方法按测试方法的性质可分为物理的、化学的和电化学的的试验方法。 3. 在重量法中清除腐蚀产物的方法有:机械法、化学清洗法、电解去膜法。 4. 在确定采用何种腐蚀研究方法时应从腐蚀介质、金属材质、腐蚀类型等三方面综合考虑。 5. 腐蚀试验结果的误差包括系统误差和偶然偏差。 6. 参比电极必需具备的性能有1)参比电极应是可逆电极,它的电极电位时可逆电位,符 合能斯特电极电位公式、2)电极过程的交换电流密度高,不易极化、3)具有良好的电 位稳定性和重现性、4)如果参比电极突然流过电流,断电后其电极电位应很快回复到 原先的电位值、5)电极电位随温度的变化小、6)制备、使用、维护简单方便。 7. 当两种不同金属在介质中相互接触,其中自腐蚀电位较负的金属在接触处的局部腐蚀速 度将加剧,而自腐蚀电位较正的金属在接触处的局部腐蚀速度将减慢。 二、 不定项选择题 1. 下列电极中,在任何温度时电极电位均为零的是:(C ) A 饱和甘汞电极 B 银—氯化银电极 C 标准氢电极 D 铜—硫酸铜电极 2. 下述方法中不属于电化学测试方法的有:(A 、C ) A 重量法 B 极化曲线法 C 电阻法 D 电偶法 E 交流阻抗法 3. 某金属工件由异种金属铆钉铆接而成,其工作时处于腐蚀介质中,从安全角度考虑,应 选用:(B ) A 小阳极大阴极结构 B 大阳极小阴极结构 C A 、B 都可以 4. 在经典电化学测试中,应通过盐桥与体系相连的是:(B ) A 辅助电极 B 参比电极 C 工作电极 D 全部需要 5. 在测定金属M 的电极电位M ?时,如测得M 与参比电极组成的电池的开路电压V 且连 接电极M 导线的极性为负,则M ?可表示为:(A ) A M V ??=-参比 B M V ??=+参比 C M V ?= D M V ??=-参比 6. A 、B 两种金属,令,c A ?<B ?c ,,在介质中偶合后,如体系属于电化学极化控制体系, 则偶合电流I g 可表示为:(A ) A ,,,exp()0.434c A g g a A c A k I I I b ??-=- B ,,,exp()0.434c A g g a A c A k I I I b ??-=+ C ,,,exp()0.434c A g g a A c A k I I I b ??+=- D ,,,exp()0.434c A g g a A c A k I I I b ??+=+ 7. 金属腐蚀速率最常用的三种指标是:(A 、B 、C ) A 重量指标 B 深度指标 C 电流指标 D 机械强度指标 8. 一个金属浸在被氢气饱和的溶液中,则金属的有效溶解速度可表示为:(B ) A 1,1,a a k i i i =+ B 1,1,a a k i i i =- C 1,2,a a a i i i =- D 1,2,a a k i i i =-

液氨储罐的腐蚀与防护

液氨储罐的腐蚀与防护集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

银川能源学院 过程设备腐蚀与防护腐蚀分析报告

目录

液氨储罐的腐蚀与防护 摘要 氨是一种重要的化工产品和工业原料,广泛应用于炼油、化工、农业、制药、制冷等工业。为便于储存和运输,合成氨厂生产的产品氨通常是将氨气加压或降温处理成液氨,液氨储罐作为一种特殊的压力容器,在这些行业也广泛使。 关键词液氨储罐腐蚀防护 1.液氨储罐的危害 液氨储罐作为一种特殊的压力容器在合成氨厂中使用十分广泛。多年来的实践发现,液 氨储罐很少发生强度破坏,大多数是由腐蚀裂纹引起的腐蚀破坏。液氨储罐容易发生应力腐蚀,将会导致储罐爆炸。 2.液氨的性质 氨作为化工产品集工业原料,广泛应用工业之中,氨无色气体,有特异的刺激臭味,易于液化,在20℃下891kPa即可发升液化,并放出大量的热;在温度变化时,液氨体积变化系数很大,液氨相对密度0.771,液氨的熔点为-77.7℃,沸点为-33.35℃,液氨临界温度 132.44℃,液氨蒸气相对密度达到0.597。 3.液氨储罐的腐蚀特征 通过对各类液氨储罐的开罐检查发现,储罐内表面焊缝区的腐蚀裂纹比较严重,且多数出现在环焊缝上,裂纹断口没有塑性变形,呈现出典型的脆性裂纹特征。裂纹多数为浅而长的表面裂纹,且有明显的分支,主干裂纹与焊缝方向垂直,尤其在手工电弧焊的引弧处和收弧处、T 型接头处及封头环缝与筒体纵焊缝交叉部位,裂纹更严重。磁粉检测发现,焊缝裂纹呈树枝状,主干裂纹多呈线性,分支较短,端部较尖锐,根部稍宽。 4.液氨储罐腐蚀分析 储罐里面的液氨是经过加压或降温而转化成的液化气,它的操作压力就是大气温度下的 饱和蒸气压。操作温度和操作压力随气候变化而波动。《压力容器安全技术监察规程》规定,无保温或保冷、盛装低压液化气体的常温储罐,设计温度均取50℃,最高工作压力取所装介 质在50℃时的饱和蒸气压力。而广东地区夏天的最高室温一般不会超过40℃,40℃下氨的饱和蒸气压为1.55MPa,通常操作压力为0.8~1.2MPa,故储罐一般不会因超载而发生强度破坏。

液氨储罐的腐蚀与防护

银川能源学院 过程设备腐蚀与防护腐蚀分析报告 院系石油化工学院 专业班级过控1301班 报告题目液氨储罐的腐蚀与防护 学生姓名尹仁杰 学生学号1310140150 指导老师王斌 上交时间2016.11.30 审阅人

目录 1.液氨储罐的危害 (1) 2.液氨的性质 (1) 3.液氨储罐的腐蚀特征 (1) 4.液氨储罐腐蚀分析 (1) 5.影响腐蚀的原因 (2) 5.1与空气接触 (2) 5.2 应力腐蚀 (2) 5.3 温度因素 (3) 6.腐蚀发生的部位 (3) 7.腐蚀防护方法 (3) 7.1应力腐蚀防护 (3) 7.2大气腐蚀防护 (4) 7.3其他方面防护 (4) 8.结论 (5)

液氨储罐的腐蚀与防护 摘要 氨是一种重要的化工产品和工业原料,广泛应用于炼油、化工、农业、制药、制冷等工业。为便于储存和运输,合成氨厂生产的产品氨通常是将氨气加压或降温处理成液氨,液氨储罐作为一种特殊的压力容器,在这些行业也广泛使。 关键词液氨储罐腐蚀防护 1.液氨储罐的危害 液氨储罐作为一种特殊的压力容器在合成氨厂中使用十分广泛。多年来的实践发现,液氨储罐很少发生强度破坏,大多数是由腐蚀裂纹引起的腐蚀破坏。液氨储罐容易发生应力腐蚀,将会导致储罐爆炸。 2.液氨的性质 氨作为化工产品集工业原料, 广泛应用工业之中,氨无色气体,有特异的刺激臭味,易于液化,在20℃下891 k Pa 即可发升液化,并放出大量的热;在温度变化时,液氨体积变化系数很大,液氨相对密度0.771,液氨的熔点为-77.7 ℃,沸点为-33.35 ℃,液氨临界温度132.44 ℃,液氨蒸气相对密度达到0.597。 3.液氨储罐的腐蚀特征 通过对各类液氨储罐的开罐检查发现,储罐内表面焊缝区的腐蚀裂纹比较严重,且多数出现在环焊缝上,裂纹断口没有塑性变形,呈现出典型的脆性裂纹特征。裂纹多数为浅而长的表面裂纹,且有明显的分支,主干裂纹与焊缝方向垂直,尤其在手工电弧焊的引弧处和收弧处、T型接头处及封头环缝与筒体纵焊缝交叉部位,裂纹更严重。磁粉检测发现,焊缝裂纹呈树枝状,主干裂纹多呈线性,分支较短,端部较尖锐,根部稍宽。 4.液氨储罐腐蚀分析 储罐里面的液氨是经过加压或降温而转化成的液化气,它的操作压力就是大气温度下的饱和蒸气压。操作温度和操作压力随气候变化而波动。《压力容器安全技术监察规程》规定,无保温或保冷、盛装低压液化气体的常温储罐,设计温度均取50℃,最高工作压力取所装介质在50℃时的饱和蒸气压力。而广东地区夏天的最高室温一般不会超过40℃, 40℃下氨的饱和蒸气压为1.55MPa,通常操作压力为0.8~1.2MPa,故储罐一般不会因超载而发生强度破坏。由于

加速寿命试验的理论模型与试验方法

产品可靠性试验 6.2.1 可靠性试验的意义与分类 可靠性试验是为分析、评价、提高或保证产品的可靠性水平而进行的试验。产品的研制者通过试验获得产品设计、鉴定所需的可靠性数据(可靠性测定试验)。通过试验暴露产品缺陷,改进设计并获得可靠性增长信息(可靠性增长试验)。产品的制造者通过试验剔除零件批中的不合格品或暴露整机缺陷,消除早期故障(可靠性筛选或老化试验老化试验不是消除早期故障的)产品使用者通过试验验证产品批可靠性水平以保证接收的产品批达到规定要求(可靠性接收试验)。政府或行业管理部门通过试验获得数据库所需基础可靠性数据(可靠性测定试验),认证产品可靠性等级(可靠性验证试验),进行产品的可靠性鉴定与考核(可靠性鉴定试验)。 本节主要介绍可靠性测定试验,这是为获得产品可靠性特征量的估计值而进行的试验,根据需要可由试验结果给出可靠性特征量的点估计值和给定置信度下的区间估计。由于可靠性试验往往是旷日持久的试验,为节省时间与费用常采用加速试验的方式。本节将介绍某些加速寿命试验的理论模型与试验方法。 6.2.2 指数分布可靠性测定试验 大多数电子元器件、复杂机器及系统的寿命都服从指数分布。其待估参数为故障率λ,其他可靠性指标可利用估计值进行计算MTBF 已经有平均的意思了 1.定时截尾试验 (1)点估计试验进行至事先规定的截尾时间t c停止试验,设参与试验的n个样本中有r个发生关联故障,则由极大似然估计理论得出的故障率点估计值为 式中t i——第I个关联故障发生前工作时间(i=1,…,r)。 若在试验过程中及时将已故障产品修复或替换为新产品继续试验,则为有替换的定时截尾试验。此时λ的点估计为

液氨储罐的腐蚀与防护

液氨储罐的腐蚀与防护

银川能源学院 过程设备腐蚀与防护腐蚀分析报告

目录 1.液氨储罐的危害 0 2.液氨的性质 0 3.液氨储罐的腐蚀特征 0 4.液氨储罐腐蚀分析 0 5.影响腐蚀的原因 (1) 5.1与空气接触 (1) 5.2应力腐蚀 (1) 5.3温度因素 (2) 6.腐蚀发生的部位 (2) 7.腐蚀防护方法 (2) 7.1应力腐蚀防护 (2) 7.2大气腐蚀防护 (3) 7.3其他方面防护 (3) 8.结论 (4)

液氨储罐的腐蚀与防护 摘要 氨是一种重要的化工产品和工业原料, 广泛应用于炼油、化工、农业、制药、制冷等工业。为便于储存和运输, 合成氨厂生产的产品氨通常是将氨气加压或降温处理成液氨, 液氨储罐作为一种特殊的压力容器, 在这些行业也广泛使。 关键词液氨储罐腐蚀防护 1.液氨储罐的危害 液氨储罐作为一种特殊的压力容器在合成氨厂中使用十分广泛。多年来的实践发现,液氨储罐很少发生强度破坏,大多数是由腐蚀裂纹引起的腐蚀破坏。液氨储罐容易发生应力腐蚀,将会导致储罐爆炸。 2.液氨的性质 氨作为化工产品集工业原料, 广泛应用工业之中,氨无色气体,有特异的刺激臭味,易于液化,在20C下891 k Pa即可发升液化,并放出大量的热;在温度变化时,液氨体积变化系数很大,液氨相对密度0.771,液氨的熔点为-77.7 C,沸点为-33.35 C,液氨临界温度132.44 C,液氨蒸气相对密度达到0.597。 3.液氨储罐的腐蚀特征 通过对各类液氨储罐的开罐检查发现,储罐内表面焊缝区的腐蚀裂纹比较严重,且多数出现在环焊缝上,裂纹断口没有塑性变形,呈现出典型的脆性裂纹特征。裂纹多数为浅而长的表面裂纹,且有明显的分支,主干裂纹与焊缝方向垂直,尤其在手工电弧焊的引弧处和收弧处、T 型接头处及封头环缝与筒体纵焊缝交叉部位,裂纹更严重。磁粉检测发现,焊缝裂纹呈树枝状,主干裂纹多呈线性,分支较短,端部较尖锐,根部稍宽。 4.液氨储罐腐蚀分析 储罐里面的液氨是经过加压或降温而转化成的液化气,它的操作压力就是大气温度下的饱和蒸气压。操作温度和操作压力随气候变化而波动。《压力容器安全技术监察规程》规定, 无保温或保冷、盛装低压液化气体的常温储罐,设计温度均取50E ,最高工作压力取所装介质在50r时的饱和蒸气压力。而广东地区夏天的最高室温一般不会超过40C , 40r下氨的饱和蒸气压为 1.55MPa,通常操作压力为0.8~1.2MPa,故储罐一般不会因超载而发生强度破坏。由于液化气的膨

管道腐蚀剩余寿命预测

管道腐蚀剩余寿命预测 埋地管道长年埋置地下,不可避免地遭受腐蚀。特别是随着埋地管道服役时间的增加,管道腐蚀情况越来越严重,给管道使用单位的安全生产和经济效益带来严重的影响。开展埋地管道腐蚀的剩余寿命预测评估,对提高埋地管道事故隐患区段的预测能力,实施管道运行完整性管理具有十分重要的意义。 埋地管道因遭受内在和外在因素的破坏,使其设计寿命严重地受到威胁。其中内在因素如管道本身的擦痕、划痕、压痕等机械损伤,管道制造和施工过程中的质量问题;外在因素如地下管道受到腐蚀、人为破坏、管道运行管理不善等。目前,我国埋地管道面临着管道老化、变质等问题,管道使用寿命和剩余使用寿命问题越来越受到重视。 管道的设计寿命一般为33年,为保持管道预期设计寿命,管道使用单位都制定了严格的管道定期检测和日常维护计划,同时十分重视管道的管理、检查和维护工作,有些国家则把管道线路的腐蚀和泄漏检测纳入SCADA系统。 在役埋地管道的剩余寿命预测实际上是一个涵盖管道在线检测、安全状况评价、剩余寿命预测的一个系统工程。 与设计寿命密切相关的是埋地管道的诊断问题。所谓管道腐蚀剩余寿命的基本概念是管道个别地段的剩余使用寿命。对个别管道的持续运行寿命进行诊断,不仅可预防未来可能发生的故障,而且会对管道运行制度和预检修措施进行正确的规划。在很多情况下,还可使这段管道在降低负荷的条件下继续利用其有效期。为此,应将整个埋地管道线路划分成各自不同的典型地段(如按规则规定划分为四种地段),在此基础上进行危险区段的剩余寿命预测。 对管道内、外部结构进行早期诊断,可预测管道剩余使用寿命。埋地管道失效多数情况下是由管体外部腐蚀造成的,其主要机理是土壤的电化学腐蚀。根据管道失效的特点可将腐蚀缺陷分为均匀腐蚀、局部腐蚀和点腐蚀三大类,但因腐蚀影响因素具有极大不确定性,以及缺陷的发生和发展的不确定性(特别是对点蚀),需要从概率统计的角度出发对整条管线或整个管段的剩余寿命进行统计分析,找出其统计规律。 管道本体存在的裂纹也是影响管道使用寿命的重要因素,裂纹的扩展速度会严重影响管道的剩余寿命。所以管道剩余寿命预测中还包括低周疲劳裂纹扩展寿命评估方法,主要是规定当裂纹尺寸达到某一给定长度时的疲劳周次为疲劳裂纹的萌生寿命。但由于裂纹萌生过程中存在很大的随机性,即使同一材料在其相邻区域上截取不同的试样,同一裂纹长度指标对应的循环周期可能处于裂纹扩展的不同阶段。所以也需要利用恰当的物理模型与统计方法确定一种可靠的裂纹尺寸与寿命的关系。 研究表明,金属的老化效应和管道表面的腐蚀损伤会导致管材脆变,从而改变材料的塑

基于漏磁技术的石油储罐底板腐蚀检测

基于漏磁技术的石油储罐底板腐蚀检测 石油储罐罐底板是最易受到腐蚀而发生泄漏的地方,常规的测厚等无损检测手段难以实现对其安全性的检测,而漏磁检测技术是一种重要手段。文章对储罐底板漏磁检测原理进行了论述,对检测仪器性能、试板制作进行了阐述,并详细介绍了其检测的工艺过程,讨论了其检测结果,最后对储罐底板的完整性进行了评价。 标签:石油储罐;储罐底板;腐蚀缺陷;漏磁技术;腐蚀检测 Abstract:The bottom plate of oil storage tank is the most vulnerable to corrosion and leakage. It is difficult to detect its safety by conventional non-destructive testing methods such as thickness measurement,and magnetic flux leakage detection technology is an important means. In this paper,the principle of magnetic flux leakage detection of tank bottom plate is discussed,the performance of testing instrument and the manufacture of test plate are expounded,the process of testing is introduced in detail,and the test results are discussed. Finally,the integrity of the tank floor is evaluated. Keywords:petroleum storage tank;tank bottom;corrosion defect;magnetic flux leakage technology;corrosion detection 序言 随着我国经济的快速发展,对能源的需求与日俱增,尤其是石油资源,目前我国已成为继美国之后的第二大原油进口国。同时,为应对国际油价的波动和产油区的战乱,我国已开始建立自己的国家石油储备。 大型储罐是目前世界上存储石油的主要方式,而其安全性是石油储存的一个重要问题。石油储罐罐底板是最易受到腐蚀而发生泄漏的地方。由于一直没有储罐检验的强制性法规,储罐使用单位往往根据内部规程进行简单检验或根本不进行检验,尤其是已建较早的企业,储罐的运行时间长达几十年之久,却从未进行过全面检查。一旦发生事故,将造成环境污染,危害安全生产。因此,在役储罐罐底检测就显得尤为重要[1]。 常规的超声无损检测等方法,对罐底进行全面检验是非常困难的。目前,漏磁检测技术有效地解决了储罐底板(顶板)的腐蚀检测问题[2]。 本文首先对储罐底板漏磁检测原理进行了阐述,对检测仪器性能、试板制作进行了论述,详细介绍了检测的工艺过程,其检测过程的注意事项进行了论述,最后对储罐底板的完整性进行了评价。 1 漏磁检测原理

电工电子产品加速寿命试验

电工电子产品加速寿命试验

电工电子产品加速寿命试验之一 1概述 寿命试验是基本的可靠性试验方法,在正常工作条件下,常常采用寿命试验方法去评估产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。因此,在寿命试验的基础上形成的加大应力、缩短时间的加速寿命试验方法逐渐取代了常规的寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,激发产品在短时间内产生跟正常应力水平下相同的失效,缩短试验周期。然后运用加速寿命模型,评估产品在正常工作应力下的可靠性特征。加速环境试验是近年来快速发展的一项可靠性试验技术。该技术突破了传统可靠性试验的技术思路,将激发的试验机制引入到可靠性试验,可以大大缩短试验时间,提高试验效率,降低试验耗损。 2 常见的物理模型 元器件的寿命与应力之间的关系,通常是以一定的物理模型为依据的,下面简单介绍一下常用的几个物理模型。 2.1失效率模型 失效率模型是将失效率曲线划分为早期失效、随机失效和磨损失效三个阶段,并将每个阶段的产品失效机理与其失效率相联系起来,形成浴盆曲线。该模型的主要应用表现为通过环境应力筛选试验,剔除早期失效的产品,提高出厂产品的可靠性。

2.1 失效率模型图示: O 1 典型的失效率曲线 规定的失效率 随机失效 早期 失效 磨损失效 t 2.2应力与强度模型 该模型研究实际环境应力与产品所能承受的强度的关系。 应力与强度均为随机变量,因此,产品的失效与否将决定于应力分布和强度分布。随着时间的推移,产品的强度分布将逐渐发生变化,如果应

数据分析课程标准新

数据分析课程标准新 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

《应用数据分析》课程标准 【适用专业】:工商管理系 【开设学期】:第五学期 【学时数】:64 【课程编码】:020474 一、课程描述 本课程是电子商务专业的专业技术课程,该课程主要是培养学生完整市场调查的理念与EXCEL的应用,EXCEL是Microsoft公司推出的Office 办公应用软件的主要组件之一,本课程主要学习任务是通过该软件快速计算和分析大量的数据,并能轻松制作出符合要求的报表,表达复杂的数据信息。本课重点讲解Excel在数据分析与市场调查方面的应用,使学生掌握数字运算、财务、数据分析、市场调查等相关知识技能。 二、培养目标 1、方法能力目标: 为了适应当今信息化飞速发展的商务管理需求,培养学生数字处理、分析的自动化方法和能力。 2、社会能力目标: 数据分析师 3、专业能力目标: 培养具备现代商务管理领域所需数据分析人才,注重信息管理以及信息系统分析、设计、实施、管理和评价等方面的基本理论和方法。使用计算机作为工具处理大量纷繁的信息,并进行有效管理。 三、与前后课程的联系 1、与前续课程的联系 为了更好地掌握这门技术,应具有一定的计算机应用、数据库等相关基础知识。 2、与后续课程的关系 为了更好地培养学生的可持续学习能力和创新思维,掌握《应用数据分析》为后续学习《电子商务管理》奠定良好的基础。 四、教学内容与学时分配

将职业领域的工作任务融合在课程的项目教学中。具体项目结构与学时分配表如下:

五、学习资源的选用: 1、教材选取的原则: 高职高职优秀教材或自编教材 2、推荐教材: 《Excel数据分析与市场调查》林宏谕姚瞻海编着中国铁道出版社 3、参考的教学资料 《Excel与数据分析》电子工业出版社 4、学习的网站: http:/ 六、教师要求: 1、理论课教师的要求 具有一定的专业素质及专业技术水平,从事计算机教龄3年经验以上,有一定的一体化教学经验的双师型教师任教。 2、实训指导师要求 具有本职业丰富的实践经验,有教育培训经验,具有良好的语音呢表达能力。七、学习场地、设施要求 场地:计算机机房 设备:计算机、EXCEL、SQL 八、考核方式与标准 要求:全面考核学生的学习情况,以过程考核为主,涵盖项目任务全过程。

腐蚀监测方法

腐蚀监测被认为是实现现代工业文明生产的重要手段。腐蚀监测技术是由实验室腐蚀试验方法和设备的无损检测技术发展而来的,其目的在于揭示腐蚀过程以及了解腐蚀控制的应用情况和控制效果。传统的腐蚀监测主要是在停车检修期间安装和取出挂片进行检测达到监测目的,检测方法如失重法。失重试验是最古老的腐蚀试验方法。它通过称取试验片暴露在测试环境前后重量的变化来计算金属表面的平均失重量。它的优点是可以提供如:腐蚀率、腐蚀类型、腐蚀产物的情况以及焊接腐蚀和应力腐蚀等较多的信息,但缺点是需破坏材料的结构,试验时间长,而且得到的结果往往是整个试验周期中产生腐蚀的总和,不适于现场使用。因此长期以来失重法只用于实验室或者暴露场的暴露试验。 现代的腐蚀监测实践经验大部分来自化学、石油化学、炼油、动力等工业,在这些工业中,腐蚀行为可以通过各种方法监测如超声波法、声发射法、电位法、电阻法、线性极化法、电偶法、电位监测法、射线技术及各种探针技术。近年来出现的新的监测技术有交流阻抗技术、恒电量技术、电化学噪声技术和超声波测量技术等。 电化学测试方法是一种比较好的无损检测方法。当0.1μA/cm2的自然腐蚀电流流经1h而生成的锈蚀产物约为1 04×104mg/cm2。如果用失重法,即使不考虑除锈技术上的困难,测量出这样小的重量变化也很困难。而用电化学方法却很容易,它的主要优点是,能够快速响应,所得信息常常能与实验室中的背景研究直接联系,更有可能利用探测器来判断生产装置的腐蚀行为,增加了诊断的可靠性,有助于选择补救措施或控制系统。本文重点讨论了电化学方法,主要有:电阻法(ER),电化学噪声技术(ECN),交流阻抗技术(EIS),线形极化法(LPR)和恒电量技术。 常用金属腐蚀监测技术: 第1种 方法:极化阻力法 检测原理:用两电极或三电极探头,通过电化学极化阻力法测定腐蚀速度。 应用情况:在有适当电导的工艺物料中对大多数工程金属和合金适用。经常使用。 测量装置:Magna,Petrolite和Waverley提供各种型号仪表。手提式仪器价值在300-700英磅之间,可带价值2000英磅以上较复杂的自动及记录装置。工业探头一般约200英镑,包括电缆及其他附件。可以制成实质上稳定可靠的组件。 第2种 方法:电阻法 检测原理:通过正在腐蚀的金属元件的电阻变化对金属损失进行累积测量。可以计算出腐蚀速度。 应用情况:适用于液相和蒸汽相中的大多数工程金属和合金。其测量与工艺物料的导电性无关。

轻烃储罐的腐蚀与防护知识

编号:AQ-JS-03414 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 轻烃储罐的腐蚀与防护知识Corrosion and protection knowledge of light hydrocarbon storage tank

轻烃储罐的腐蚀与防护知识 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.概况 原油稳定装置原料是常减压和重整装置的初馏塔顶C1 -C5 末凝气。经过处理后主要产品为轻烃,副产品是高压瓦斯。其中V300和V400罐是储存处理后的液态烃。其液态烃送到乙烯做原料,分离出的末凝气靠自身的压力送入高压瓦斯管网。 来源于常减压和重整装置的初馏塔顶末凝气含有HCI、H2 S和水。造成轻烃罐内壁金属表面腐,出现直径有5mm左右大小不一的点蚀坑,原有的金属表面已经腐蚀没有。腐蚀率达到0.5-1毫米/年。3年前采用300微米热喷铝防腐涂层已经腐蚀没有,表面产生大量的灰白色铝的锈蚀物。 2.腐蚀原因分析 这两座罐使用于1986年7月,其主要条件见表一。

其主要条件为 表一 罐号 体积(m3 ) 设备规格(mm)内表面积(m2 ) 材质 温度℃ 压力Mpa V300 40 Φ2440×7315×35 67.4 16MnR

60±2 1.40±0.2 V400 100 Φ3000×15010×25 157.5 16MnR 60±2 1.30±0.2 储存的介质中的HCI来源于原油中含有的氯盐和水。氯盐中的主要成分是NaCl,MgCl2 ,CaCl2 ,其中NaCl约占75%,MgCl2 约占15%,CaCl2 约占10%。 在原油加工时,当加热到120℃以上时,MgCl2

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常 1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进

行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是可以给病人和企业带来利益,病人可以尽早使用这些最新的医疗器械,挽救病人的生命;企业可以增加销售获得效益,而又不会带来任何风险。尽管加速老化试验技术在学术领域已经比较成熟,但是这些技术在医疗器械产品的应用还是有限的。美国FDA 发布了一些关于接触眼镜、药物和生物制品等关于加速老化实验的指导性文件,还没有加速老化试验的标准。在我国尚无关于医疗器械有效期确定的加速老化的实验指导原则。国外许多医疗器械企业根据这些指导原则和文献建立自己的加速老化试验方法。(来源于:《中国医疗器械信息》2008年第14卷第5期《医疗器械加速老化实验确定有效期的基本原理和方法》) 二、实验条件和时间对比表

大数据分析标准功能点简介

大数据报表标准功能点简介

U8分析报表包含两个工具,分别为分析报表工具和业务模型设计器,其中分析报表工具包括分析报表系统管理、分析报表门户、数据仓库管理、数据整合平台。 一、分析报表工具 分析报表系统管理 分析报表系统管理包含基础设置、数据配置、数据抽取、权限管理四个功能。 基础设置 在基础设置中有两个地方需要设置,企业目录和加密服务器设置。企业目录功能是确立企业实际分析管理的数据范围。 加密服务器设置的功能是通过设置加密服务器IP地址或机器名,将加密监听程序指向加密服务器,以读取加密点。 数据配置 报表项目用于设置进行财务报表分析的报表项目。 图2-1 U8分析报表项目页面 自定义分类提供按照存货、客户、供应商档案进行自定义分类定义,对任何档案用户可以按照不同业务需要设置自定义分类。系统自动带入企业目录账套最新年度的档案分类,可修改。 分类维护:可对当前自定义分类下的分类明细进行新增、修改、删除操作。

档案归类:可对当前自定义分类下的分类明细所对应的档案明细提供个别编辑操作。 点击分类维护栏中的编辑,进入分类管理页面;同样点击档案归类栏下的编辑可进入档案归类页面。 数据抽取 数据抽取用于同步数据源数据到ODS数据仓库,抽取的结果形成ODS数据仓库,供企业查询及决策。数据抽取的方式有两种:手动抽取与自动抽取。自动抽取可以设置抽取计划,选择在业务系统空闲时完成数据抽取。抽取日志提供了数据抽取完成的情况的查看。 权限管理 角色用户功能可以进行角色、用户的增加、删除、修改操作,用户密码的修改操作,以及用户与角色的所属关系等维护工作。 权限管理,可对用户或角色授予新建报表权限、语义层权限、目录结构权限。目录结构的权限方式分为浏览、修改、完全控制(删除),可根据实际业务需要授予适合的权限。 U8分析报表门户 U8分析报表门户的核心对象即为报表,是基于业务模型做查询,并通过查询生成报表的平台;是一种兼分析报表设计和前端展示的平台。在U8分析报表中,我们根据财务、供应链业务模型预置了一些报表(包括财务,营销、库存、采购等主题),对于用户的个性化报表需求,可以单独定制。 对于已经设计好的报表,可以进行查看、分析、导出、定位查找等操作。 分析报表门户针对财务、营销、库存、采购设定了四个分析主题,点击分析主题button打开分析首页。如图所示,点击财务分析主题按钮,财务首页报表则打开。

相关文档
最新文档