运算放大器噪声关系1f噪声均方根(RMS)噪声与等效噪声带宽

运算放大器噪声关系1f噪声均方根(RMS)噪声与等效噪声带宽
运算放大器噪声关系1f噪声均方根(RMS)噪声与等效噪声带宽

MT-048TUTORIAL

Op Amp Noise Relationships: 1/f Noise, RMS Noise,

and Equivalent Noise Bandwidth

"1/f" NOISE

The general characteristic of op amp current or voltage noise is shown in Figure 1 below.

LOG f

NOISE nV / √Hz

or

μV / √Hz e n , i n k F C

Figure 1: Frequency Characteristic of Op Amp Noise

At high frequencies the noise is white (i.e., its spectral density does not vary with frequency). This is true over most of an op amp's frequency range, but at low frequencies the noise spectral density rises at 3 dB/octave, as shown in Figure 1 above. The power spectral density in this region is inversely proportional to frequency, and therefore the voltage noise spectral density is inversely proportional to the square root of the frequency. For this reason, this noise is commonly referred to as 1/f noise . Note however, that some textbooks still use the older term flicker noise .

The frequency at which this noise starts to rise is known as the 1/f corner frequency (F C ) and is a figure of merit—the lower it is, the better. The 1/f corner frequencies are not necessarily the same for the voltage noise and the current noise of a particular amplifier, and a current feedback op amp may have three 1/f corners: for its voltage noise, its inverting input current noise, and its non-inverting input current noise.

The general equation which describes the voltage or current noise spectral density in the 1/f region is

f

1F k ,i ,e C

n n =, Eq. 1

where k is the level of the "white" current or voltage noise level, and F C is the 1/f corner frequency.

The best low frequency low noise amplifiers have corner frequencies in the range 1 Hz to 10 Hz, while JFET devices and more general purpose op amps have values in the range to 100 Hz. Very fast amplifiers, however, may make compromises in processing to achieve high speed which result in quite poor 1/f corners of several hundred Hz or even 1 kHz to 2 kHz. This is generally unimportant in the wideband applications for which they were intended, but may affect their use at audio frequencies, particularly for equalized circuits.

RMS NOISE CONSIDERATIONS

As was discussed above, noise spectral density is a function of frequency. In order to obtain the rms noise, the noise spectral density curve must be integrated over the bandwidth of interest.

In the 1/f region, the rms noise in the bandwidth F L to F C is given by

??

????==∫

L C C nw F F C

nw C L rms ,n F F ln F v df f 1

F v )F ,F (v C

L

Eq. 2

where v nw is the voltage noise spectral density in the "white" region, F L is the lowest frequency of interest in the 1/f region, and F C is the 1/f corner frequency.

The next region of interest is the "white" noise area which extends from F C to F H . The rms noise in this bandwidth is given by

C H nw H C rms ,n F F v )F ,F (v ?= Eq. 3

Eq. 2 and 3 can be combined to yield the total rms noise from F L to F H :

)F F (F F ln F v )F ,F (v C H L C C nw H L rms ,n ?+??

?

???= Eq. 4

In many cases, the low frequency p-p noise is specified in a 0.1 Hz to 10 Hz bandwidth, measured with a 0.1 to 10 Hz bandpass filter between op amp and measuring device. The measurement is often presented as a scope photo with a time scale of 1s/div, as is shown in Figure 2 below for the OP213.

20nV/div.(RTI)

1s/div.

Figure 2: 0.1Hz to 10 Hz Input Voltage Noise for the OP213

510152025300.1

1

10

100

FREQUENCY (Hz)

INPUT VOLTAGE NOISE, nV / √Hz 0.1Hz to 10Hz VOLTAGE NOISE

For F L = 0.1Hz, F H = 10Hz, v nw = 10nV/√Hz, F C = 0.7Hz:

V n,rms = 33nV

V n,pp = 6.6 ×33nV = 218nV

200nV

TIME -1sec/DIV.

Figure 3: Input Voltage Noise for the OP177

It is possible to relate the 1/f noise measured in the 0.1 to 10 Hz bandwidth to the voltage noise spectral density. Figure 4 above shows the OP177 input voltage noise spectral density on the left-hand side of the diagram, and the 0.1 to 10 Hz peak-to-peak noise scope photo on the right-hand

V n,rms (F L , F H ) = v nw

F C ln

F C F L

+ (F H –F C )

side. Equation 2 can be used to calculate the total rms noise in the bandwidth 0.1 to 10 Hz by letting F L = 0.1 Hz, F H = 10 Hz, F C = 0.7 Hz, v nw = 10 nV/√Hz. The value works out to be about 33 nV rms, or 218 nV peak-to-peak (obtained by multiplying the rms value by 6.6—see the following discussion). This compares well to the value of 200 nV as measured from the scope photo.

It should be noted that at higher frequencies, the term in the equation containing the natural logarithm becomes insignificant, and the expression for the rms noise becomes:

L H nw L H rms ,n F F v )F ,F (V ?≈. Eq. 5

And, if F H >> F L ,

H nw H rms ,n F v )F (V ≈. Eq. 6

However, some op amps (such as the OP07 and OP27) have voltage noise characteristics that increase slightly at high frequencies. The voltage noise versus frequency curve for op amps should therefore be examined carefully for flatness when calculating high frequency noise using this approximation.

At very low frequencies when operating exclusively in the 1/f region, F C >> (F H – F L ), and the expression for the rms noise reduces to:

??

?

???≈L H C nw L H rms ,n F F ln F v )F ,F (V .

Eq. 7

Note that there is no way of reducing this 1/f noise by filtering if operation extends to dc. Making F H = 0.1 Hz and F L = 0.001 Hz still yields an rms 1/f noise of about 18 nV rms, or 119 nV peak-to-peak. The point is that averaging results of a large number of measurements over a long period of time has practically no effect on the rms value of the 1/f noise. A method of reducing it further is to use a chopper stabilized op amp, to remove the low frequency noise.

In practice, it is virtually impossible to measure noise within specific frequency limits with no contribution from outside those limits, since practical filters have finite rolloff characteristics. Fortunately, measurement error introduced by a single pole lowpass filter is readily computed. The noise in the spectrum above the single pole filter cutoff frequency, f c , extends the corner frequency to 1.57f c . Similarly, a two pole filter has an apparent corner frequency of approximately 1.2f c . The error correction factor is usually negligible for filters having more than two poles. The net bandwidth after the correction is referred to as the filter equivalent noise bandwidth (see Figure 4 below).

EQUIVALENT NOISE BANDWIDTH = 1.57 ×f C

Figure 4: Equivalent Noise Bandwidth

It is often desirable to convert rms noise measurements into peak-to-peak. In order to do this, one must have some understanding of the statistical nature of noise. For Gaussian noise and a given value of rms noise, statistics tell us that the chance of a particular peak-to-peak value being exceeded decreases sharply as that value increases—but this probability never becomes zero. Thus, for a given rms noise, it is possible to predict the percentage of time that a given peak-to-peak value will be exceeded, but it is not possible to give a peak-to-peak value which will never be exceeded as shown in Figure 5 below.

Nominal Peak-to-Peak

2 ×rms

3 ×rms

4 ×rms

5 ×rms

6 ×rms

6.6 ×rms**

7 ×rms

8 ×rms % of the Time Noise will Exceed Nominal Peak-to-Peak Value

32%

13%

4.6%

1.2%

0.27%

0.10%

0.046%

0.006%

**Most often used conversion factor is 6.6 Figure 5: RMS to Peak-to-Peak Ratios

Peak-to-peak noise specifications, therefore, must always be written with a time limit. A suitable one is 6.6 times the rms value, which is exceeded only 0.1% of the time.

REFERENCES

1.Hank Zumbahlen, Basic Linear Design, Analog Devices, 2006, ISBN: 0-915550-28-1. Also available as

Linear Circuit Design Handbook, Elsevier-Newnes, 2008, ISBN-10: 0750687037, ISBN-13: 978-

0750687034. Chapter 1.

2.Walter G. Jung, Op Amp Applications, Analog Devices, 2002, ISBN 0-916550-26-5, Also available as Op

Amp Applications Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7844-5. Chapter 1.

Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.

噪声计算公式

三、时间平均声级或等效连续声级Leq A 声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不连续的噪声,很难确定A 声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75d B ,但当没有汽车通过时可能只有50dB ,这时就很难说交通噪声是75dB 还是50dB 。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A 计权,故亦称等效连续A 声级L Aeq 。 等效连续A 声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A 声级以一个A 声级来表示该段时间内的噪声大小,并称这个A 声级为此时间段的等效连续A 声级,即: ()??????? ??????????=?dt P t P T L T A eq 2001lg 10 =??? ? ???T L dt T A 01.0101lg 10 (2-4) 式中:p A (t )是瞬时A 计权声压;p 0是参考声压(2×10-5 Pa );L A 是变化A 声级的瞬时值,单位dB ;T 是某段时间的总量。 实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则: ??? ??=∑=n i L eq Ai N L 11.010 1lg 10 (2-5) 式中:N 是测量的声级总个数,L A i 是采样到的第i 个A 声级。 对于连续的稳定噪声,等效连续声级就等于测得的A 声级。 四、昼夜等效声级 通常噪声在晚上比白天更显得吵,尤其对睡眠的干扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB 。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h 的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是在晚上22点后到早上6点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来:

噪声等效声压级计算公式

噪声等效声压级计算公式 三、时间平均声级或等效连续声级Leq A声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不 连续的噪声,很难确定A声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75dB,但当没有汽车通 过时可能只有50dB,这时就很难说交通噪声是75dB还是50dB。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对 人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A计权,故亦称等效连续A声级LAeq。等效连续A声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A声级以一个A声级来表示该段时间内的噪声大小,并称这个A声级为此时间段的等效连续A声级,即: dt P t P T L T A eq 2 0 0 1 lg 10 = T L dt T A 0 1 . 0 10 1 lg 10 (2-4) 式中:p A (t)是瞬时A计权声压;p 0 是参考声压(2×10 -5 Pa);L A 是变化A声级的瞬时值,单位dB;T是某段时间的总量。实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则:0.1 1 1 10 lg 10 Ai n L eq i L N (2-5)式中:N是测量的声

级总个数,L Ai 是采样到的第i个A声级。对于连续的稳 定噪声,等效连续声级就等于测得的A声级。四、昼夜等 效声级通常噪声在晚上比白天更显得吵,尤其对睡眠的干 扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是 在晚上22点后到早上6点前这段时间里面的等效值,可以 将在这段时间内的Leq通过下面的公式计算出来: n i L d eqi N L 1 1 . 0 10 10 1 lg 10 n i L n eqi N L 1 1 . 0 10 10 1 lg 10 10 / 10 10 / 10 10 8 10 16 24 1 lg 10 n d L L dn L (2-6)式中:Ld——白天的等效声级;Ln——夜间的等效声级。Leqi——一小段时间的等效值;N——等效值的个数白天与夜间的时间定义可依地区的不同而异。16为白天小时数(6:00~22:00),8 为夜间小时数(22:00~第二天6:00)。五、声暴露级LAE 对于单次或离散噪声事件,如锅炉超压放气,飞机的一次起飞或降落过程,一辆汽车驶过等等,可用“声暴露级”L AE 来

锁相环相位噪声与环路带宽的关系分析

锁相环相位噪声与环路带宽的关系分析 2009-09-09 15:13:17 作者:李仲秋曾全胜来源:现代电子技术 关键字:电荷泵锁相环相位噪声功率谱密度环路带宽 0 引言 电荷泵锁相环是闭环系统,系统各个部分都是一个噪声源,各部分噪声的大小不仅与电路本身有关,而且还与环路带宽等因素有关。因此,设计时必须分析其各频率范围内噪声源影响力的大小,权衡确定环路带宽与各噪声源的相互制约关系。以下利用锁相环的等效噪声模型,重点分析电荷泵锁相环系统的相位噪声特性,得出系统噪声特性的分布特点以及与环路带宽的关系。 1 电荷泵锁相环的基本原理 图1为电荷泵锁相环的示意图,主要由鉴相鉴频器(PFD)、电荷泵、滤波器、压控振荡器(VCO)、分频器等5部分组成,鉴相鉴频器主要用来检测输入信号x(t)与反馈信号xf(t)的频率、相位误差,并产生UP,DOWN信号控制电荷泵的开关。电荷泵由两个对称的电流源和开关组成。电荷泵的开关会对滤波器上的电容充放电,电流经过滤波器滤波后滤掉高频信号,在滤波器上产生能调整压控振荡器频率和相位的电压v(t)。当v(t)上的电压被调整为一个合适的电压值时,xi(t)的频率和相位与x(t)的一致,系统最终处于平衡状态,从而实现对输入信号的跟踪。

2 电荷泵锁相环的噪声模型与相位噪声特性分析 电荷泵锁相环的环路等效噪声模型可以用锁相环各子模块附加噪声源表示。图2给出了带有无源滤波器锁相环噪声源模的型。设fm为距离调制频率的偏移量,该图中主分频器、参考时钟分频器的均方噪声功率谱密度分别被表示为ψd(fm)和ψrcf(fm);鉴相鉴频器的相位噪声被表示为ψpd(fm);晶体振荡器的相位噪声被表示为ψx(fm);相位噪声源的单位是电荷泵的噪声被等价为电流源inp(fm)(单位: ); 滤波器的噪声被等价为电压源Vnf(fm)(单位: 的自由振荡噪声被表示为 环路输出信号的均方噪声功率谱密度被表示为它是闭环情况下所有噪声源影响的总和。输出相位噪声功率谱密度可以表示为: 式中:ψo lp2(fm)为具有低通传输函数的噪声源功率谱密度;ψohp2(fm)为具有高通传输函数的噪声源功率谱密度。 在图2所示的噪声源等效模型中,ψd(fm),ψref(fm),ψpd(fm),ψx(fm)和inp(fm)具有低通传输特性,其传输函数可以表示为: 式中:G(s)和H(s)分别为环路的开环增益函数和闭环增益函数。归一化的电荷泵相位噪声inp(fm)/Kpd和晶体振荡器噪声ψx(fm)/R对ψo lp(fm)的影响也可以用式(2)来表示。当用j2πfm代替s时,ψo2(fm)中具有低通传输函数噪声源功率谱密度的噪声分量ψo lp2 (fm)可以表示为:

噪声检测标准要点样本

A 声级: 用A计权网络测得的声压级, 用L A表示, 单位dB( A) 。等效连续A 声级: 简称为等效声级, 指在规定测量时间T 内A 声级的能量平均值, 用L Aeq, T表示( 简写为Leq) , 单位dB( A) 。除特别指明外, 本标准中噪声值皆为等效声级。 噪声敏感建筑物: 指医院、学校、机关、科研单位、住宅等需要保持安静的建筑物。 最大声级: 在规定测量时间内对测得的A声级最大值, 用L A max表示, 单位dB( A) 背景噪声: 被测量噪声源以外的声源发出的环境噪声的总和。 稳态噪声: 在测量时间内, 被测声源的声级起伏不大于3dB( A) 的噪声。 非稳态噪声: 在测量时间内, 被测声源的声级起伏大于3dB( A) 的噪声。 每次测量前、后必须在测量现场进行声学校准, 其前、后校准的测量仪器示值偏差不得大于0.5 dB( A) , 否则测量结果无效。 测量应在无雨雪、无雷电天气, 风速为 5 m/s 以下时进行。 测量结果修正:

背景噪声值比噪声测量值低10dB( A) 以上时, 噪声测量值不做修正。 噪声测量值与背景噪声值相差在3 dB( A) ~10dB( A) 之间时, 噪声测量值与背景噪声值的差值修约后, 按表进行修正。 噪声测量值与背景噪声值相差小于3dB( A) 时, 应采取措施降低背景噪声后, 视情况执行; 仍无法满足前两款要求的, 应按环境 噪声监测技术规范的有关规定执行。 建筑噪声和铁路噪声需修正, 工作场所噪声和公共场所噪声不进 行修正。 根据《中华人民共和国环境噪声污染防治法》, ”昼间”是指6:00 至22:00 之间的时段; ”夜间”是指22:00 至次日6:00 之间的时段。 建筑施工场界环境噪声排放标准GB 12523-

运算放大器电路固有噪声的分析与测量

运算放大器电路固有噪声的分析与测量 第三部分:电阻噪声与计算示例 作者:TI 高级应用工程师 Art Kay 在第二部分中,我们给出了将产品说明书上噪声频谱密度曲线转换为运算放大器噪声源模型的方法。在本部分中,我们将了解如何用该模型计算简单运算放大器电路的总输出噪声。总噪声参考输入 (RTI) 包含运算放大器电压源的噪声、运算放大器电流源的噪声以及电阻噪声等。上述噪声源相加,再乘以运算放大器的噪声增益,即可得出输出噪声。图 3.1 显示了不同噪声源及各噪声源相加再乘以噪声增益后的情况。 图 3.1:噪声源相结合

噪声增益是指运算放大器电路对总噪声参考输入 (RTI) 的增益。在某些情况下,这与信号增益并不相同。图 3.2 给出的实例显示了信号增益(1)与噪声增益(2)不同的情况。Vn 信号源是指不同噪声源的噪声影响。请注意,通常在工程设计中,我们会在非反向输入端将所有噪声源结合为单个的噪声源。我们的最终目标是计算出运算放大器电路的噪声参考输出 (RTO)。 图 3.2:噪声增益与信号增益 方程式 3.1:简单运算放大器电路的噪声增益 在上一篇文章中,我们了解到如何计算电压噪声输入,不过我们如何将电流噪声源转换为电压噪声源呢?一种办法就是对每个电流源进行独立的节点分析,并用叠加法将结果求和。这时我们要注意,要用和的平方根 (RSS) 对每个电流源的结果进行求和。通过方程式 3.2 和 3.3,我们可将简单运算放大器电路的电流噪声转换为等效电压噪声源。图 3.3 给出了有关图示。附录 3.1 给出了该电路的整个演算过程。 方程式 3.2与3.3:将简单运算放大器的电流噪声转换为电压噪声 (RTI)

噪声检测标准要点

A 声级:用A计权网络测得的声压级,用L A表示,单位dB(A)。 等效连续A 声级:简称为等效声级,指在规定测量时间T 内A 声级的能量平均表示(简写为Leq),单位dB(A)。除特别指明外,本标准中噪声值,用L Aeq,T 值皆为等效声级。 噪声敏感建筑物:指医院、学校、机关、科研单位、住宅等需要保持安静的建筑物。 表示,单位dB(A)最大声级:在规定测量时间内对测得的A声级最大值,用L A max 背景噪声: 被测量噪声源以外的声源发出的环境噪声的总和。 稳态噪声: 在测量时间内,被测声源的声级起伏不大于3dB(A)的噪声。 非稳态噪声: 在测量时间内,被测声源的声级起伏大于3dB(A)的噪声。 每次测量前、后必须在测量现场进行声学校准,其前、后校准的测量仪器示值偏差不得大于 dB(A),否则测量结果无效。 测量应在无雨雪、无雷电天气,风速为 5 m/s 以下时进行。 测量结果修正: 背景噪声值比噪声测量值低10dB(A)以上时,噪声测量值不做修正。 噪声测量值与背景噪声值相差在3 dB(A)~10dB(A)之间时,噪声测量值与背景噪声值的差值修约后,按表进行修正。 噪声测量值与背景噪声值相差小于3dB(A)时,应采取措施降低背景噪声后,

视情况执行;仍无法满足前两款要求的,应按环境噪声监测技术规范的有关规定执行。 建筑噪声和铁路噪声需修正,工作场所噪声和公共场所噪声不进行修正。 根据《中华人民共和国环境噪声污染防治法》,“昼间”是指6:00 至22:00 之间的时段;“夜间”是指22:00 至次日6:00 之间的时段。 建筑施工场界环境噪声排放标准GB 12523-2011 建筑施工场界: 由有关主管部门批准的建筑施工场地边界或建筑施工过程中实际使用的施工场地边界。 建筑施工场界环境噪声限值:昼间70,夜间55。夜间噪声最大声级超过限值的幅度不得高于15 dB(A)。 当场界距噪声敏感建筑物较近,其室外不满足测量条件时,可在噪声敏感建筑物室内测量,并将相应的限值减10 dB(A)作为评价依据。 测量仪器时间计权特性设为快(F)档。 测点布设:根据施工场地周围噪声敏感建筑物位置和声源位置的布局,测点应设在对噪声敏感建筑物影响较大、距离较近的位置。一般情况测点设在建筑施工场界外 1 m,高度 m 以上的位置。

运算放大器电路中固有噪声的分析与测量一

运算放大器电路中固有噪声的分析与测量(一) 第一部分:引言与统计数据评论 我们可将噪声定义为电子系统中任何不需要的信号。噪声会导致音频信号质量下降以及精确测量方面的错误。板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。 噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。外部噪声来自外部噪声源,典型例子包括数字开关、60Hz 噪声以及电源开关等。固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。本系列文章将介绍如何通过计算来预测电路的固有噪声大小,如何采用 SPICE模拟技术,以及噪声测量技术等。 热噪声 热噪声由导体中电子的不规则运动而产生。由于运动会随温度的升高而加剧,因此热噪声的幅度会随温度的上升而提高。我们可将热噪声视为组件(如电阻器)电压的不规则变化。图 1.1 显示了标准示波器测得的一定时域中热噪声波形,我们从图中还可看到,如果从统计学的角度来分析随机信号的话,那么它可表现为高斯分布曲线。我们给出分布曲线的侧面图,从中可以看出它与时域信号之间的关系。 图 1.1: 在时间域中显示白噪声以及统计学分析结果

热噪声信号所包含的功率与温度及带宽直接成正比。请注意,我们可简单应用功率方程式来表达电压与电阻之间的关系(见方程式1.1),根据该表达式,我们可以估算出电路均方根 (RMS) 噪声的大小。此外,它还说明了在低噪声电路中尽可能采用低电阻元件的重要性。 方程式 1.1:热电压 方程式 1.1 中有一点值得重视的是,根据该表达式我们还可计算出 RMS 噪声电压。在大多数情况下,工程师希望了解“最差条件下噪声会有多严重?”换言之,他们非常关心峰峰值电压的情况。如果我们要将 RMS 热噪声电压转化为峰峰值噪声的话,那么必须记住的一点是:噪声会表现为高斯分布曲线。这里有一些单凭经验的方法即根据统计学上的关系,我们可将 RMS 热噪声电压转化为峰峰值噪声。不过,在介绍有关方法前,我想先谈谈一些数学方面的基本原理。本文的重点在于介绍统计学方面的基本理论,随后几篇文章将讨论实际模拟电路的测量与分析事宜。 概率密度函数: 构成正态分布函数的数学方程式称作“概率密度函数”(见方程式 1.2)。根据一段时间内测得的噪声电压绘制出相应的柱状图,从该柱状图,我们可以大致看出函数所表达的形状。图 1.2 显示了测得的噪声柱状图,并给出了相应的概率密度函数。

监测接收机等效噪声温度分析

监测接收机等效噪声温度分析 【摘要】文章从RDSS系统运行的实际情况出发,对地面监测接收机的热噪声进行了论述,引入了等效噪声温度的概念,并对级联网络的等效噪声温度给予了求解,在此基础上最后对RDSS系统地面监测接收机的等效噪声温度进行了分析和研究。 【关键词】接收机;热噪声;等效噪声温度 1.引言 由于RDSS系统采用卫星传输体制,用户入站信号在到达地面中心站前须经卫星转发,远距离传输后到达接收机的信号是很微弱的,如何使接收机的噪声尽可能低,从而使信号与噪声的功率比尽可能满足后端信号处理单元的工作要求,是系统设计的一个至关重要问题。而从研究通信系统的角度看,接收机线性或准线性放大器、变频器以及线路的电阻损耗引起的噪声,均可以作为等效热噪声来处理,或者有的本身就是热噪声,所以文章从热噪声出发,引入等效噪声温度的概念,继而对级联网络的等效噪声温度进行求解,在此基础上对RDSS系统地面监测接收机的等效噪声温度给予分析。 2.热噪声基本概念 热噪声是由于传导媒质中带电粒子(通常是电子)随机运动而产生的。其功率谱密度试验结果及热力学和量子力学的分析表明,阻值为R的电阻(或物体)其两端所呈现的热噪声电压,服从高斯分布,其均值为零,均方值为2R(πkT)2/3h,单位为(V2);而热噪声的单边功率谱密度N(f)为: N(f)=4Rhf/(ehf/kT-1)(V2/Hz)(1) 式中,T为物体的绝对温度,(K); k为波耳兹曼常数,1.38054×10-23 (J/K); h为布朗克适量,6.6254×10-34(J·S); f为频率(Hz)。 如图1所示,当此电阻与线性网络匹配连接即R=Rin时,热噪声源输出的是最大噪声功率。匹配负载所得到的最大噪声单边功率谱密度,用n0表示,即: n0=hf/(ehf/kT-1)(W/Hz)(2) 当f<

运算放大器噪声关系1f噪声均方根(RMS)噪声与等效噪声带宽

MT-048TUTORIAL Op Amp Noise Relationships: 1/f Noise, RMS Noise, and Equivalent Noise Bandwidth "1/f" NOISE The general characteristic of op amp current or voltage noise is shown in Figure 1 below. LOG f NOISE nV / √Hz or μV / √Hz e n , i n k F C Figure 1: Frequency Characteristic of Op Amp Noise At high frequencies the noise is white (i.e., its spectral density does not vary with frequency). This is true over most of an op amp's frequency range, but at low frequencies the noise spectral density rises at 3 dB/octave, as shown in Figure 1 above. The power spectral density in this region is inversely proportional to frequency, and therefore the voltage noise spectral density is inversely proportional to the square root of the frequency. For this reason, this noise is commonly referred to as 1/f noise . Note however, that some textbooks still use the older term flicker noise . The frequency at which this noise starts to rise is known as the 1/f corner frequency (F C ) and is a figure of merit—the lower it is, the better. The 1/f corner frequencies are not necessarily the same for the voltage noise and the current noise of a particular amplifier, and a current feedback op amp may have three 1/f corners: for its voltage noise, its inverting input current noise, and its non-inverting input current noise. The general equation which describes the voltage or current noise spectral density in the 1/f region is f 1F k ,i ,e C n n =, Eq. 1 where k is the level of the "white" current or voltage noise level, and F C is the 1/f corner frequency.

热噪声 噪声系数 等效噪声温度 带宽和功率谱密度

热噪声 加性白高斯噪声(AWGN :Additive White Gaussian Noise )是最基本的噪声与干扰模型,通信中遇到的多数噪声和干扰都符合这个模型,其中最典型的是热噪声(Thermal Noise)。 一 电阻的热噪声 将一个电阻从正中间画一条线分成上下两部分,那么线上的自由电子数和线下的自由电子数的数目是随机的,上下数目差也是随机的。这个数目差意味着一个电动势,如果有闭合回路的话(如图4.8.2),就会形成一个随机电流,这就是热噪声。叫热的原因是因为在绝对0度时,电子不运动,这样就不会有随机的电动势。很显然,电阻的温度越高,随机性也就越强。 每个电子都在随机运动,上下数目差是这些电子随机运动的后果。电子的总个数足以满足中心极限定律的条件,由此可知热噪声具有高斯的特征。 电子的运动速度极高。相对于通信中的时间单位如ms 、μs 乃至ns 而言,在极短的一个时间间隔后,上下的电子数目已经毫不相关了,就是说热噪声的自相关函数对于我们的时间刻度来说是一个冲激函数,因此热噪声是一个白噪声。 综合这两点就是说:热噪声是白高斯噪声。 特别注意:白与高斯是两个单独的特征。高斯是指一维分布,白由二维分布决定。 设()X t 是随机过程,下面的陈述A 涉及一维分布,陈述B 涉及二维分布。 A. 对X(t)进行了大量测试后发现,80%高于4.5,60%高于3.5; B .对X(t)同时观察相隔10秒的两个值()X t 和()10X t ?,大量观察发现,在90%的情况下,()X t 与比10秒前相比,相差不会超过1±V ;在80%的情况下,相 差不会超过±0.5V 。 物理学家告诉我们,热噪声的单边功率功率谱密度为0N KT =,其中231.3810K ?=×是波尔兹曼常数,T 是绝对温度。热噪声在带宽B 内的噪声功率KTB (本讲中所谈论的噪声功率均指在匹配负载上的可获功率)。 二 噪声系数 1. 放大器的噪声系数 如果放大器的源是纯电阻,那么它在带宽B 内的噪声功率是KTB ,经过增益为pa K 的放大器后,输出的噪声功率不一定是pa K KTB ,有可能更大,为() pa K KTB F ,其中1F ≥。这是因为放大器内部也会产生热噪声。这个系数F 叫放大器的噪声系数(Noise Figure )。我们可以把放大器自身产生的噪声折合到它的输入端,即把实际放大器等效为一个没有噪声的放大器,但其输入的噪声功率是KTFB ,其中源电阻产生的热噪声是KTB ,放大器贡献的噪声是()1KTB F ?。(见Fig. 1) 2. 无源网络的噪声系数 假设一个衰减量为L 的无源电阻网络的输入端是一个纯电阻,那么从无源网络的输出端看过去还是一个纯电阻,因而输出端噪声功率是KTB 。这等价于无源网络自己没有产生噪声,但其输入端的噪声功率是KTLB 。也就是说这个无源网络等价于一个增益为1/L ,噪声系数为L 的放大器。 3. 级联系统的噪声系数

运算放大器电路固有噪声的分析与测量1

Analysis And Measurement Of Intrinsic Noise In Op Amp Circuits Part I: Introduction And Review Of Statistics by Art Kay, Senior Applications Engineer, Texas Instruments Incorporated Noise can be defined as any unwanted signal in an electronic system. Noise is responsible for reducing the quality of audio signals or introducing errors into precision measurements. Board and system level electrical design engineers are interested in determining the worst case noise they can expect in their design and design methods for reducing noise and measurement techniques to accurately verify their design. Intrinsic and extrinsic noise are the two fundamental types of noise that affect electrical circuits. Extrinsic noise is generated by external sources. Digital switching, 60 Hz noise and power supply switching are common examples of extrinsic noise. Intrinsic noise is generated by the circuit element itself. Broadband noise, thermal noise and flicker noise are the most common examples of intrinsic noise. This article series will describe how to predict the level of intrinsic noise in a circuit with calculations, and using SPICE simulations. Noise measurement techniques will be discussed also. Thermal Noise Thermal noise is generated by the random motion of electrons in a conductor. Because this motion increases with temperature so does the magnitude of thermal noise. Thermal noise can be viewed as a random variation in the voltage present across a component (eg a resistor). Fig. 1.1 shows what thermal noise looks like in the time domain (standard oscilloscope measurement). It also shows that if you look at this random signal statistically, it can be represented as a Gaussian distribution. The distribution is drawn sideways to help show its relationship with the time domain signal. Fig. 1.1: White noise Shown In Time Domain And Statistically

平均A声级的计算

附录 B 平均A声级的计算 (补充件) B1 平均A声级Lp的计算公式: ………(B1) 式中:L p—测量表面平均A声级,dB(A); (基准值为20 μPa) N—测点总数; L pi—第i点测得的A声级,dB(A); (基准值为20 μPa) K Li—第i点的背景噪声修正值,dB(A); K2—环境修正值,dB(A); K3—环境温度和气压修正值,dB(A)。 表B1 背景噪声修正值 dB(A) 表B2 环境修正值 B2 环境温度和气压修正值K3计算公式 …………………………………(B2) 式中:K3—环境温度和气压修正值,dB(A); t—测试环境的温度,℃; p—测试环境的气压,kPa。 注:当K3<0.5 dB(A)时不用修正。

A声级 A-weighted sound level 声级计(见噪声测量仪器)具有A计权特性时测得的计权声压级,单位为分 贝,记作dB。 人耳对声音强弱的感觉,不仅同声压有关,而且同频率有关。例如,人耳听声压级 为67分贝、频率为100赫的声音,同听60分贝、1000赫的声音主观感觉是一样响。因此,在噪声的主观评价中,有必要确定声音的客观量度同人的主观感觉之间的关 系。在这种情况下,人们建立了响度和响度级的理论,并用实验的方法测出感觉一样 响的声音的声压级和频率的关系,绘成一组曲线(称为等响曲线),曲线通过1000赫 的声压级的“分贝”数,称为这条曲线响度级的“方”数。 在20世纪30年代,人们为了用仪器直接测出反映人对噪声的响度感觉,便从等响 曲线中选取了40方、70方、100方这三条曲线,按这三条曲线的反曲线设计了由电阻、 电容等电子器件组成的计权网络,设置在声级计上,使声级计分别具有A、B、C计权特 性。用声级计的A、B、C计权网络分别测出的声级即为A声级、B声级、C声级。人们总结具有A、B、C计权特性的声级计近40年的实际使用经验,发现A声级能较好地反映人对噪声的主观感觉,因而在噪声测量中,A声级被用作噪声评价的主要指标。B声级 已基本不用,C声级有时用作代替可听声范围内的总声压级。这种声级计测量响度级的 功能已失去意义了。 A声级:A声级的概念会使普通人感到迷惑。声级是将各个频率的声音计权相加(不是简单的算术相加)得到的声音大小,A声级是各个频率的声音通过A计权网络后再相加得到的大小,A声级反映了人耳对低频和高频不敏感的听觉特性例如,如果100Hz的声压级为80dB,在计算A声级时,将按计权减去50.5dB,即按29.5dB来计算;而1KHz的声压级为80dB,计权值为0dB,即仍按80dB计算。A声级的目的在于,A声级越大,则表明声音听起来越响。A声级分贝通常计为dBA。许多与噪声有关的国家规范都是按A声级作为指标的 A计权声级是模拟人耳对55dB以下低强度噪声的频率特性,B计权声级是模拟55dB到85dB 的中等强度噪声的频率特性,C计权声级是模拟高强度噪声的频率特性。 声级计 预加校准的,包括拾音话筒、放大器、衰减器、适当计权网络和规定动态特性的的指示仪表的一种测量声级的仪器。有A、B、C等计权方式,A计权测量声级范围为0至30分贝之间,B计权测量声级范围为30至印分贝之间,C计权测量声级范围为印至130分贝之间。等效连续A噪声级又称等能量A计权声级。它是一个在相同时间T内与起伏噪声能量相等的连续稳态的A声级。

关于噪声等效声级的计算

关于噪声等效声级的计算-续 例子:巡检工8小时工作制,每天6小时在巡检,2小时在休息室休息。休息室噪声很低。满足以前的标准。 使用标准: GBZ2:11.2 ‘每周工作5d,每天工作8h,稳态噪声限值为85dB(A),非稳态噪声等效声级的限值为85dB(A);每周工作5d,每天工作不等于8h,需计算8h等效声级,限值为85 dB(A);每周工作日不是5d,需计算40h等效声级,限值为85 dB(A)’ GBZ/T189.8 3.5 此 主题相关图片如下111.jpg:

问题:我的理解,这个工人每天工作8小时,接触噪声不是稳态,按上面就得计算‘非稳态噪声等效声级’就用3.5.1的公式计算,把一天的工作时间分成几段来计算,这里就涉及一个问题,休息室的噪声怎么算,如果不算接触噪声的话,那么式子里这段时间的接触值为0,算是接触噪声的话,就测休息室的噪声强度,代到式子里。 前一个帖子我问这种情况工人在休息室里算不算工作时间,大家说算,那么这个例子工人每天工作8小时定了,计算也就用3.5.1 没问题了,那到底休息室里算不算接触噪声呢? 有人说他每天工作不是8小时,应该按3.5.2 规格化到8小时。 我不知道如果我们不测休息室的噪声是按照3.5.1把数值算为0呢还是按照3.5.2 算做实际工作时间6小时?我也不知道他们俩算出来是不是相等的。 还是晕其实我说这么多我都不知道自己要明白啥,就是晕 反正我知道每天工作是8小时的就得按3.5.1来算 每天不是8小时的就得按3.5.2算 老牛同意说这是每天工作8小时,那为什么还用3.5.2算归到8小时等效声级? 感觉终于说明白了 问题的关键就在于GBZ2.2里‘每天工作’怎么理解。因为每天工作是不是8小时影响着我们用哪个公式计算! 在这个例子里,每天工作是代表每天工作的时候必须接触噪声? 如果大家认为在休息室里也算工作时间,那这个例子就是8小时,那算就应该用3.5.1 如果大家认为在休息室里不算工作时间,那这个例子就不是8小时,那算就应该用3.5.2来算8小时等效声级。 关键是你为什么说他算为什么说他不算! 反正你不能说他算而去用3.5.2吧? 新标准里不是说<8小时按的等效成8小时 超过8小时的等效成40小时吗? 一个是按8小时计算;一个是进行个人计量测定

运算放大器的噪声

运算放大器的噪声 运算放大器的噪声 问:有关运算放大器的噪声我应该知道些什么? 答:首先,必须注意到运算放大器及其电路中元器件本身产生的噪声与外界干扰或无用信号并且在放大器的某一端产生的电压或电流噪声或其相关电路产生的噪声之间的区别。干扰可以表现为尖峰、阶跃、正弦波或随机噪声而且干扰源到处都存在:机械、 靠近电源线、射频发送器与接收器、计算机及同一设备的内部电路(例如,数字电路或开关电源)。认识干扰,防止干扰在你的电路附近出现,知道它是如何进来的并且如何 消除它或者找到对付干扰的方法是一个很大的题目。 如果所有的干扰都被消除,那么还存在与运算放大器及其阻性电路有关的随机噪声。它构成运算放大器的控制分辨能力的终极限制。我们下面的讨论就从这个题目开始。 问:好,那就请你讲一下有关运算放大器的随机噪声。它是怎么产生的? 答:在运算放大器的输出端出现的噪声用电压噪声来度量。但是电压噪声源和电流噪声源都能产生噪声。运算放大器所有内部噪声源通常都折合到输入端,即看作与理想的无噪声放大器的两个输入端相串联或并联不相关或独立的随机噪声发生器。我们认为运 算放大器噪声有三个基本来源:·一个噪声电压发生器(类似失调电压,通常表现为同相输入端串联)。·两个噪声电流发生器(类似偏置电流,通过两个差分输入端排出电流)。·电阻噪声发生器(如果运算放大器电路中存在任何电阻,它们也会产生噪声。可把这种噪声看作来自电流源或电压源,不论哪种形式在给定电路中都很常见)。 运算放大器的电压噪声可低至3nV/Hz。电压噪声是通常比较强调的一项技术指标, 但是在阻抗很高的情况下电流噪声常常是系统噪声性能的限制因素。这种情况类似于失调,失调电压常常要对输出失调负责,但是偏置电流却有真正的责任。双极型运算放大 器的电压噪声比传统的FET运算放大器低,虽然有这个优点,但实际上电流噪声仍然比较大。现在的FET运算放大器在保持低电流噪声的同时,又可达到双极型运算放大器的电压噪声水平。 问:电压噪声达到3nV/Hz的单位是怎么来的?它的含义如何?答:让我们讨论一下随机噪声。在实际应用中(即在设计者关心的带宽内)许多噪声源都属于白噪声和高斯噪声。

功率谱 等效噪声带宽

功率谱 等效噪声带宽 噪声系数 噪声温度 1. 噪声电压平均值: 01 lim ()T n n T v v t dt T →∞=? 2. 噪声电压方均值(也是1Ω电阻上的平均功率P ): 2 2 001lim ()()T n n T P v v t dt S f df T ∞ →∞===?? ()S f 为功率谱密度,单位为W/Hz 。 3. 噪声电压有效值: =4. 电阻R 热噪声的功率谱密度为: ()4S f KTR = 其中K 为波尔茨曼常数1.38×10-23J/K ,T(K)=T ℃+273. 5. 品质因数为Q ,谐振电阻为R p ,等效噪声带宽为Δf n 的谐振电路,噪声电压的方均 值: 22001 lim ()()4n T f n n p n T v v t dt S f df KTR f T ?→∞===??? 显然谐振回路实际电阻r 上的噪声电压方均值为: 22 2244p n nr n n R v v KTr f KT f Q Q =?=?= 6. 四端口网络,电压传输系数为()A f ,输入噪声功率谱密度为()i S f ,则输出噪声功率谱密度为: 2()()()o i S f A f S f =? 7. 等效噪声带宽n f ? f 由噪声功率相等有 00()()o o n S f df S f f ∞ =??

由于输入噪声功率谱密度均匀()i S f ,故有 2020()()n A f df f A f ∞?= ? 相应的输出噪声电压方均值: 22000()()()()no o o n i n v S f df S f f A f S f f ∞ ==?=?? 可以证明,对于带宽为0.72f ?的谐振回路,其等效噪声带宽为 0.7(2)2n f f π?= ? 8. 噪声系数 噪声系数为输入信噪比(信号功率与噪声功率之比)si ni P P 与输出信噪比so no P P 的比值: si ni si no si no no n so no ni so ni p si ni p P P P P P P P F P P P P P G P P G =====输入端信噪比输出端信噪比 其中p so si G P P =为功率增益。 (d )10lg si ni n so no P P F B P P = 附:关于dB 定义 dBu 就是以1uV 为基准的电压分贝(dB )表示。计算公式是: G="20log"(Vo/Vi ) (Vi 即为1uV) 1mV 表示60dBu 。 dBm 是以1mW 为基准的功率分贝(dB )表示。表示公式是: G="10log"(P/Pm ) (Pm 即为1mW ) 0.01mW 即为-20dBm 。 分贝的定义分以下三种情况: 1.2.1 对电压和与电压呈线性关系的参数的表达 电压和与电压呈线性关系的参数,这里权且简称为电压型参数,以A表示,以x 表示其 单位。以1x 为基准值,则A的电平单位为称分贝x ,代号为dB x ,计算公式为 ()(dB )20lg 1A x A x x = A可以是电压(电动势、端电压)、电场强度和天线系数,x可以是V、mV、μV,V/m 、mV/m 、μV/m 和m -1 等,对应的电平单位分别为dBV、dBmV、dBμV,dBV/m 、dBmV/m 、dBμV/m(常记为dBμ)和dBm -1等。 同类电压型电平单位(天线系数除外)词头之间的转换公式为 dBx=dBmx+60=dBμx+120

噪声声压级等相互概念

第5章噪声监测 (1)声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。 在噪声监测中,声功率是指声源总声功率。单位为W。 (2)声强(I) 声强是指单位时间内,声波通过垂直于声波传播方向单位面积的声能量。单位为W/米2(W/m2)。 (3)声压(P) 声压是空气受声波干扰而产生的压力增值。单位为Pa。声波在空气中传播时形成压缩和稀疏交替变化,所以压力增值是正负交替的。但通常讲的声压是取均方根值,叫有效声压,故实际上总是正值,对于球面波和平面波,声压与声强的关系: I = P2/ρc 式中:ρ-空气密度; c-声速。 5.1.5.2 分贝、声功率级、声强级和声压级 (1)分贝 人们日常生活中听到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。 N=10lg(A1/A0) 分贝符号为"dB",它是无量纲的。 式中:A0是基准量(或参考量),A1是被量度量。 被量度量和基准量之比取对数,这对数值称为被量度量的"级"。 (2)声功率级 L w =10lg(W/W0) 式中:L w——声功率级(dB); W——声功率(W); W0——基准声功率,为10-12 W。 (3)声强级

L I = 10lg(I/I0) 式中:L I——声强级(dB); I——声强(W/m2); I0——基准声强,为10-12 W/m2。 (4)声压级 L P = 20lg(P/P0) 式中:L P——声压级(dB); P——声压(Pa); P0——基准声压,为2×10-5Pa,该值是对1000Hz声音人耳刚能听到的最低声压。 5.1.5.3 噪声的叠加和相减 (1)噪声的叠加 两个以上独立声源作用于某一点,产生噪声的叠加。 声能量是可以代数相加的,设两个声源的声功率分别为W1和W2,那么总声功率W总=W1+W2。而两个声源在某点的声强为I1和I2时,叠加后的总声强:I总= I1+I2。但声压不能直接相加。 总声压级:L P=10lg[10(L p1/10)+10(L p2/10)] 式中L P——总声压级,dB; L P1——声源1的声压级,dB; L P2——声源2的声压级,dB。 如L P1=L P2,即两个声源的声压级相等,则总声压级: L P =L P1+10lg2≈L P1+3(dB) 也就是说,作用于某一点的两个声源声压级相等,其合成的总声压级比一个声源的声压级增加3dB。当声压级不相等时,按上式计算较麻烦。可以利用图11-1或表11-3查值来计算。方法是:设L P1>L P2,以L P1-L P2值按表或图查得ΔL P,则总声压级L P总=L P1+ΔL P。

相关文档
最新文档