热中子参考辐射场

热中子参考辐射场
热中子参考辐射场

 第33卷第6期原子能科学技术V o l.33,N o.6

 1999年11月A tom ic Energy Science and T echno logy N ov.1999

热中子参考辐射场

包宗渝 岳 骞 陈 军 汪建清

(中国原子能科学研究院放射性计量测试部,北京,102413)

在中国原子能科学研究院重水反应堆热柱上建立了热中子参考辐射场。中子能谱用飞行时间法测量;中子注量率用金活化箔和235U电离室两种探测器进行绝对测量,其结果分别为1114×106

(1±112%)c m-2?s-1和1115×106(1±212%)c m-2?s-1。对束的空间分布、镉比和Χ本底剂量

也进行了测量。其中,镉比为111×104(1±10%),Χ本底剂量在40c m和100c m处分别为

5m Gy?h-1和0.9m Gy?h-1。

关键词 中子能谱 中子注量率 空间分布 镉比 Χ剂量

中图法分类号 TL375117 TL37514

热中子场是国际标准化组织ISO28529文件[1]推荐的重要的中子参考辐射场之一。中国原子能科学研究院重水反应堆热柱提供了很好的热中子源[2],通过对一系列参数的测量,在热柱上建立热中子参考辐射场。

1 中子能谱测量

利用飞行时间法,用机械选择器对中子能谱进行了测量[3]。选择器是直径为207mm的圆盘,它由2层不锈钢中间夹1层镉片组成,3片各厚015mm。在圆盘边缘半径100mm处有2条互为180°的狭缝,缝宽2mm,径向长5mm。选择器由直流马达驱动,转速为5000r?m in-1。圆盘转动时,当其中1条狭缝对准反应堆孔道时,中子束通过并起飞,而另1条狭缝也正好通过由发光二极管和光敏三极管相对组成的凹形槽,二极管发出的光恰好不受圆盘阻挡而穿过狭缝,被三极管接收形成电脉冲,成为中子束的起飞信号。中子探测器3H e正比计数管距选择器圆盘9719c m,和中子束垂直放置。实验装置示于图1。电子学线路框图示于图2。用常规延迟线和脉冲发生器产生的随机脉冲作起始信号这两种办法对测量系统的道宽和线性进行了刻度[3]。此外,在不同飞行距离下测量中子能谱,根据同一能量的中子(如飞行时间谱上峰值对应的中子)所得到的不同飞行时间进行推算,得到系统的时间零点为(9613±0195)Λs。

为降低本底,在孔道原准直器[4]内增加了1个由铅、聚乙烯和镉相间制成的内径为

包宗渝:女,58岁,实验核物理专业,研究员

收稿日期:1998208230 收到修改稿日期:1998212214

图1 实验装置示意图F ig .1 Experi m en tal setup 1——中子准直孔道;2——机械选择器;3——中子束;4——含硼石蜡屏蔽体;5——3H e 正比计数管(探测器);6——3H e 正比计数管(监视器);7——发光二极管和光敏三极管组成的凹型槽;8——机械选择器转盘正面图

3mm 、长度为25c m 的准直器。测量本底时,

用随机脉冲代替正常的中子起飞信号作为时幅转换器TA C 的起始信号以测量飞行时

间谱。另外,也曾在孔道口用2mm 厚的镉片

阻止热中子束,仍旧用光敏三极管的脉冲作

TA C 的起始信号进行测量。结果表明:两种

方法测得的本底在统计范围内是一致的,在

峰值处,本底份额约为9%。

对飞行时间谱进行了空气衰减修正和

时间分辨率(19Λs ?m -1)修正。经计算,前

者为2%~5%,后者远小于011%,可忽略

不计。

根据中子飞行时间t 和其能量E 的关

系,并考虑到3H e 正比计数管的探测效率正比于1 E ,中子能谱5(E )可表示为

5(E )=C t 25(t )。

其中:C 是和飞行距离有关的常数;5(t )是飞行时间谱。所得中子能谱

5(E )示于图3,峰值在

0103eV ,平均能量为

01049eV 。图2 电子学线路框图

F ig .2 E lectron ics b lock

从图3可看出:在相应中子能量为0101eV 处,谱形略有突起;此外,实验曲线与理论M axw ell 分布有相当偏离,这是因为反应堆活性区的中子穿过重水和石墨形成热中子后,又受到反应堆准直器内50c m 长单晶硅的散射和吸收的缘故[4]。显然,这个实验能谱对于准确测定该热柱的中子注量率是有重要意义的。115第6期 包宗渝等:热中子参考辐射场

2 中子注量率的绝对测量

用金活化箔和235U 电离室两种方法对中子注量率进行绝对测量。核反应197A u (n ,Χ

)198A u 活化截面和235U (n ,f )裂变截面都是国际原子能机构I A EA 推荐的标准反应截面,其数值以及随中子能量的变化Ρ(E )已准确知道(评价核数据库END F B 2 )。

根据这些数值,并利用上述测得的中子能谱,按照Ρ-=∫5(E )Ρ(E )d E ∫

5(E )d E ,求出这两个核反应在本中子场的能量平均截面分别为8416(1±1%)×10-28m 2和48416(1±1%)×10-28m 2。再根据样品中的核数目,可求出中子注量率。

211 金活化箔法

样品是厚约30Λm 、<10mm 或<14mm 的纯金箔,用十万分之一天平称量以求得197A u 的

核数目。中子辐照时间为10~24h 。生成的198A u 的活度用4ΠΒ

2Χ符合计数器测量,并进行由于样品自吸收需作的Β效率外推修正(01976)。辐照期间中子注量率的不稳定造成的修正[5]小于0105%。

212 235U 电离室法

电离室系平板式,极间距离16mm ,极间电压24V ,收集极为012mm 厚磷青铜,外壳为0165mm 厚黄铜。流气系90%A r +10%CH 4混合气体。样品235U 浓缩度为9012%,用分子电镀法定量制备,底衬是厚013mm 不锈钢。铀电镀膜<12mm ,铀量在100~210Λg 之间,定量的不确定度为1%。由于样品均匀而且很薄,加之使用了性能很好的电荷灵敏前置放大器,所以测得的裂变碎片谱谱形非常好(图4),Α粒子脉冲和裂变碎片脉冲分辨得十分清楚

,计数阈很容易确定。对裂变碎片计数进行的修正如下:1)阈下损失的裂变计数110032~110063;2)由于样品自吸收损失的裂变计数[6]110071~110140;3)阈上

Α粒子本底019999;4)不锈钢底衬等对入射中子产生的衰减110451。

图3 反应堆热柱中子能谱

F ig .3 N eu tron energy spectrum

of the reacto r therm al co lum n

曲线为M axw ell 分布;温度为19℃图4 裂变碎片脉冲幅度谱F ig .4 T he pulse heigh t spectrum of the 235U fissi on fragm ents

进行了3轮测量。测量时,反应堆功率为9000(1±10%)k W 。金箔和铀样品背对背垂直

215原子能科学技术 第33卷

置于中子束上,金箔在前,距孔道口65~70c m 。入射中子注量率用3H e 正比计数管和计算机多路定标系统监测。将测量结果归一,得到金活化箔和235U 电离室两种探测器在距孔道口70c m 处测得的热中子注量率分别为1114×106(1±112%)c m -2?s -1和1115×106(1±212%)c m -2?s -1。可以看出,两者在不确定度范围内符合得很好。

3 空间分布、镉比、Χ本底剂量测量

用载硼核乳胶、3H e 正比计数管和235U 电离室测量中子注量的空间分布。测量结果表明:

该场是准直得很好的中子束,但有发散,发散角半宽度为218°;束内中子注量分布不均匀,由中心向外减弱。中子注量在x (水平方向)、y (垂直方向)、z (中子束方向)3个方向的分布示于图5。

用高纯Ge 低本底反康普顿Χ谱仪[7]测量金活化箔包镉前后在辐照20h 后的活化计数,测得镉比为111×104(1±10%),镉片厚1mm

图5 中子注量率在x 、y 、z 三个方向的分布

F ig .5 T he neu tron fluence rate distribu ti on along x ,y ,z directi on s

(a )——y =0c m ,z =80c m ,沿x 方向分布;(b )——x =0c m ,z =80c m ,沿y 方向分布;

(c )——x =y =0c m ,沿z 方向分布

用FJ 2347A 型Χ剂量仪测量可知:中子束上的Χ剂量很小,在距孔道口40c m 和100c m 处分别为5m Gy ?h -1和0.9m Gy ?h -1。测量时,为减少中子影响,在孔道口挡了厚1mm 的镉片。

丁声耀、容超凡同志参加了部分工作;苏树新、石宗仁、王远大、刁立军等同志给予过帮助;重水反应堆运行人员给予了许多协助,作者在此表示衷心感谢。

参 考 文 献

1 In ternati onal Standard ISO 28529.N eu tron R eference R adiati on fo r Calib rating N eu tron 2m easu ring D evices U sed fo r R adiati on P ro tecti on Pu rpo ses and fo r D eterm in ing T heir R espon se as a Functi on of N eu tron 315第6期 包宗渝等:热中子参考辐射场

415原子能科学技术 第33卷

Energy.1989

2 仲 言1重水反应堆1北京:原子能出版社,1998:32

3 包宗渝,陈 军,岳 骞,等1重水反应堆热柱中子能谱测量1青岛大学学报,1997,10(2):66

4 石宗仁,曾宪堂,张 明1高纯热中子束装置及设计1核技术,1989,12(3):143

5 Bao Zongyu,Rong Chaofan,Yang X iaoyun,et al.A b so lu te M easu rem en t of C ro ss Secti on s of27A l(n,Α) 24N a and56Fe(n,p)56M n R eacti on s.Ch in J N ucl Phys,1993,15(4):341

6 W h ite PH.A lpha and F issi on Coun ting of T h in Fo ils of F issileM aterial.N ucl In strum M ethods,1970,79: 1

7 王远大,刁立军,唐培家1H PGe低本底反康普顿Χ谱仪1核电子学与探测技术,1997,17(4):256

THE NEUTRON REFERENCE RAD I AT I ON F IELD

AT THE THER M AL ENERG Y REGI ON

B ao Zongyu Yue Q ian Chen Jun W ang J ianqing

(Ch ina Institu te of A to m ic E nergy,P.O.B ox275220,B eij ing,102413)

AB STRA CT

T he therm al neu tron reference radiati on field at therm al co lum n of the heavy w ater reacto r of Ch ina In stitu te of A tom ic Energy(C I A E)has been estab lished.Its energy sp ectrum has been m easu red by u se of a chopp er.T he ab so lu te fluence rate has been acqu ired by u sing bo th go ld activati on techn ique and a235U i on izati on cham ber.T he resu lts are resp ectively1.14×106(1±1.2%)c m-2?s-1and1.15×106(1±2.2%)c m-2?s-1. T he neu tron fluence distribu ti on along x,y,z directi on s,its cadm ium rati o and the gamm a ray do se of the beam have also been m easu red as w ell.T herein,the cadm ium rati o is1.1×104(1±10%)and the gamm a ray do ses are5m Gy?h-1(40c m to the ho le of reacto r)and0. 9m Gy?h-1(100c m),resp ectively.

Key words N eu tron energy sp ectrum N eu tron fluence rate F luence distribu ti on Cadm ium rati o Gamm a ray do se

辐射防护基本原则 (1)

1.广义核安全:核安全、辐射安全、放射性废物安全、放射性物质运输安全。 2.辐射防护基本原则:实践的正当性。防护的最优化。个人剂量限值。 3.放射性物质进入人体的途径:经口、消化道的摄入(食入);经呼吸道的吸入(吸入);经皮肤、伤口的进入。 4.放射性毒物分组:极毒组:226Ra,210Po,228Th,239Pu,241Am,233U。高毒组:60Co,90Sr,106Ru,144Ce,210Pb,224Ra。中毒组14C,32P,35S,45Ca,55Fe,131I,140Ba,天然铀。低毒组:238U,235U,3H,24Na,40K,99mTC,113mIn。 毒性组别系数:极毒组:10;高度组:1;中毒组:0.1; 低毒组:0.01. 5.外照射防护三要素:时间,距离,屏蔽。 6.矿石氡射气系数:是介质表面析出的自由运动的氡量与介质镭衰变产生的氡总量之比,用f表示。我国铀矿石氡射气系数一般在3.49%—26.5%。 7.矿石氡析出率:是表征单位时间间隔内穿过单位矿石表面积,析出到空气中的氡析出量,用ζ表示。铀矿石当量氡析出率在34.8—62.5Bq/m2s。 8.氡是镭的衰变产物,单原子、无色、无味、无臭、最重的惰性气体。标准状况下密度为9.73kg/m3.半衰期为3.8d。 铀矿工业释放的放射性核素中,氡和氡子体的危害最大。 9.氡的辐射危害:铀矿工业主要职业病是肺癌。致病因素吸入高浓度氡及氡子体形成内照射。 10.核临界安全:铀富集厂在铀富集的过程中会有各种不同富集度的235U,在其大于1%时,必须考虑核临界安全问题。 11.裂变产物的质量数分布:85-105,130-150. 12.在安全中比较重要的核素有:85Kr,133Xe,129mTe,132Te,131I,89Sr,90Sr,140Ba,134Cs,137Cs等。 13.后处理厂的安全特点:极强放射性;考虑射线与物质的辐射效应;物料中有相当数量的裂变物质,临界安全;物料毒性极大,良好密闭性和可靠性。 14.放射性物质运输的核与辐射危险有:辐射照射、核临界和释热。 15.潜在危险及其控制和防御:包容运输中的放射性物质。控制放射性物质货包及运输工具外部辐射水平。防止核临界。防止由释热引起损害。 16.安全目标:保护工作人员、公众与环境免遭放射性物质运输可能引起的辐射危害。确保即使在运输事故条件下,也能提供足够的放射性物质包容和辐射屏蔽,并防止易裂变材料意外临界。 17.临界安全最简单和最严格的控制条件:质量控制、几何控制和浓度控制。 18.核安全与辐射安全的不同:核安全的着重点在于维持核设施的正常运行,预防事故发生和在事故下减轻其后果,从而保护从业人员、公众和环境不至于受到辐射带来的伤害。辐射安全的着重点在于通过辐射水平的监测、辐射效应的评价、辐射防护措施和事故应急与干预,实现辐射防护最优化并使辐射剂量不超过规定限值。 19.吸收剂量:受照物质发生的辐射效应,与它们吸收的辐射能量有关。可以用授予某一体积内物质的辐射能量除以该体积内物质的质量,得到一个量用于衡量,这就是吸收剂量。单位:焦耳/千克(J/kg),专名:戈瑞(Gy)。 20.后处理厂r辐射高的环节:贮存和分离。 21.Β辐射屏蔽材料选择原则低Z+高Z材料。 22.核安全的总目标:辐射防护目标,技术安全目标。 23.实施剂量管理限值 (年有效剂量:铀作业人员10mSv;公众0.2mSv) [EJ 1056-2005]。 24.各种铀化合物中,UF6毒性最高。 25.核电厂正常年排放限值:惰性气体年限值1140TBq,气溶胶3.8GBq,碘34.2GBq,氚55.6TBq,除氚外放射性核素700GBq。 26.临界安全考虑的主要因素: ①易裂变核素和可转换核素各自所占的份额; ②易裂变核素的质量; ③装易裂变材料的容器的几何条件(形状和尺寸)和容积; ④易裂变材料在溶液中的浓度; ⑤慢化剂的性质和浓度; ⑥易裂变材料周围反射层的性质和厚度; ⑦中子毒物的性质和浓度; ⑧燃料-慢化剂-中子毒物的混合物的均匀性; ⑨两个或多个含易裂变材料容器之间的相互作用。 27.职业照射:五年平均年有效剂量小于20mSv,五年中任何一年的有效剂量不超过50mSv。 28.核安全文化:核安全基本原则设计管理责任纵深防御及若干基本技术原则。核安全文化是存在于单位和个人中的种种特性的总和,它建立一种超出一切之上的观念,即核电站的安全问题由于它的重要性要得到应有的重视。 29.纵深防御的概念及三道防线:纵深防御原则要贯彻安全有关的全部活动,包括与组织、人员行为或设计有关的方面,以保证这些活动均置于重叠措施的防御之下,即使有一种故障发生,它将由适当的措施探测、补偿纠正。第一道防线:预防事故第二道防线:控制事故第三道防线:缓解事故。 30.冗余:设计中留有冗余度,即系统是双重或多重配置的,单一部件的失效不会使整个系统失去功能。31.密封源的安全使用方法:放射源放在固 定的位置,放射源的清单应妥善保存。若怀 疑放射源丢失必须立刻报告主管辐射防护 人员。使用密封源时,应按照辐射防护的 基本原则,采用屏蔽防护、距离防护或限制 工作时间等综合的防护措施,使工作人员受 到的辐射照射减少到可合理达到的尽量低 的水平。、 32.后处理厂的安全特点:极强放射性,用 屏蔽材料将设备分隔密闭,远距离操作、控 制和监测。考虑射线与物质的辐射效应。 物料中有相当数量的裂变物质,核临界安 全。物料毒性极大,良好密闭性核可靠 性。 33.堆后料的辐射特点:经后处理回收得到 铀,不但铀同位素的组成发生了变化,且夹 带铀微量的镎,钚核裂变产物这种铀的放射 性活度比天然铀大得多,它们的比活度很 高,含量虽少,但能使堆后料氟核化渣等的 辐射水平显著升高。 题目一点状。。。 1.广义核安全:核安全、辐射安全、放射性废物 安全、放射性物质运输安全。 2.辐射防护基本原则:实践的正当性。防护的最 优化。个人剂量限值。 3.放射性物质进入人体的途径:经口、消化道的 摄入(食入);经呼吸道的吸入(吸入);经皮肤、 伤口的进入。 4.放射性毒物分组:极毒组:226Ra,210Po, 228Th,239Pu,241Am,233U。高毒组:60Co, 90Sr,106Ru,144Ce,210Pb,224Ra。中毒组 14C,32P,35S,45Ca,55Fe,131I,140Ba,天 然铀。低毒组:238U,235U,3H,24Na, 40K,99mTC,113mIn。 毒性组别系数:极毒组:10;高度组:1;中毒 组:0.1; 低毒组:0.01. 5.外照射防护三要素:时间,距离,屏蔽。 6.矿石氡射气系数:是介质表面析出的自由运动 的氡量与介质镭衰变产生的氡总量之比,用f表 示。我国铀矿石氡射气系数一般在 3.49%— 26.5%。 7.矿石氡析出率:是表征单位时间间隔内穿过单 位矿石表面积,析出到空气中的氡析出量,用ζ 表示。铀矿石当量氡析出率在34.8— 62.5Bq/m2s。 8.氡是镭的衰变产物,单原子、无色、无味、无 臭、最重的惰性气体。标准状况下密度为 9.73kg/m3.半衰期为3.8d。 铀矿工业释放的放射性核素中,氡和氡子体的危 害最大。 9.氡的辐射危害:铀矿工业主要职业病是肺癌。 致病因素吸入高浓度氡及氡子体形成内照射。 10.核临界安全:铀富集厂在铀富集的过程中会 有各种不同富集度的235U,在其大于1%时,必 须考虑核临界安全问题。 11.裂变产物的质量数分布:85-105,130-150. 12.在安全中比较重要的核素有:85Kr,133Xe, 129mTe,132Te,131I,89Sr,90Sr,140Ba,134Cs, 137Cs等。 13.后处理厂的安全特点:极强放射性;考虑射 线与物质的辐射效应;物料中有相当数量的裂变 物质,临界安全;物料毒性极大,良好密闭性和 可靠性。 14.放射性物质运输的核与辐射危险有:辐射照 射、核临界和释热。 15.潜在危险及其控制和防御:包容运输中的放 射性物质。控制放射性物质货包及运输工具外部 辐射水平。防止核临界。防止由释热引起损害。 16.安全目标:保护工作人员、公众与环境免遭 放射性物质运输可能引起的辐射危害。确保即 使在运输事故条件下,也能提供足够的放射性物 质包容和辐射屏蔽,并防止易裂变材料意外临 界。 17.临界安全最简单和最严格的控制条件:质量 控制、几何控制和浓度控制。 18.核安全与辐射安全的不同:核安全的着重点 在于维持核设施的正常运行,预防事故发生和在 事故下减轻其后果,从而保护从业人员、公众和 环境不至于受到辐射带来的伤害。辐射安全的着 重点在于通过辐射水平的监测、辐射效应的评 价、辐射防护措施和事故应急与干预,实现辐射 防护最优化并使辐射剂量不超过规定限值。 19.吸收剂量:受照物质发生的辐射效应,与它 们吸收的辐射能量有关。可以用授予某一体积内 物质的辐射能量除以该体积内物质的质量,得到 一个量用于衡量,这就是吸收剂量。单位:焦耳 /千克(J/kg),专名:戈瑞(Gy)。 20.后处理厂r辐射高的环节:贮存和分离。 21.Β辐射屏蔽材料选择原则低Z+高Z材料。 22.核安全的总目标:辐射防护目标,技术安全 目标。 23.实施剂量管理限值 (年有效剂量:铀作业人 员10mSv;公众0.2mSv) [EJ 1056-2005]。 24.各种铀化合物中,UF6毒性最高。 25.核电厂正常年排放限值:惰性气体年限值 1140TBq,气溶胶 3.8GBq,碘34.2GBq,氚 55.6TBq,除氚外放射性核素700GBq。 26.临界安全考虑的主要因素: ①易裂变核素和可转换核素各自所占的份额; ②易裂变核素的质量; ③装易裂变材料的容器的几何条件(形状和尺 寸)和容积; ④易裂变材料在溶液中的浓度; ⑤慢化剂的性质和浓度; ⑥易裂变材料周围反射层的性质和厚度; ⑦中子毒物的性质和浓度; ⑧燃料-慢化剂-中子毒物的混合物的均匀性; ⑨两个或多个含易裂变材料容器之间的相互作 用。 27.职业照射:五年平均年有效剂量小于20mSv, 五年中任何一年的有效剂量不超过50mSv。 28.核安全文化:核安全基本原则设计管理责任 纵深防御及若干基本技术原则。核安全文化是 存在于单位和个人中的种种特性的总和,它建立 一种超出一切之上的观念,即核电站的安全问题 由于它的重要性要得到应有的重视。 29.纵深防御的概念及三道防线:纵深防御原则 要贯彻安全有关的全部活动,包括与组织、人员 行为或设计有关的方面,以保证这些活动均置于 重叠措施的防御之下,即使有一种故障发生,它 将由适当的措施探测、补偿纠正。第一道防线: 预防事故第二道防线:控制事故第三道防线: 缓解事故。 30.冗余:设计中留有冗余度,即系统是双重或 多重配置的,单一部件的失效不会使整个系统失 去功能。 31.密封源的安全使用方法:放射源放在固定的 位置,放射源的清单应妥善保存。若怀疑放射源 丢失必须立刻报告主管辐射防护人员。使用密 封源时,应按照辐射防护的基本原则,采用屏蔽 防护、距离防护或限制工作时间等综合的防护措 施,使工作人员受到的辐射照射减少到可合理达 到的尽量低的水平。、 32.后处理厂的安全特点:极强放射性,用屏蔽 材料将设备分隔密闭,远距离操作、控制和监测。 考虑射线与物质的辐射效应。物料中有相当 数量的裂变物质,核临界安全。物料毒性极 大,良好密闭性核可靠性。 33.堆后料的辐射特点:经后处理回收得到铀, 不但铀同位素的组成发生了变化,且夹带铀微量 的镎,钚核裂变产物这种铀的放射性活度比天然 铀大得多,它们的比活度很高,含量虽少,但能 使堆后料氟核化渣等的辐射水平显著升高。

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

辐射防护规定

辐射防护规定 GB 8703-88 Regulations for radiatioc protection 1988-03-11发布1988-06-01实施 国家环境保护局发布 附录K 辐射工作人员健康标准 (补充件) K1 健康要求的基本原则 K1.1 辐射工作者必须具备在正常、异常和紧急情况下,安全在履行职责的健康能力。 K1.2 任何可限制个人活动或能够引起突然丧失能力的疾病;或存在过量辐射照射后有碍于机体康复的疾病,均视为不适宜辐射工作的健康条件。 K1.3 某些健康情况可有限制在适任于某辐射工作。 K2 基本的健康要求 K2.1 人体外形适于个人防护衣具的穿着和有效使用;具有正常的视觉(视力、色觉)、嗅觉、听觉和语言表达能力。 K2.2 正常的精神状态和神经功能;具有紧急情况下完成紧张体力活动的心肺储备能力;皮肤和粘膜具有耐受洗消放射性沾染的能力。 K2.3 正常的造血功能,周围血液各项指标均在正常范围,肝、肾功能正常。 K3 器质性脑病和原因不明的意识障碍 K3.1 任何能够引超警觉、判断和运动能力损害的心理或精神情况;任何有监床意义的精神和行为的疾病。 K3.2 器质性脑病和原因陋就明的意识障碍。 K3.3 造血器官及其功能异常,周围血液化验有两项超出下列正常范围:

K3.4 冠心病和失去代偿功能的慢性肺部疾病。 K3.5 未能控制的糖尿病;白细胞减少症;造血器官疾病和恶性疾病。 K3.6 广泛的或暴露部位的反复以作的皮肤疾病;活动性肺结核;严重的肝、肾疾病。K3.7 未完全康复的放射病和其他职业性疾病。 K3.8 对从事辐射工作多年、具有专门技能或受过系统专业教育的辐射击工作者,考虑取消其辐射工作资格时,应仔细权衡这一决定对社会和个人的利益和代价

放射性同位素与射线装置安全和防护管理办法(2011年18号令)

精心整理 放射性同位素与射线装置安全和防护管理办法 环境保护部令 第18号 《放射性同位素与射线装置安全和防护管理办法》已由环境保护部2011年第一次部务会议于2011年3月24日审议通过。现予公布,自2011年5月1日起施行。 环境保护部部长? 周生贤 二○一一年四月十八日 主题词:环保 法规 放射性 令 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第一条 第二条 第三条 第四条 第五条 射线装置的生产调试和使用场所,应当具有防止误操作、防止工作人员和公众受到意外照射的安全措施。 放射性同位素的包装容器、含放射性同位素的设备和射线装置,应当设置明显的放射性标识和中文警示说明;放射源上能够设置放射性标识的,应当一并设置。运输放射性同位素和含放射源的射线装置的工具,应当按照国家有关规定设置明显的放射性标志或者显示危险信号。 第六条? 生产、使用放射性同位素与射线装置的场所,应当按照国家有关规定采取有效措施,防止运行故障,并避免故障导致次生危害。 第七条? 放射性同位素和被放射性污染的物品应当单独存放,不得与易燃、易爆、腐蚀性物品等一起存放,并指定专人负责保管。 贮存、领取、使用、归还放射性同位素时,应当进行登记、检查,做到账物相符。对放射性同位素贮存场所应当采取防火、防水、防盗、防丢失、防破坏、防射线泄漏的安全措施。

对放射源还应当根据其潜在危害的大小,建立相应的多重防护和安全措施,并对可移动的放射源定期进行盘存,确保其处于指定位置,具有可靠的安全保障。 第八条? 在室外、野外使用放射性同位素与射线装置的,应当按照国家安全和防护标准的要求划出安全防护区域,设置明显的放射性标志,必要时设专人警戒。 第九条? 生产、销售、使用放射性同位素与射线装置的单位,应当按照国家环境监测规范,对相关场所进行辐射监测,并对监测数据的真实性、可靠性负责;不具备自行监测能力的,可以委托经省级人民政府环境保护主管部门认定的环境监测机构进行监测。 第十条? 建设项目竣工环境保护验收涉及的辐射监测和退役核技术利用项目的终态辐射监测,由生产、销售、使用放射性同位素与射线装置的单位委托经省级以上人民政府环境保护主管部门批准的有相应资质的辐射环境监测机构进行。 第十一条? 生产、销售、使用放射性同位素与射线装置的单位,应当加强对本单位放射性同位素与射线装置安全和防护状况的日常检查。发现安全隐患的,应当立即整改;安全隐患有可能威胁到人员安全或者有可能造成环境污染的,应当立即停止辐射作业并报告发放辐 关申请退役核技术利用项目终态验收,并提交退役项目辐射环境终态监测报告或者监测表。 依法实施退役的生产、使用放射性同位素与射线装置的单位,应当自终态验收合格之日起二十日内,到原发证机关办理辐射安全许可证变更或者注销手续。 第十六条? 生产、销售、使用放射性同位素与射线装置的单位,在依法被撤销、依法解散、依法破产或者因其他原因终止前,应当确保环境辐射安全,妥善实施辐射工作场所或者设备的退役,并承担退役完成前所有的安全责任。 第三章? 人员安全和防护 第十七条? 生产、销售、使用放射性同位素与射线装置的单位,应当按照环境保护部审定的辐射安全培训和考试大纲,对直接从事生产、销售、使用活动的操作人员以及辐射防护负责人进行辐射安全培训,并进行考核;考核不合格的,不得上岗。 第十八条? 辐射安全培训分为高级、中级和初级三个级别。 从事下列活动的辐射工作人员,应当接受中级或者高级辐射安全培训: (一)生产、销售、使用Ⅰ类放射源的;

辐射防护三原则

? ? ? 基本知识: 由一种核素转变成另一种核素(如Co60 Ni60,Cs137 Ba137)叫做核转变。 核转变过程伴有粒子(如∝、β、γ)发射,因此发生核转变的物质称作放射性物质。 物质的量叫质量,质量的单位是千克。 放射性物质的量叫活度,活度的单位是贝克(Bq ),每秒发生一次核转变叫做1 Bq 。 1居里(Ci )=3.7×1010 Bq,1毫居(mCi )=3.7×107Bq ∝、β、γ等具有电离的能力,统称作电离辐射。单位质量的物质吸收的电离辐射的能量叫做吸收剂量(D )。 不带电粒子在单位质量物质中释放出来的所有带电粒子的初始动能之和叫做比释动能(K )。 D 和K 的单位是戈瑞(Gy ),每千克物质吸收1焦耳的辐射能量叫1Gy 。 剂量当量H 的单位是希沃(Sv),对于γ、β射线 1Sv=1Gy 单位时间内的吸收剂量叫做吸收剂量率D ,类似的有K 和H ,以Gy/h 和Sv/h 等为单位。 辐射防护三原则: 1、正当性 伴有辐射的实践带来的纯利益必须大于代价。 2、剂量限值 每年 50mSv ,对γ、β为50mGy 或5R 。 3、最优化 考虑到社会的和经济的因素 ,使一切有正当理由的照射保持在可以 合理达到的尽量低的水平。即利益/代价比值达最大,或采取可行的 措施将剂量尽量降低。 辐射防护三措施: 增加物质屏蔽、加长操作距离,缩短操作时间。 限值: 基本限值:每年50mSv 或50mGy(γ、β) 导出限值: 1、结晶器上:GB 16368-1996含密封源仪表的放射卫生防护 标准,设备表面5cm 处≤25μSv/h ,100cm 处≤2.5μSv/h 。

电离辐射防护基本标准

电离辐射防护与辐射源安全基本标准 1 范围 本标准规定了对电离辐射防护和辐射源安全(以下简称“防护与安全”)的基本要求。 本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。 本标准不适用于非电离辐射(如微波、紫外线、可见光及红外辐射等)对人员可能造成的危害的防护。 2 定义 本标准所采用的术语和定义见附录J(标准的附录) 3 一般要求 3.1 适用 3.1.1 实践 适用本标准的实践包括: a) 源的生产和辐射或放射性物质在医学、工业、农业或教学与科研中的应用,包括与涉及或或能涉及辐射或放射性物质照射的应用有关的各种活动。 b) 核能的产生、包括核燃料循环中涉及或可能涉及辐射或放射性物质照射的各种活动; c) 审管部门规定需加以控制的涉及天然源照射的实践。 d) 审管部门规定的其他实践。 3.1.2 源 3.1.2.1 适用本标准对实践的要求的源包括: a) 放射性物质和载有放射性物质或产生辐射的器件,包括含放射性物质消费品、密封源、非密封源和辐射发生器; b) 拥有放射性物质的装置、设施及产生辐射的设备,包括辐照装置、放射性矿石的开采或选冶设施、放射性物质加工设施、核设施和放射性废物管理设施; c) 审管部门规定的其他源。 3.1.2.2 应将本标准的要求应用于装置或设施中的每一个辐射源;必要 时,应按审管部门的规定,将本标装的要求应用于被视为单一源的整个装置或设施。 3.1.3 照射 3.1.3.1 适用于本标准对实践的要求的照射,是由有关实践或实践中源引起的职业照射、医疗照射或公众照射,包括正常照射和潜在照射。 3.1.3.2 通常情况下应将天然源照射视为一种持续照射,若需要应遵循本标准对干预的要求。但下列各种情况,如果未被排除或有关实践或源未被豁免,则应遵循本标准对实践的要求:

辐射防护

西南科技大学辐射防护复习题 2015 1、内辐照防护的基本措施:包容、隔离、净化、稀释。 2、电离辐射按照射方式分为:内照射、外照射。 3、粒子注量率及能量注量率的计算。 P3 粒子注量Φ=dN/da ,m-2 粒子注量率φ=d Φ/dt=d2N/dadt ,m-2s-1 能量注量Ψ=dR/da ,j.m-2 能量注量率ψ=d Ψ/dt=d2R/dadt ,j.m-2.s-1(w.m-2) 4、带点粒子沉淀能量的方式? 电离、激发、轫致辐射 5、表征带点粒子与物质相互作用的参数? P10-22 总质量阻止本领: l ρ1ρd dE S ==???? ?????? ??+ρρr S S c 总线阻止本领:l E S d d = (质量碰撞阻止本领、质量辐射阻止本领) 射程R 质量散射本领(T/ρ) 产生一对粒子所消耗的平均能量 6、什么情况下不带电粒子的质量能量转移系数与质量能量吸收系数相同? 中子 7、辐射场中存在哪几种不同程度的辐射平衡状态? P60 完全辐射 平衡、带点粒子平衡、δ粒子平衡、部分δ粒子平衡、过度平衡 8、照射量、吸收剂量、比释动能的区别和联系? 作业 PPT 第二章第二节最后 P61、64 9、不带电粒子与物质作用的三种方式? P25 光电效应、康普顿散射、电子对生成 占优方式:八字 10、对吸收剂量的理解。 P52 11、照射量的定义? P 53 12、自由空气电离室按那个量定义的?建立原则? 按照射量的定义设计 P123 13、在腔室理论当中薄壁和厚壁的情况下,腔室的吸收剂量与介质的吸收剂量的关系? P102 P108 14、固体核径迹剂量计可以和不可以探测哪些粒子? 可以探测:α粒子、中子、氡及其字体(质子) 15、热释光剂量计可运用在哪些方面? a.个人剂量监测 b.环境监测 c.其它:医学放射剂量测量、体模中D 的分布测量、考古定年等。 16、哪种剂量计是处于顶端的,用来校准? 量热计 17、弗里克剂量计中硫酸亚铁等产额关系? 1个OH* →1个Fe3+ 1个H*→3个Fe3+ 1个H2O2→2个Fe3+ 19、外辐射实用量的特点? 对各类电离辐射的通用性;与辐射防护限值的相关性;由空间指定点辐射场所决定的唯一性;与人体或体模的相关性;对各种电离辐射的可叠加性。 20、对互易定理的理解? 若含有同种放射性核素的两个源,其总放射性活度相同,则其中一个源在另一个源内产生的平均剂量率彼此相同,而和源的几何大小、形状及源的相互距离322()3()()2()G Fe G H G OH G H O +**=++

医院辐射防护管理办法

*医院 辐射安全与防护管理办法 第一章总则 第一条为了加强放射性同位素与射线装置安全和防护管理工作,保障全院职工和病人的健康和环境安全,根据《中华人民共和国放射性污染防治法》(主席令第6号)、《放射性同位素与射线装置安全和防护条例》(国务院449号令)、《放射性同位素与射线装置安全许可管理办法》(国家环保总局第31号令)等有关法律法规精神,制定本办法。 第二条本办法适用于本院内所有涉及放射性同位素与射线装置的人员和实验、科研场所以及相关活动的安全监督与管理,包括购买、运输、存贮、使用、生产、销毁等过程的管理。 第二章组织机构与许可登记 第三条“辐射安全管理委员会”是医院辐射安全与防护工作的管理、监督和技术指导的领导机构,办公室设在医务科,负责日常事务的管理。 第四条按照国家和医院有关规定,实行辐射工作许可登记制度。 第五条根据有关规定和医院具体情况,医务科以主体身份向政府环境辐射主管部门申请许可证,医务科负责医院的辐射安全管理。

第六条各涉源科室需取得“许可登记”方能开展相关工作,其制度建设、人员培训、安全防护等纳入医院统一管理。各科室根据所属实验室的放射性同位素或射线装置的具体情况,制定相应的操作规程、辐射防护和安全保卫制度、人员岗位职责、辐射事故应急处理预案、辐射安全责任书(需盖医院公章)等,报医务科备案,作为许可申请和环保部门检查的依据。 第七条涉源科室购买、处置放射性同位素(新购源、同位素试剂)和射线装置时,首先向医院辐射安全管理委员会办公室提出申请,经审核批准后方可进入后续工作程序。 第三章放射工作人员管理 第八条本办法所称放射工作人员,是指从事放射职业活动中受到电离辐射照射的人员。 第九条根据卫生部第55号令《放射工作人员职业健康管理办法》,放射工作人员必须持证上岗。申领放射工作人员证的人员,必须具备下列基本条件: 1.医院正式聘任职工、年满18 周岁,经职业健康检查,符合放射工作人员的职业健康要求; 2.遵守放射防护法规和规章制度,接受职业健康监护和个人剂量监测管理; 3.掌握放射防护知识和有关法规,经有资质科室举办的辐射安全培训,考核合格;

GB18871-2002电离辐射防护与辐射源安全基本标准

中华人民共和国国家标准 (GB 18871-2002) 电离辐射防护与辐射源安全基本标准 Basic standards for protection against ionizing radiation and for the safety of radiation sources 1 范围 本标准规定了对电离辐射防护和辐射源安全(以下简称”防护与安全”)的基本要求。 本标准适用于实践和干预中人员所受电离辐射照射的防护和实践中源的安全。 本标准不适用于非电离辐射(如微波、紫外线、可见光及红外辐射等)对人员可能造成的危害的防护。 2 定义 本标准所采用的术语和定义见附录J (标准的附录) 3 一般要求 3.1 适用 3.1.1 实践 适用本标准的实践包括: a) 源的生产和辐射或放射性物质在医学、工业、农业或教学与科研中的应用,包括与涉及或可能涉及辐射或放射性物质照射的应用有关的各种活动; b )核能的产生,包括核燃料循环中涉及或可能涉及辐射或放射性物质照射的各种活动; c) 审管部门规定需加以控制的涉及天然源照射的实践; d) 审管部门规定的其他实践. 3 .1. 2 源 3.1.2.1 适用本标准对实践的要求的源包括: a )放射性物质和载有放射性物质或产生辐射的器件,包括含放射性物质消费品、

密封源、非密封源和辐射发生器; b) 拥有放射性物质的装置、设施及产生辐射的设备,包括辐照装置、放射性矿石的开发、或选冶设施、放射性物质加工设施、核设施和放射性废物管理设施; c)审管部门规定的其他源。 3.1.2.2应将本标准的要求应用于装置或设施中的每一个辐射源;必要时,应按审管部门的规定,本标准的要求应用于被视为单一源的整个装置或设施。 3.1.3照射 3.1.3.1适用本标准对实践的要求的照射,足由有关实践或实践中源引起的职业照射、医疗照射或公众照射,包括正常照射和潜在照射。 3.1.3.2通常情况下应将天然源照射视为一种持续照射,若需要应遵循本标准对干预的要求。但下列各种情况,如果未被排除或有关实践或源未被豁免,则应遵循本标准对实践要求。 a)涉及天然源的实践所产生的流出物的排放或放射性废物的处置所引起的公众照射; b)下列情况下天然源照射所引起的工作人员职业照射: 1)工作人员因工作需要或因与其工作直接有关而受到的氡的照射,不管这种照射是高于或低于工作场所中氡持续照射情况补救行动的行动水平(见附录H(提示的附录)); 2)工作人员在工作中受到氡的照射虽不是经常的,但所受照射的大小高于工作场所中氡持续照射情况补救行动的行动水平(见附录H(提示的附录) 3)喷气飞机飞行过程中机组人员所受的天然源照射; c)审管部门规定的需遵循本标准对实践的要求的其他天然照射。 3.1.4 干预 3.1. 4.1适用本标准的干预情况是: a)要求采取防护行动的应急照射情况,包括: 1)已执行应急计划或应急程序的事故情况与紧急情况; 2)审管部门或干预组织确认有正当理由进行干预的其他任何应急照射情况; b)要求采取补救行动的持续照射情况,包括: 1)天然源照射,如建筑物和工作场所内氡的照射; 2)以往事件所造成的放射性残存物的照射,以及未受通知与批准制度(见4.2.1

中子剂量与防护

中子剂量和防护-正文 中子剂量通常指中子吸收剂量或中子剂量当量(见辐射剂量)。不同能量的中子同人体组织中的元素(氢、氮、氧、碳等)发生不同的相互作用(见中子核反应和宏观中子物理),所产生的具有一定能量的次级带电粒子能够引起电离和激发,从而使肌体受到损伤。剂量学涉及的主要物理问题是散射、核裂变和辐射俘获等. 研究中子在生物组织中不同深度的吸收剂量和剂量当量的模型有:半无穷大板块、有限圆柱体(直径为30厘米,高为60厘米)和椭圆柱体(长半轴为18厘米,短半轴为12厘米,高为60厘米)模型。模型的材料组成应同软组织的相当,密度为1g/cm3。能量范围从10-2eV延伸至 2000MeV。其中对半无穷大板块模型和有限圆柱体模型研究的结果,是目前确定中子注量率-剂量当量率换算系数的基础。 平行中子束垂直入射到一块物质上时,该物质的吸收剂量D随深度的分布(示意图见图1)同γ辐射的情形相似:吸收剂量的最大值并不出现在表面,而是出现在某个深度处,这个深度取决于中子的能量。医学上就是通过调节辐射的能量,把这个最大值对准病变组织的部位进行放射治疗。 放射防护规定:对个人所受剂量的限制是由剂量当量决定的。不同能量中子的有效品质因数坴(见辐射剂量)的数值示于图2。此外,由测得的中子注量率可以换算到剂量当量率。目前各国都采用图3所示的数值。 中子剂量测定主要指中子吸收剂量和剂量当量的测量。此外还包括表示剂量分布的微剂量测量。通常使用组织等效电离室,乙烯-聚乙烯正比计数器,硫酸亚铁剂量计以及量热计等测量吸收剂量。在多数情况下,组织等效电离室是测定快中子吸收剂量最准确的装置仪器。剂量当量测量仅适用于辐射防护,所采用的方法分场所监测和个人监测两类,其响应正比于最大剂量当量。微剂量测定的目的在于从实验上研究辐射在直径为微米量级或更小的球体内能量沉积的空间分布和谱分布。微剂量学所考虑的体积应同生物细胞的大小相当,借以模拟辐射在生物细胞、细胞组分和生物大分子中的能量沉积。常用的测量仪器是低压组织等效气体的“无壁”计数器,但测量方法和数据处理牵涉到很复杂的技术。 中子防护目的在于减少工作人员所受的辐射剂量,并尽可能将它控制在放射防护标准规定的限值以下。职业性放射性工作人员每年所受的剂量当量限值为50mSv(5rem)。表中给出对不同能量的中子相当于25μSv(2.5mrem)每小时的中子注量率以及1mSv(0.1rem)的中子注量。 减少防护工作人员受中子照射的措施除了尽量缩短受照时间、尽可能远离中子源以外,还需对中子源进行有效的屏蔽。 不同能量的中子同物质相互作用有不同的特点(见中子核反应和宏观中子物理)。因此屏蔽热中子要用含吸收截面大、俘获辐射γ光子能量低的材料,如硼、锂以及它们的化合物等。屏蔽快中子时首先需要用慢化能力强的材料将快中子的能量降低,然后用吸收截面大、俘获辐射γ光子能量低的材料加以吸收。快中子慢化的主要过程对于重核及中重核是非弹性散射;对于轻核是同原子核发生弹性散射。对于一次弹性散射,靶原子核的质量越接近中子的质量,中子损失的能量也就越大。因此屏蔽能量不很高的快中子最有效的元素是氢,通常采用的是含氢成分较多的水、石蜡、聚乙烯等轻材料。对于几兆电子伏以上能量的中子,可以用含重核或中重核的材料通过非弹性散射使其能量迅速降低然后再用含氢材料进一步使其慢化,最后被含10B或6Li材料吸收。因此,在规划屏蔽层的布局和确定屏蔽层厚度时必须知道中子能谱及各类材料的不同中子能量的有关反应截面数据,并根据上述特点对屏蔽层填料作合理安排,据某种理论模型进行数学运算。对大型中子源常用的屏蔽计算方法有双群法、多群法和移出扩散法等。放射性同位素中子源的屏蔽计算常用分出截面法和半(或1/10)值层减弱法。 若屏蔽层足够厚,又含有足够量的氢时,可用分出截面法进行计算。在近似计算中,可用裂变中子谱的分出截面。 半(或1/10)值层减弱系指将辐射量(注量、吸收剂量或剂量当量等)降至1/2(或1/10)时所需的屏蔽层厚度。半值层厚度(HVT)同1/10值层厚度(TVT)的换算关系式是:H VT=0.301TVT。 普通混凝土对单能中子的1/10值厚度示于图4。 屏蔽放射性中子源,可以单独使用水、石蜡等;也可兼用其他慢化材料和吸收材料,或将慢化材料和吸收材料混合使用(如含硼聚乙烯、含硼石蜡等)。对大型中子源(如加速器、反应堆)的屏蔽比较复杂,常以普通混凝土和重混凝土等屏蔽材料为主,还要采用铁一类的物质屏蔽γ辐射和快中子。 在中子辐射防护中,除了中子以外还应当特别注意对γ辐射的防护。这是因为反应堆、加速器和很多放射性同位素中子源都伴有很强的γ辐射。在很多情况下,γ辐射的剂量当量大大超过中子的剂量当量。例如,镭-铍中子源的γ剂量当量率约比中子剂量当量率高50倍。即使是被认为γ剂量较少的镅-铍中子源,γ辐射剂量当量率也占总剂量当量率的百分之几十。 在使用放射性同位素中子源时,要严格防止放射性物质的泄漏。特别是使用镭-铍中子源时应经常检查是否有氡气漏出。一旦发现有漏出,就应及时采取措施。 辐射剂量-正文

辐射防护常用知识

辐射防护常用知识 、原子核与原子(核)能 自然界的物质由各种各样的元素组成,比如,水由氢元素和氧元素组成,食盐由钠元素和氯元素组成。元素通常被叫做原子(严格地说,把核电荷数相同的一类原子叫做一种元素),所 以,可以说,物质是由各种各样的原子组成的。 原子由原子核与电子组成。原子核位于中心”地位,几乎集中了原子全部质量,带正电荷;电子带负电荷,围绕核心”运动。原子的质量数取决于原子核,其电子质量数忽略不计。每种原子都有一个原子核心”和多个电子,电子一圈一圈守规矩”排列并且运动。不同的原子其电子数也不同,比如,炭原子6个电子,氢原子1个电子。不同原子,其原子核具有的正电荷数目就不同;原子核的正电荷数目,正是它在元素周期表中排列的序号。 原子核由质子和中子组成,姐妹”俩统称核子”不过,中子不带电荷。只有质子带正电荷,与对应的电子(负电荷)形成稳定局面”。比如,原子序号都为1的氢有3种,正宗”的氢只有1个质子,即带1个正电荷,另两种分别叫重氢和超重氢。重氢又叫氘(音刀”,其原子核中有1个质子,还有1个中子;超重氢又叫氚(音川”,1个质子,2个中子。它们的质量分别是正宗”氢的2倍和3倍。氢、氘、氚具有相同的化学性质,原子序数都是1,科学家把它 们叫做氢的3种同位素”也可以叫做3种不同的核素,分别写作11H、12D、13T。左下角数字表示原子序数”左上角数字表示其质量数。 原子核中的质子带有的正电荷数目,同电子(带负电荷)数目是相等的,正是它在兀素周期表中排列的序号,科学家称之为原子序数”又比如氦原子,写作24 He,原子序数为2,其质量数是4,显然,其原子核中有2个质子和2个中子。 质子和中子之间,中子和中子之间,质子和质子之间,总而言之,核子之间,存在着很强的吸引力一一核力,或者说结合能、原子能。在一般情况下,核力使所有核子结合成一个紧密的稳定结构。要想分裂一个原子核,就必须从外部供给能量,克服这种结合能。 研究表明,质量不同的原子核,其结合能是不同的。中等质量的原子核,其结合能较大;重 量级”质量的原子核,其结合能较小。当重量级”原子核分裂成中等质量的原子核时,要放出能量,这就叫核裂变能” 又知道,轻量级”原子核的结合能也比中等级质量的原子核结合能要小,两个轻量级”原子 核聚合成一个中等级质量的原子核时,也有能量放出,这就是核聚变能” 它们都叫核能。核电站就是利用核裂变能”原理进行发电 、放射性 1、放射性现象的发现 1896年,法国物理学家贝可勒尔在研究物质的荧光时发现,某些铀盐可以放射一种人的眼睛看不见的射线,这种射线能穿过黑纸、玻璃、金属箔使照像底片感光;而且还观测到,靠近铀盐的空气被“电离”了,验电器可以检验出来。

放射性同位素与射线装置安全和防护管理办法 环保部第 号令

放射性同位素与射线装置安全和防护管理办法 (环保部第18号令) 第一章? 总则 第二章? 场所安全和防护 第三章? 人员安全和防护 第四章? 废旧放射源与被放射性污染的物品管理 第五章? 监督检查 第六章? 应急报告与处理 第七章? 豁免管理 第八章? 法律责任 第九章? 附则

第一章? 总? 则 第一条?为了加强放射性同位素与射线装置的安全和防护管理,根据《中华人民共和国放射性污染防治法》和《放射性同位素与射线装置安全和防护条例》,制定本办法。 第二条? 本办法适用于生产、销售、使用放射性同位素与射线装置的场所、人员的安全和防护,废旧放射源与被放射性污染的物品的管理以及豁免管理等相关活动。 第三条? 生产、销售、使用放射性同位素与射线装置的单位,应当对本单位的放射性同位素与射线装置的辐射安全和防护工作负责,并依法对其造成的放射性危害承担责任。 第四条? 县级以上人民政府环境保护主管部门,应当依照《中华人民共和国放射性污染防治法》、《放射性同位素与射线装置安全和防护条例》和本办法的规定,对放射性同位素与射线装置的安全和防护工作实施监督管理。 第二章? 场所安全和防护 第五条? 生产、销售、使用、贮存放射性同位素与射线装置的场所,应当按照国家有关规定设置明显的放射性标志,其入口处应当按照国家有关安全和防护标准的要求,设置安全和防护设施以及必要的防护安全联锁、报警装置或者工作信号。 射线装置的生产调试和使用场所,应当具有防止误操作、防止工作人员和公众受到意外照射的安全措施。

放射性同位素的包装容器、含放射性同位素的设备和射线装置,应当设置明显的放射性标识和中文警示说明;放射源上能够设置放射性标识的,应当一并设置。运输放射性同位素和含放射源的射线装置的工具,应当按照国家有关规定设置明显的放射性标志或者显示危险信号。 第六条? 生产、使用放射性同位素与射线装置的场所,应当按照国家有关规定采取有效措施,防止运行故障,并避免故障导致次生危害。 第七条? 放射性同位素和被放射性污染的物品应当单独存放,不得与易燃、易爆、腐蚀性物品等一起存放,并指定专人负责保管。 贮存、领取、使用、归还放射性同位素时,应当进行登记、检查,做到账物相符。对放射性同位素贮存场所应当采取防火、防水、防盗、防丢失、防破坏、防射线泄漏的安全措施。 对放射源还应当根据其潜在危害的大小,建立相应的多重防护和安全措施,并对可移动的放射源定期进行盘存,确保其处于指定位置,具有可靠的安全保障。 第八条? 在室外、野外使用放射性同位素与射线装置的,应当按照国家安全和防护标准的要求划出安全防护区域,设置明显的放射性标志,必要时设专人警戒。 第九条? 生产、销售、使用放射性同位素与射线装置的单位,应当按照国家环境监测规范,对相关场所进行辐射监测,并对监测数据

辐射防护与安全标准

钴-60辐照装置的辐射防护与安全标准 (GB10252-1996) 本标准是GB10252-88《辐射加工用钴-60辐照装置的辐射防护规定》的修订版本。本版在格式上依照GB/T1.1-1993《标准化工作导则 第1单元:标准的起草与表述规则 第1部分:标准编写的基本规定》。修订部分主要有:增加前言和引用标准一章;不再列出职业人员基本限值,只提出执行有关的标准,并给出与源相关的剂量控制值、对公众照射给出了管理限值;井水中污染控制值改为 10Bq/L;通过屏蔽墙对非限制区公众的照射原规定过产,现适当放宽;在总结了近年来国内经验和教训的基础上,对原版中的有关辐射防护与安全管理部分,参照国际原子能机构(IAEA)有关规范,增加了辐照装置的安全分析、辐射源的清点与盘存和辐射防护与安全检测内容三章;原版中的附录A删去。 本标准从实施之日起,同时代替GB 10252-88。 本标准的附录A是标准的附录。 本标准由中国核工业总公司提出。 本标准起草单位:北京放射医学研究所。 本标准起草人:郭勇、史元明、李成林 1. 范围 本标准规定了60Co辐照装置设施的辐射防护与安全要求,包括场所划分、工作人员和公众受照控制以及有关防护与安全等管理和技术要求。 本标准适用于水池贮源式60Co辐射装置的选址、设计、运行和退役。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB3095-82 大气环境质量标准 GB4076-83 密封放射源一般规定 GB13367-92 辐射源和实践的豁免管理原则 3. 辐射照射与污染控制

辐射防护知识.

辐射防护知识 1、四种常见的射线: 在我们的周围到处存在着射线—太阳光、无线电波、微波、红外线、宇宙射线,这些射线都是电磁波。由于光子的能量较低,强度较小,它们大多是没有危害的。核射线就和它们有很大的不同。 1)它们由α、β和中子组成同γ射线一样具有很短的波长。 2)它们的能量高到足以使分子离子化导致生物组织遭到破坏。 核射线有时也叫做“离子射线”。受到射线照射的生物体可能使机体遭到不同程度的破坏。这取决于射线源的强度和广度以及采取的防护措施。通常情况下穿透力较强的射线是γ射线和中子射线,它们破坏性较小,但是防护困难。α、β射线穿透力较弱,破坏性较大,但是防护比较简单。所有这些放射源都是向四周空间时刻放射射线。 2γ射线和X射线 X和γ射线都是电磁波(光子)。唯一的区别是来源:γ射线是属于原子核发射出来的辐射;X射线指的是在原子核外部产生的辐射。 它们和光速一样快,能穿透大多数物体,在介质中穿过波长不会发生变化但强度会逐渐减弱。Gamma射线在空气中传播几乎不受影响,它可以被几英尺的水,数英尺的混凝土,几英寸的钢或铅完全阻挡。由于它不容易被减弱,所以能轻易的检测到它的存在,同时人体也容易被它照射到。多数放射源在释放Gamma射线时都伴随着释放出α、β射线或中子射线。X射线能量比γ射线能量稍低。 3、辐射危害 1、职业照射 2、公众照射 3、医疗照射 4、潜在照射 4.吸收剂量 对X射线、γ射线,吸收剂量在0.25戈瑞以下时,人体一般不会有明显效应;但是,剂量再增加,就可能出现损伤。当达到几个戈瑞时,就可能使部分人死亡。接受同样数量的“吸收剂量”,受照射时间越短,损伤越大;反之,则轻。吸收同样数量剂量,分几次照射,比一次照射损伤要轻。 表1、常用放射线单位及换算关系

相关文档
最新文档