氮磷营养高效型小麦品种鉴定

氮磷营养高效型小麦品种鉴定
氮磷营养高效型小麦品种鉴定

氮磷营养高效型小麦品种鉴定

袁园园1,2董贝1

(1山东省济南市农业科学研究院,济南250316;2山东农业大学农学院,泰安271018)摘要:为了快速筛选氮素和磷素营养高效型小麦品种,以山东省近年来育成的25个小麦品种(系)为材料,通过大田试验,对不同品种的籽粒氮素和磷素利用效率及产量性状进行统计分析。结果表明,在正常氮肥和磷肥水平下,以济麦22为对照,氮素利用效率、磷素利用效率和产量高出10%以上的品种(系)分别有13个、9个和11个;其中山农24、泰农18、山农32(SH5099)和山农29(LS6109)在这3个指标上均比对照高出10%,是营养高效型小麦品种,在生产上具有较高的推广价值。

关键词:小麦;营养高效;产量

小麦是我国主要的粮食作物,2015年种植面积达2.44亿公顷,产量达1.18亿吨。但是在实际生产中,小麦的氮肥和磷肥的利用效率很低,仅有10%左右[1];不能被植物吸收的氮素会污染地下水、增加氧化亚氮等温室气体排放,而过量的磷素也会随雨水冲刷造成水体富营养化[2]。因此,从改善小麦自身对矿质营养的利用效率出发,筛选和培育营养高效型的作物品种,是解决上述问题更经济环保的途径。

作物的营养效率包括吸收效率和利用效率2个方面[3]。而营养利用效率反映了作物内部矿质营养元素的循环再利用能力,通常用作物单位矿质营养含量所产生的生物学产量或经济产量或CO2固定量来评价,即营养元素浓度的倒数[4]。与作物外部营养吸收效率相比,内部的营养利用效率在培育营养高效型品种方面更有价值[8]。很多研究表明,在矿质营养效率方面,小麦存在着显著的基因型差异。张锡州等[5]发现,同一供氮水平下供试小麦在氮素积累量、氮素利用效率等方面均存在基因型差异;杜宝见等[6]发现,扬麦16和鉴76为正常供氮和高氮条件下的氮高效型品种,皖麦68、F60501-4、鉴62和安农1026为高氮条件下的氮高效型品种。在磷素利用效率方面,柏栋阴等[7]筛选出徐麦856、徐麦270、徐麦3-54、小偃54等4个磷高效品种。但是,同时鉴定小麦氮素和磷素利用效率品种差异的研究却很少。

近年来,各育种单位积极作为,育成了一批高产、抗倒、优质小麦品种和优良品系。特别是小麦主推品种济麦22,全国累计推广面积已达2亿多亩。但是,这些品种(系)的氮素和磷素利用效率如何,却鲜有报道。本研究选用山东省近年来育成的25个小麦品种(系),以济麦22为对照品种,采用大田随机区组试验,在正常氮营养水平下,对氮素和磷素利用效率及产量等农艺性状进行了综合鉴定和评价,拟筛选出氮磷高效型小麦品种,以指导生产。

基金项目:济南市农业科技创新项目(201313,201404);济南市科技计划项目(201401103)

1材料与方法

1.1试验材料以山东省近年来育成的25个小麦品种或品系为材料,其中以济麦22为对照(表1)。

表1 25个小麦品种(系)的基本信息

序号品种审定编号品种来源

935024/935106

济麦22(CK)国审麦2006018号

1

鲁农审2006050号

2 山农22 国审麦2011013号PH82-2-2/954072

3 山农32(SH5099)鲁农审2016001号6125/954(5)-4

4 SH5186 - -

5 KY088 - -

临麦6号/J1781

山农29(LS6109)国审麦2016024号

6

鲁农审2016002号

7 山农28(SH4300)鲁农审2014036号济麦22/山农15

8 烟农5158 鲁农审2007042号烟航选2号/烟农15号

9 儒麦1号(07412)鲁农审2014038号济宁16号/临麦2号

10 山农24 鲁农审2013047号PH82-2-2/954072

11 汶农17 鲁农审2011033号潍麦8号/邯3475

12 红地95 鲁农审2016008号周麦16/淮麦18

13 烟农999 鲁农审2011032号F/烟BLU14-15

14 山农优麦3号鲁农审2001035号79401/鲁麦1号

15 鑫麦296 鲁农审2013046号935031/鲁麦23号

16 鲁原502 国审麦2011016号9940168/济麦19

17 山农18 国审麦2009015号兰考大粒/924142

18 泰农18 鲁农审2008056号莱州137/烟369-7

19 烟农173 鲁农审2016005号济麦22/烟2415

20 泰农1014 - -

21 良星66 国审麦2008010号济991102/济935031

22 良星77 鲁农审2010069号济991102/济935031

23 良星99 国审麦2006016号济91102/鲁麦14//PH85-16

24 济麦0860229 - -

25 泰山28 鲁农审2013048号3262/皖麦38

1.2试验方法

试验在济南市农科院试验基地实施,地力条件一致。播种前施纯N120 kg/hm2(60%)、P2O5 102 kg/hm2、K2O 114 kg/hm2,拔节期追施纯N 80 kg/hm2。2014年10月5日播种,2015年6月10日收获。小区面积100m2,株距5cm,行距25cm,设置3次重复,完全随机区组设计,常规田间管理。

收获前按照品种不同每重复随机挑选10株,调查株高、穗长、不育小穗数、可育小穗数和穗粒数。按品种分别收获籽粒,测小区产量,并计算亩产量。数3个500粒,测千粒重。

氮磷钾肥在植物营养中的作用及现状

《植物营养研究方法》课程论文 氮磷钾肥在植物营养中的作用及现状 学院:资源环境学院 专业:农业资源环境 班级:资环081 姓名:傅菁晶 学号:10

氮磷钾肥在植物营养中的作用及现状 摘要:植物正常生长需要有一个良好的生态环境,而养分条件是其中重要的因素之一。为了获得农产品丰收,施肥是一项不可缺少的措施。但是,正确的施肥必须有所依据,必须在了解植物对养分需求及吸肥规律的基础上才有可能。而氮磷钾肥是现今我国常用的肥料,因此掌握氮磷钾肥对植物的作用与我们息息相关。 关键词:氮;磷;钾;农作物;研究现状;植物营养;施肥; 农作物在其生命活动中,和一切生物一样也需要“食物来满足其生长、发育和繁殖”的需要。但是,作物的特殊功能是除了吸收水分和空气中二氧化碳以获得碳、氢、氧等元素外,还必须从土壤在吸收氮素和其他矿质养分,并在太阳能的帮助下合成有机物质,以建造自己的有机机体。 农作物从土壤在吸收矿物质养分是作物生长发育的物质基础和土壤肥力的核心,也是评价土壤生产力高低的重要标志之一。作物品种不同,发育阶段不同,对土壤矿质养分的种类、数量的要求是不同的。这些矿质养分有的是作物体的组成部分,有的可以调节作物的生命活动,有的或兼备这两方面的作用。因此,了解作物对土壤矿质养分的需要和掌握土壤矿质养分的存在状况和变化规律,对农业生产有重要的意义。 1氮肥对植物的作用 1.1氮的来源 在20世纪以前,土壤中的氮都是在自然氮循环过程中来自大气。大气中含氮78%,主要通过固氮和大气放电固氮进入土壤,被植物吸收利用,还可能进一步成为动物的食粮。动物粪便和植物秸秆是大气—土壤—植物—动物氮循环的环节。现在通过人工合成氨固氮,制造出尿素、碳酸氢铵等一系列含氮肥料,通过土壤施用和叶面喷施加入这一循环中。 动物粪便和植物秸秆这些有机物质进入土壤后,在一系列土壤微生物的作用下,经过一系列分解转化过程。如果碳氮比小于25,会释放出铵态氮在消化细菌的作用下,经过两步变为硝态氮。土壤温度、湿度、通气状况、pH值、微生物种群数量扥条件决定其转化速率和数量。这需要一段较长的时间。碳氮比大于30的有机物质在土壤中要吸收一部分土壤中原有的矿质氮用于微生物分解活动,待碳氮比小于25后再释放氮。有机肥中鸡粪含氮量最高,猪粪次之,植物秸秆含氮量最低。 化肥中的铵态氮也要转化为硝态氮,与有机肥无异。 铵与钾相近,容易被土壤吸附。硝酸根则比较容易随水流失,进入地下水或河流湖海中会造成环境污染。在通气不良、湿度过大的土壤中,硝酸根会产生反硝化作用生成氮氧化物释放到空气中损失掉。 这就形成了土壤和大气中的氮循环。 1.2氮在农作物营养中的作用 氮是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。

农作物品种审定标准

主要农作物品种审定标准 总则 1 范围 本标准规定了稻、小麦、玉米、棉花、大豆、油菜、马铃薯品种审定的术语与定义、内容与依据、审定指标和评判规则等。 本标准适用于稻、小麦、玉米、棉花、大豆、油菜、马铃薯品种审定。 2 术语与定义 下列术语与定义适用于本标准。 2.1 品种variety 品种是指经过人工选育或者发现并经过改良,形态特征和生物学特性一致,遗传性状相对稳定的植物群体。 2.2 对照品种control variety 对照品种是同一生态类型区同期生产上推广应用的已审定品种,具备良好的代表性。 2.3 特征特性character 品种的植物学特征和生物学特性,包括基本特征特性、生育期、主要农艺性状等。 2.4 丰产性yield ability

品种的产量表现,以品种在试验中比对照品种增产的百分率及差异显著性表示。 当区域试验对照品种产量低于所有品种产量平均值时,应逐点采用相应点的参试品种(含对照)平均值进行产量比较。 2.5 稳产性yield stability 品种产量的稳定性,即品种在地点间和年际间试验中相对于对照品种产量的变化程度。以品种在试验中比对照品种增产点次占汇总试验点总数的比例进行评价。 2.6 适应性adaptability 品种对环境的综合适应能力,以品种在试验中比对照品种增产试验点的比例进行评价。 2.7 抗逆性stress resistance 品种对生物和非生物逆境的抵御或忍耐能力,包括抗病性、抗虫性、抗旱性、抗寒性、抗倒性等。 2.8 品质quality 品种的营养品质、商品品质以及与加工品质有关的性状。 2.9 生育期maturity 品种从出苗到成熟的时间。 2.10 特异性distinctness 申请审定品种应当明显区别于已受理或审定通过的品

2018-2019年度国家冬小麦品种试验旱地组抗旱性鉴定总结

2018-2019年度国家冬小麦品种旱地组 抗旱性鉴定试验总结 全国农业技术推广服务中心 洛阳农林科学院 一、试验目的 为进一步在人工干旱胁迫条件下(旱棚试验)鉴定冬麦区旱地组小麦区试参试品种的抗旱性,及时、准确地鉴定出新育成(或引进)的小麦品种的抗旱性,筛选出适宜我国旱地种植的小麦新品种,为旱地生产、品种利用及审定提供科学依据。根据国家冬麦区小麦区试年会会议精神,在全国农业技术推广服务中心品种管理处的领导下,由我院负责2018-2019年度国家冬小麦品种试验抗旱性鉴定工作。 二、参试品种 2018-2019年度参试品种共48个,其中黄淮冬麦区旱肥A组参试品种13个,黄淮冬麦区旱肥B 组参试品种13个,黄淮冬麦区旱薄组参试品种14个,均以晋麦47为统一对照种;北部冬麦区旱地组参试品种8个,以西峰20为统一对照种。 三、鉴定方法 1.试验设计 小麦品种的抗旱性鉴定方法主要采用旱棚鉴定法。本年度的抗旱性鉴定试验在洛阳农林科学院自动折叠式干旱棚进行鉴定,试验分两个处理:干旱棚内全生育期水分胁迫试验和干旱棚外相邻地块水分非胁迫试验。棚内、棚外两组试验均设三次重复,随机区组排列。棚内试验小区长3.4m,行距0.2m,3行区;棚外小区长2m,宽1.6m,6行区。棚内试验在小麦播种后进行全生育期干旱胁迫处理;棚外试验全生育期以自然降雨为主,在越冬期、拔节期、孕穗期进行补充灌溉。 2.鉴定指标 以小区籽粒产量抗旱指数作为全生育期抗旱性鉴定指标。抗旱指数计算公式: DI =GY S.T2·GY S.W-1·GY CK.W·(GY CK.T2)-1 式中: DI --- 抗旱指数 GY S.T --- 待测品种棚内籽粒产量;

氮磷钾元素作用

氮磷钾营养元素的作用 氮 氮是蛋白质、叶绿素、酶等物质的重要组成部分。蛋白质是构成植物细胞原生质的基本物质,原生质是新陈代谢的活动中心。没有蛋白质就没有生命活动。酶是一种生物催化剂,植株体内的生物化学反应都有酶的参与。叶绿素是进行光合作用必不可少的物质,充足的氮能使叶色浓绿,提高光合作用效率,生长健壮,茎叶繁茂。另外,植株体内的核酸、磷脂和某些激素也都含有氮,这些物质也是许多生理生化过程所不可缺少的。可见氮的生理作用是多方面的。 氮不足,叶色转黄,生育延迟,植株瘦弱,抽穗晚,雌穗发育不良,穗小粒少,严重时不结实,形成空杆。缺氮症状先由叶尖变黄开始,沿着中脉向内扩展,严重时叶片变褐枯死,从全株看,先由下部老叶开始变黄,然后扩展到中部和上部叶片,这是因为缺氮时老叶中的氮转移到上部正在生长的幼叶和其它器官的缘故。 玉米对氮的需要量是诸多营养元素之中最大的,占茎叶子实及根系在内的干重的百分比达到1.46%,明显高于其它营养元素,所以在生产中一定要注意氮元素的施用。 磷 磷在植株体内含量虽比氮、钾少(仅占植株干重的0.2%)。但其生理作用确是非常重要的。磷是核蛋白的重要组成成分,核蛋白是原生质、细胞核和染色体的重要组成物质。磷也是核苷酸的主要成分之一。核苷酸的衍生物在新陈代谢中具有极重要的作用,与玉米植株的正常生命活动密切相关。磷在碳水化合物代谢及氮代谢中也都有重要作用,与脂肪代谢的关系也较密切。 磷对玉米植株发育及各生理过程均有促进作用,尤其是在苗期,能促进根的发育,如果供给适量的磷,根系干重可比缺磷的高1倍。对提高粒重、提高品质也有重要作用。 如果缺磷,影响玉米正常生长发育,产量降低。如果发现缺磷,即使再供给充足的磷也难以弥补前期所造成的损失。早期缺磷、幼苗生长缓慢,根系发育差,叶片呈紫红色,严重时叶尖及叶片边缘变成褐色并枯死。中、后期缺磷,花丝抽出晚,雌、雄间隔时间长,影响授粉,果穗缺粒秃尖,成熟延迟,产量降低。在生产中一定注意从苗期开始就供给充足的磷,确保一生对磷的需要。 钾 钾在幼苗植株中的含量较高,仅次于氮(占植株总干重的0.92%),它在玉米生长发育过程中的生理作用是多方面的。 钾能增强植株的抗旱性主要是由于钾是调节植株水分状况的重要元素。气孔开闭与K+含量有很大关系。施钾使叶肉K+细胞充足,气孔开放程度大,使细胞间隙进入的CO多,从而使光合速率增大,能增强光合产物的运输,提高光合速率,使碳氮代谢加强,有更多的碳水化合物往籽粒中输送。增施钾肥能增强作物的抗旱力,是由于钾离子有调节原生质的胶体特性,使胶体保持一定的分散度、水化度和粘滞性等。钾离子可增强原生质的水合作用,而钙能促使原生质浓缩,降低细胞的渗透性。当它们同时存在时,由于拮抗作用,可使胶体保持一定的分散度,又有一定的粘滞性和透性,使水分能顺利地进入细胞,加强了细胞的持水能力,从而增强了作物抗旱能力。 钾素能增强作物的抗病抗倒伏能力,因为钾对茎部纤维素合成有关。钾营养充足时,作物茎叶中纤维素含量增加,促进了作物维管束的发育,厚角组织细胞加厚,茎秆强度增加,植株生长健壮,不仅抗倒伏,也增强对病虫的抵抗能力。

小麦抗寒性

Wheat cold hardiness can affect blossom time 小麦的抗寒性可影响到开花时间 New research by UC Davis wheat geneticist(遗传学者)Jorge Dubcovsky and his colleagues could lead to new strategies for improving freezing tolerance in wheat, which provides more than one-fifth of the calories consumed by people around the world. The new findings, published June 22 in the Online First issue of the journal Plant Physiology, shed light on(阐明)the connection between flowering and freezing tolerance in wheat. In winter wheat and barley(大麦)varieties, long exposures to non-freezing cold temperatures accelerate flowering time in a process known as vernalization(春化处理,种子催熟法) . These exposures also prepare the wheat to better tolerate freezing, a process known as cold acclimation(适应环境) . In their new study, Dubcovsky and his colleagues at UC Davis, The Ohio State University and in Hungary, demonstrated that when the main vernalization gene, VRN1, is expressed in the leaves, it initiates a process that leads to decreased expression of the freezing tolerance genes. (In genetics, "expression" refers to the process by which information carried by the gene is used to create a protein.) "This system enables wheat and other temperate grasses to respond differently to cool temperatures in the fall than they would to cool temperatures in the spring," said Dubcovsky, a professor in UC Davis' Department of Plant Sciences. Dubcovsky heads UC Davis' wheat breeding program and Wheat Molecular Genetics Laboratory. The lab coordinates a broad-based research program that aims to provide the scientific information needed to develop healthier and more productive varieties of wheat. He noted that a cool temperature in the fall, when plants have low levels of the vernalization gene VRN1, activates the freezing tolerance genes, helping to trigger the plants' acclimation to cold temperatures. This is essential in the fall, when cool temperatures are an indication that winter's freezing temperatures are approaching. "However the same cool temperature in the spring, when high levels of the vernalization gene VRN1 are present in the leaves, results in a weaker response of the freezing tolerance genes," Dubcovsky said. "This avoids initiating the plants' cold-acclimation response, which requires a lot of the plants' energy and is unnecessary in the spring because warmer weather is approaching."

农田氮_磷的流失与水体富营养化(精)

农田氮、磷的流失与水体富营养化① 司友斌王慎强陈怀满② (中国科学院南京土壤研究所南京210008 摘要农田氮、磷的流失,不仅造成化肥的利用率降低,农业生产成本上升,还对水环境造成污染,引起水体富营养化。本文讨论了农田氮磷流失对水体富营养化的贡献、农田氮磷流失途径及影响因素,提出了减少农田氮磷流失、控制水体富营养化的措施。 关键词农田氮素;农田磷素;淋溶作用;水体富营养化 肥料提供了植物生长必需的营养元素,对保持作物高产稳产起了重要的作用,但是由施肥不当或过量施肥带来的环境污染问题也越来越突出,其中农田氮磷流失引起的水体富营养化问题目前已受到人们的普遍关注。 1水体富营养化的表现及形成原因 水体富营养化通常是指湖泊、水库和海湾等封闭性或半封闭性的水体,以及某些滞留(流速<1米/分钟河流水体内的氮、磷和碳等营养元素的富集,导致某些特征性藻类(主要是蓝藻、绿藻等的异常增殖,致使水体透明度下降,溶解氧降低,水生生物随之大批死亡,水味变得腥臭难闻。引起水体富营养化起关键作用的元素是氮和磷。研究表明,对于湖泊、水库等封闭性水域,当水体内无机态总氮含量大于 0.2mg/L,PO3-4-P的浓度达到0.02mg/ L时,就有可能引起藻华(Algae Bloms现象的发生。 据对我国25个湖泊的调查,水体全氮无一例外超过了富营养化指标,全磷只有2个湖泊(大理洱海和新疆博斯腾湖低于0.02mg/L的临界指标,其余92%的湖泊皆超过了这个标准,比国际上一般标准高出10倍或10倍以上(表1。 表1我国25个湖泊中的全N全P浓度(mg/L及所占比例[1]

全N全P <0.2>1.0>2.0>5.0<0.02>0.1>0.2>0.5 湖泊数 %0 21 84 13 52 5 20 2 8 16 64 12 48 6 24

低温对小麦抗寒性的影响

冷害对小麦抗寒性的影响 【摘要】概述了水稻低温的危害, 冷害的生理基础、遗传机理、并展望了水稻孕穗期耐冷性的研究前景。 关键词:低温危害、冷害生理、遗传机理 1.水稻低温的危害 1.1水稻低温冷害的概念 水稻低温冷害是指水稻遭遇发育所需最低临界温度以下的温度, 造成水稻的生理损伤, 导致水稻不能正常生长发育而使产量降低。水稻生育期中有4个时期最易受冷害影响, 分别是芽期、苗期、孕穗期和开花灌浆期, 其中孕穗期冷害与水稻产量具有密切的关系。孕穗期冷害是指水稻进入生殖生长到开始抽穗开花期间受到低温的影响, 导致花粉发育不正常继 而影响正常开花授粉形成空壳的一种冷害[4]。这类冷害常在日本东北部及北海道、菲律宾北部、印度北部山区、印度尼西亚山区、尼泊尔、美国加利福尼亚州和我国的东北、云贵高原粳稻区及长江中下游地区的晚稻中发生. 1.2水稻低温冷害类型 水稻在生长发育过程中,经常会遇到低温和光照不足,由此引起种子发芽不良、烂秧、幼苗生长缓慢、不育、成熟不良,最终导致产量减少。根据发生特点可将水稻冷害划分为障碍型冷害、延迟型冷害和混合型冷害[3]。 1.延迟型冷害主要是指发生在水稻营养生长时期的冷害,能造成生育延迟。其特点是在较长的时间内遭受较低温度的危害,导致生长、抽穗和开花延迟,虽然开花和授粉(受精)正常,但不能充分灌浆和正常成熟。 2.障碍型冷害主要是指发生在水稻生殖生长时期的冷害,即在生殖器官分化到抽穗、开花时期遭受短时期的异常低温造成的危害。它能使花器的生理机制受到破坏,造成颖花不育,形成大量空壳而严重减产。 3.混合型冷害它指延迟型冷害和障碍型冷害在同一年度中发生。生育初期遇低温,延迟生育和抽穗,孕穗、抽穗、开花期再遇低温,造成不育或部分不育,既有部分颖花不育,又延迟成熟,形成大量空秕粒,导致产量大幅度减少。作物低温冷害在整个作物生长季的每个阶段都有可能发生,不同时期低温冷害的影响和损失又有较大区别。根据冷害发生时期分类,还可以把低温冷害分为前期冷害、中期冷害、后期冷害。显然,也可能有前、中、后期都出现冷害的情况(尽管可能性很小),相当于混合型冷害。 材料机及方法:

2016年国家农作物品种审定标准

2016年最新国家农作物品种审定标准 近日,农业部公布了《主要农作物品种审定办法》,下面,托普云农为您带来《主要农作物品种审定办法》的全文内容,欢迎浏览! 中华人民共和国农业部令 2016年第4号 《主要农作物品种审定办法》已经农业部2016年第6次常务会议审议通过,现予公布,自2016年8月15日起施行。 部长韩长赋 2016年7月8日 主要农作物品种审定办法 第一章总则 第一条为科学、公正、及时地审定主要农作物品种,根据《中华人民共和国种子法》(以下简称《种子法》),制定本办法。 第二条在中华人民共和国境内的主要农作物品种审定,适用本办法。 第三条本办法所称主要农作物,是指稻、小麦、玉米、棉花、大豆。 第四条省级以上人民政府农业主管部门应当采取措施,加强品种审定工作监督管理。省级人民政府农业主管部门应当完善品种选育、审定工作的区域协作机制,促进优良品种的选育和推广。 第二章品种审定委员会 第五条农业部设立国家农作物品种审定委员会,负责国家级农作物品种审定工作。省级人民政府农业主管部门设立省级农作物品种审定委员会,负责省级农作物品种审定工作。 农作物品种审定委员会建立包括申请文件、品种审定试验数据、种子样品、审定意见和审定结论等内容的审定档案,保证可追溯。 第六条品种审定委员会由科研、教学、生产、推广、管理、使用等方面的专业人员组成。委员应当具有高级专业技术职称或处级以上职务,年龄一般在55岁以下。每届任期5年,连任不得超过两届。

品种审定委员会设主任1名,副主任2-5名。 第七条品种审定委员会设立办公室,负责品种审定委员会的日常工作,设主任1名,副主任1-2名。 第八条品种审定委员会按作物种类设立专业委员会,各专业委员会由9-23人的单数组成,设主任1名,副主任1-2名。 省级品种审定委员会对本辖区种植面积小的主要农作物,可以合并设立专业委员会。 第九条品种审定委员会设立主任委员会,由品种审定委员会主任和副主任、各专业委员会主任、办公室主任组成。 第三章申请和受理 第十条申请品种审定的单位、个人(以下简称申请者),可以直接向国家农作物品种审定委员会或省级农作物品种审定委员会提出申请。 在中国境内没有经常居所或者营业场所的境外机构和个人在境内申请品种审定的,应当委托具有法人资格的境内种子企业代理。 第十一条申请者可以单独申请国家级审定或省级审定,也可以同时申请国家级审定和省级审定,还可以同时向几个省、自治区、直辖市申请审定。 第十二条申请审定的品种应当具备下列条件: (一)人工选育或发现并经过改良; (二)与现有品种(已审定通过或本级品种审定委员会已受理的其他品种)有明显区别; (三)形态特征和生物学特性一致; (四)遗传性状稳定; (五)具有符合《农业植物品种命名规定》的名称; (六)已完成同一生态类型区2个生产周期以上、多点的品种比较试验。其中,申请国家级品种审定的,稻、小麦、玉米品种比较试验每年不少于20个点,棉花、大豆品种比较试验每年不少于10个点,或具备省级品种审定试验结果报告;申请省级品种审定的,品种比较试验每年不少于5个点。

湖泊富营养化与氮磷等营养盐之间的关系

湖泊富营养化与氮磷等营养盐之间的关系 姓名:冯涛学号:5802112013 班级:环工121 摘要:本文主要通过对湖泊氮磷的时空特征和富营养化的关系进行分析。主要包括氮磷的时间动态和空间动态,并且对氮磷等营养盐的来源进行详细的分析,探讨富营养化水体中氮磷的去除机理。 关键字: 富营养化氮磷来源和去除时空特征 湖泊富营养化是一个缓慢的自然过程,但人类活动加速了这一过程。人类活动被认为是富营养化频发的诱发主因。湖泊富营养化过程复杂,影响湖泊富营养化的因素很多, LauandLane(2002)认为水体富营养化是非生物和生物相互作用的复杂过程。湖泊富营养化不仅与氮磷含量有关, 而且氮磷比也是一个重要的影响因子, 氮磷比可影响藻类等浮游植物的生长。有关研究发现不同的营养盐比例可以控制藻类的生长, 生物量以及种群结构。因此, 本文将对我国湖泊氮磷的时空特征和湖泊富营养化的关系进行综合分析。一般说来,当天然水体中总磷大于20毫克每立方米,无机氮大于300毫克每立方米时,就可认为水体处于富营养化状态。富营养化水体中的氮、磷促使水中的藻类急剧生长,大量藻类的生长消耗了水中的氧, 使鱼类、浮游生物因缺氧而死亡,他们的尸体腐烂造成了水质污染。因此去除水体中大量的氮磷是治理富营养化污水的根本。我们通过对氮磷的来源的分析来更好的控制源头,对氮磷的去除机理的探讨来缓解富营养化严重的现状。 一、氮磷等营养盐来源分析 1. 营养盐来源按进入途径可分为外源和内源。外源污染又可分为

两大类: 点源,来自流域的城镇生活污水和工业污染源排放;面源,来自流域的农田径流、畜禽养殖、水产养殖及其他面源。随着点源污染排放的不断达标, 面源污染日益成为水体富营养化的主要来源。内源污染是由于湖底沉积物中液态营养盐向上覆水中释放, 在动力作用下营养盐再悬浮造成的, 在这种因素影响下, 即使大幅度削减外源污染负荷, 在特定条件下( 高温少雨) , 仍可能引起藻类暴发, 所以内源污染成为湖体藻类暴发的关键因素。下面就两类主要的营养盐来源—— 面源和内源分别加以论述。 (1)面源污染 面源污染是继城镇生活污水、工业废水之后的第三大污染源, 而且治理难度比点源治理要复杂得多。我国农业大多数地区还是粗放型管理, 没有达到测土施肥、施药和科学管理的程度。特别是为了取得连续稳定的高产, 耕地的复种指数提高, 化肥施用量激增。另外, 集约化的畜禽养殖和水产养殖, 使大量的动物粪便与饵料残渣进入湖体, 加剧了湖泊的富营养化程度。不断的土地开垦使森林覆盖率下降、湿地面积减少, 水土流失严重。例如巢湖非点源入湖TN, TP 总量占全湖输入量超过68% 和74%。 在诸多面源污染中, 降雨径流污染成为最主要的营养盐来源。大量营养盐在暴雨的冲刷下, 从地表向湖区迁移, 导致径流中的污染物浓度远远超过非暴雨期。以滇池为例, 滇池流域的大清河, 暴雨期悬浮物浓度比平时均值高22 倍, NO-2-N 高达163倍; 宝象河暴雨期最大悬浮物浓度是非暴雨期的106倍。研究者们在这方面做了大量工作,

关于山东省主要农作物品种引种备案

关于山东省主要农作物品种引种备案 工作的补充说明 各有关单位: 根据《中华人民共和国种子法》和《主要农作物品种审定办法》相关规定,省农业厅下发了鲁农种字[2016]17号文,试行开展引种备案工作。一年来,总的看,工作有序推进,成效良好。但也存在试验不够规范、申报材料不完整、不及时,文件有些规定要求不细致等问题。因此,为充分体现“放、管、服”精神,方便引种者备案,明确各方责任,提高办事效率,现就有关事宜补充说明如下: 一、引种者 引种者为品种选育者、有引种作物生产经营资质的种子企业、拟引种区域有生产经营资质的种子企业。 二、品种适应性试验 试验周期不少于引种作物品种一个生长周期。试验设计、对照品种(见附件1)、调查记载项目等与我省统一组织的同作物同类型品种生产试验相同。抗性鉴定由具有抗性鉴定资质的单位进行,并出具鉴定报告,抗性鉴定种类与我省统一组织的品种试验一致(见附件2)。 三、引种备案程序 引种者需在规定的时间内(棉花、水稻3月,玉米、大

豆5月,小麦8月)向省种子管理总站提交引种品种适应性试验申请(包括引种试验申请表(见附件3),品种审定证书、审定公告、未撤销审定证明,引种者资质证明)和试验方案,经审核同意后,引种者自主安排品种适应性试验。试验完成后,按照鲁农种字[2016]17号文的要求,提交完整的引种备案材料,经审查符合要求的品种,省农业厅予以备案公告。 附件1:山东省主要农作物品种试验对照品种 附件2:山东省主要农作物品种抗性鉴定种类 附件3:山东省引种品种适应性试验申请表 山东省种子管理总站 2017年11月30日

山东省主要农作物品种试验对照品种 作物种类对照品种备注 小麦高产组:济麦22 优质组:济南17号旱地组:鲁麦21号 玉米 夏播组:郑单958 胶东春播组:金海5号棉花 中熟组:鲁棉研28号 早熟组:鲁棉研19号 水稻中晚熟组:临稻10号中早熟组:圣稻14 机插秧组:润农11 大豆夏大豆组:菏豆12号

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

氮磷钾对植物分别有什么作用

氮磷钾对植物分别有什么作用 氮肥:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。生产上常使用氮肥是植物快速生长。所以我们对于叶菜(吃叶子的菜)要多施氮肥。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见 磷肥:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。我们要使作物提前收获,一般多施用磷肥。 钾肥:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满 主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。 资料来源《植物生理学》 (1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。

(4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 1、氮素化肥氮是蛋白质构成的主要元素,蛋白质是细胞原生质组成中的基本物质。氮肥增施能促进蛋白质和叶绿素的形成,使叶色深绿,叶面积增大,促进碳的同化,有利于产量增加,品质改善。在生产上经常使用的氮素化肥有:①硫酸铵(硫铵):白色或淡褐色结晶体。含氮20%一21%,易溶于水,吸湿性小,便于贮存和使用。硫铵是一种酸性肥料,长期使用会增加土壤的酸性。最好做追肥使用,一般每667平方米施用量为15—20千克。②碳酸氢铵(碳铵):白色细小结晶,含氮17%,有强烈的刺激性臭味,易溶于水,易被作物吸收,易分解挥发。可作基肥或追肥使用,追肥时要埋施,及时覆土,以免氨气挥发烧伤秧苗。 ③尿素:白色圆粒状,含氮量为46%。尿素不如硫铵肥效发挥迅速,追肥时要比硫铵提前几天施用。尿素是固体氮肥中含氮量最高的一种,尿素为中性肥料,不含副成分,连年施用也不致破坏土壤结构。

主要农作物品种审定标准

主要农作物品种审定标准 1 范围 本标准规定了稻、小麦、玉米、棉花、大豆、油菜、马铃薯品种审定的术语与定义、内容与依据、审定指标和评判规则等。 本标准适用于稻、小麦、玉米、棉花、大豆、油菜、马铃薯品种审定。 2 术语与定义 下列术语与定义适用于本标准。 2.1 品种variety 品种是指经过人工选育或者发现并经过改良,形态特征和生物学特性一致,遗传性状相对稳定的植物群体。 2.2 对照品种control variety 对照品种是同一生态类型区同期生产上推广应用的已审定品种,具备良好的代表性。 2.3 特征特性character 品种的植物学特征和生物学特性,包括基本特征特性、生育期、主要农艺性状等。 2.4 丰产性yield ability 品种的产量表现,以品种在试验中比对照品种增产的百分率及差异显著性表示。 当区域试验对照品种产量低于所有品种产量平均值时,应逐点采用相应点的参试品种(含对照)平均值进行产量比较。 2.5 稳产性yield stability 品种产量的稳定性,即品种在地点间和年际间试验中相对于对照品种产量的变化程度。以品种在试验中比对照品种增产点次占汇总试验点总数的比例进行评价。 2.6 适应性adaptability 品种对环境的综合适应能力,以品种在试验中比对照品种增产试验点的比例进行评价。 2.7 抗逆性stress resistance

品种对生物和非生物逆境的抵御或忍耐能力,包括抗病性、抗虫性、抗旱性、抗寒性、抗倒性等。 2.8 品质quality 品种的营养品质、商品品质以及与加工品质有关的性状。 2.9 生育期maturity 品种从出苗到成熟的时间。 2.10 特异性distinctness 申请审定品种应当明显区别于已受理或审定通过的品种。 2.11 一致性uniformity 申请审定品种经过繁殖,除可以预见的变异外,其相关的特征或者特性一致。 2.12 稳定性stability 申请审定品种经过反复繁殖后或者在特定繁殖周期结束时,其相关的特征或者特性保持不变。 3 内容与依据 3.1 审定内容 品种的特征特性、生育期、丰产性、稳产性、适应性、抗逆性、品质、特异性、一致性、稳定性等。 3.2 审定依据 3.2.1 特征特性、生育期 以区域试验、生产试验调查记载结果和DUS测试结果为主要依据,并参考申请审定时提供的材料。 3.2.2 丰产性、稳产性、适应性 以区域试验、生产试验结果为主要依据。 3.2.3 抗逆性、品质

抗旱性鉴定方法

3)全生育期抗旱性鉴定 全生育期抗旱性鉴定采用旱棚鉴定法。 (1)旱棚鉴定 鉴定在洛阳农科院院内全自动干旱棚条件下进行。试验设两次重复,随机区组排列,小区长2m,行距0.23m,4行区,试验三次重复。 ①试验设计 三次重复,品种(系)抗旱性鉴定每个小区0.46m2,种质资源抗旱性鉴定的小区面积适当减小,播种密度与大田相同。种植对照品种。 ②胁迫处理(旱地) 麦收后至下一次小麦播种前,通过移动旱棚,控制试验地接纳自然降水量,使0-150cm土壤的储水量在150mm左右;如果自然降水不足,要进行灌溉补水。播种期表土墒情应保证出苗,表墒不足时,要适量灌水。播种后的试验地不再接纳自然降水。 ③对照(水地) 在旱棚外邻近的实验地设置对照试验,试验地的土壤养分含量、土壤质地和土层厚度等应与旱棚的基本一致。田间水分管理要保证小麦全生育期处于水分适宜状况,播种前表土墒情应保证出苗,表墒不足时要适量灌水,另外,分别在拔节期、抽穗期、灌浆期灌水,灌水量为60mm/次。在降水量较多的年份酌情适当减少灌溉次数和灌水量。 ④考察性状 单位面积的穗数、穗粒数、千粒重、小区籽粒产量。 ⑤抗旱指数 以小区籽粒产量计算抗旱指数的方法: 按式(7)计算抗旱指数。 DI= GY S.T2.GY S.W-1.GY CK.W.(GY CK.T2)-1 (7) 式中: DI --- 抗旱指数 GY S.T --- 待测材料旱地籽粒产量; GY S.W --- 待测材料水地籽粒产量; GY CK.W --- 对照品种水地籽粒产量;

GY CK.T --- 对照品种旱地籽粒产量。 以单位面积的穗数、成穗率、穗粒数及千粒重计算抗旱指数时,分别将各性状的实测值代入公式即可。 抗旱性鉴定评价标准:小麦的抗旱性分为五级:极强、强、中等、弱、极弱。其评价标准因鉴定时期而略有不同。 全生育期抗旱性评价标准 表3 小麦全生育期的抗旱性评价标准 抗旱性分级抗旱指数抗旱性 1 ≥1.30 极强(HR) 2 1.10-1.29 强(R) 3 0.90-1.09 中等(MR) 4 0.70-0.89 弱(S) 5 ≤0.69 极弱(HS)

氮磷营养高效型小麦品种鉴定

氮磷营养高效型小麦品种鉴定 袁园园1,2董贝1 (1山东省济南市农业科学研究院,济南250316;2山东农业大学农学院,泰安271018)摘要:为了快速筛选氮素和磷素营养高效型小麦品种,以山东省近年来育成的25个小麦品种(系)为材料,通过大田试验,对不同品种的籽粒氮素和磷素利用效率及产量性状进行统计分析。结果表明,在正常氮肥和磷肥水平下,以济麦22为对照,氮素利用效率、磷素利用效率和产量高出10%以上的品种(系)分别有13个、9个和11个;其中山农24、泰农18、山农32(SH5099)和山农29(LS6109)在这3个指标上均比对照高出10%,是营养高效型小麦品种,在生产上具有较高的推广价值。 关键词:小麦;营养高效;产量 小麦是我国主要的粮食作物,2015年种植面积达2.44亿公顷,产量达1.18亿吨。但是在实际生产中,小麦的氮肥和磷肥的利用效率很低,仅有10%左右[1];不能被植物吸收的氮素会污染地下水、增加氧化亚氮等温室气体排放,而过量的磷素也会随雨水冲刷造成水体富营养化[2]。因此,从改善小麦自身对矿质营养的利用效率出发,筛选和培育营养高效型的作物品种,是解决上述问题更经济环保的途径。 作物的营养效率包括吸收效率和利用效率2个方面[3]。而营养利用效率反映了作物内部矿质营养元素的循环再利用能力,通常用作物单位矿质营养含量所产生的生物学产量或经济产量或CO2固定量来评价,即营养元素浓度的倒数[4]。与作物外部营养吸收效率相比,内部的营养利用效率在培育营养高效型品种方面更有价值[8]。很多研究表明,在矿质营养效率方面,小麦存在着显著的基因型差异。张锡州等[5]发现,同一供氮水平下供试小麦在氮素积累量、氮素利用效率等方面均存在基因型差异;杜宝见等[6]发现,扬麦16和鉴76为正常供氮和高氮条件下的氮高效型品种,皖麦68、F60501-4、鉴62和安农1026为高氮条件下的氮高效型品种。在磷素利用效率方面,柏栋阴等[7]筛选出徐麦856、徐麦270、徐麦3-54、小偃54等4个磷高效品种。但是,同时鉴定小麦氮素和磷素利用效率品种差异的研究却很少。 近年来,各育种单位积极作为,育成了一批高产、抗倒、优质小麦品种和优良品系。特别是小麦主推品种济麦22,全国累计推广面积已达2亿多亩。但是,这些品种(系)的氮素和磷素利用效率如何,却鲜有报道。本研究选用山东省近年来育成的25个小麦品种(系),以济麦22为对照品种,采用大田随机区组试验,在正常氮营养水平下,对氮素和磷素利用效率及产量等农艺性状进行了综合鉴定和评价,拟筛选出氮磷高效型小麦品种,以指导生产。 基金项目:济南市农业科技创新项目(201313,201404);济南市科技计划项目(201401103) 1材料与方法 1.1试验材料以山东省近年来育成的25个小麦品种或品系为材料,其中以济麦22为对照(表1)。

氮磷钾的功能

N、P、K在植物生长中的功能 在各种营养元素之中,氮、磷、钾三种是植物需要量和收获时带走量较多的营养元素,而它们通过残茬和根的形式归还给土壤的数量却不多。因此往往需要以施用肥料的方式补充这些养分。 氮 氮是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是叶绿素的组成成分,叶绿素a和叶绿素?都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长炔,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,从右图可知,我国大部分耕地的土壤全氮含量都在0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于 0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 磷

相关文档
最新文档