开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用二

低轴阻发电机参考资料

1 引言

开关磁阻电机驱动系统SDR具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力;这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用;

SR电机是一种机电能量转换装置;根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程;本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理;

2 电动运行原理

转矩产生原理控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令正转或反转,导通相应的定子相绕组的主开关元件;对应相绕组中有电流流过,产

生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置;当转子转到被吸引的转子磁极与定子激磁相相重合平衡位置时,电磁转矩消失;此时

控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断

当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产

生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行;

图1 三相sr电动机剖面图

从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序;若通电顺序改变,则电机的转向也发生改变;为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求;电路分析图2中电源vcc是一直流电源,3个电感分别表示srm的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管;当第一相绕组的开关管导通时,电源给第一相励磁,电流的回路即励磁阶段是由电源正极→上开关管→绕组→下开关管→电源负极,如图2a所示;开关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,此时电流的续流回路即去磁阶段是绕组→上续流二极管→电源→下续流二极管→绕组,如图2b所示;

图2 srm电路工作示意

能量转换关系

当忽略铁耗和各种附加损耗时,srm工作时的能量转换过程为:通电相绕组的电感处在电感上升区域内转子转向“极对极”位置,当开关管导通时,输入的净电能一部分转化为磁场储能,一部分转化为机械能输出;当开关管关断时,绕组电流通过二极管和电源续流,存储的磁场储能一部分转化为电能回馈电源,另一部分则转化为机械能输出;

sr电动机的运行特性12 sr电动机运行速度低于ωfc第一临界速度的范围内,为了保证ψmax和i不超过允许值,采用改变电压、导通角和触发角三者中任一个或任两个,或三者同时配合控制;当sr电动机在高于ωfc范围运行时,在外加电压、导通角和触发角都一定的条件下,随着转速的增加,磁链和电流将下降,转矩则随着转速的平方下降如图3中细实线;为了得到恒功率特性,必须采用可控条件;但是外施电压最大值是由电源功率变换器决定的,而导通角又不能无限增加一般不能超过半个转子极距;因此,在电压和导

通角都达最大时,能得到的最大功率的最高转速ωsc被称之为“第二临界转速”;当转速再增加时,由于可控条件都已经达到极限,转矩将随转速的二次方下降,如图3所示;

图3 sr电动机的运行特

开关磁阻电机一般运行在恒转矩区和恒功率区;在这两个区域中,电机的实际运行特性

可控;通过控制条件,可以实现在粗实线以下的任意实际运行特性;而在串励特性区,电机的可控条件都已达极限,电机的运行特性不再可控,电机呈现自然串励运行特性,故电机

一般不会运行在此区域; 运行时存在着第一、第二两个临界运行点是开关磁阻电机的一个重要特点;采用不同的可控条件匹配可以得到两个临界点的不同配置,从而得到各种各样所需的机械特性,这就是开关磁阻电动机具有优良调速性能的原因之一;从设计的观点看,两个临界点的合理配置是保证sr电动机设计合理,满足给定技术指标要求的关键; 从控制角度看,在上述两个区域采用不同的控制方法,在第一临界转速以下一般采用电流斩波控制方式ccc方式,在第一、第二临界转速之间采用角度位置控制方式apc方式;

3 发电运行原理

开关磁阻发电机switched reluctance generator简介开关磁阻发电机srg的研究始于20世纪80年代末;初期它是被用作飞机上的起动/发电机的,所以,又称为sr起动/发电机456;由于开关磁阻电机在航天飞机中的广阔应用前景,引起了一些国家政府部门和航天企业的高度重视;1990年美国空军usaf、wright实验室、wpafb联合与通用电气飞机发动机公司general electric aircraft engine签约,共同资助ge公司开展开关磁阻组合起动/发电机的研究;lucas航空公司lucas aerospace也开展了sr起动/发电机的研究,认为sr起动/发电机可以在飞机发动机熄火的紧急情况下,由风力发动机

windmilling engine驱动为众多的机载设备提供更加可靠的应急电源; 我国在sr发电机的领域也开展了相关的研究活动;其中西北工业大学、西安交通大学在国家“九五”预研基金和国家教委博士点基金的资助下进行sr起动/发电机的相关研究,研制了4kw的sr 起动/发电机3;南京航天航空大学也开展了sr发电机的研究工作;与其它发电机相比,开关磁阻发电机具有独特的结构特点: 1 结构简单其定、转子均为简单的叠片式双凸极结构,定子上绕有集中绕组,转子上无绕组及永磁体; 2 容错能力强,无论从物理方面还是从电磁方面来讲,电机定子各相绕组间都是相互独立的,因而在一相甚至两相故障的情况下,

仍然能有一定功率的电能输出; 3 可以作成很高转速的发电装置,从而达到很高的能流密度;转矩产生原理

如图4所示,与电动运行时不同,绕组在转子转离“极对极”位置即电感下降区时通电,产生的磁阻性电磁转矩趋使电机回到“极对极”位置,但原动机驱动转子克服电磁转矩继续逆时针旋转;此时电磁转矩与转子运动方向相反,阻碍转子运动,是阻转转矩性质;

图4 三相sr发电机剖

面图

当转子转到下一相的“极对极”位置时,控制器根据新的位置信息向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则下一相绕组会在转子转离“极对极”位置通电;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的阻转转矩,在原动机的拖动下发电;电路分析

根据法拉第电磁感应定律“运动导体在磁场中会产生电势”,而srg转子仅由叠片构成,没有任何带磁性的磁体;这就需要在srg发电前有电源提供给srg励磁,使其内部产生磁场;所以,srg的特点是首先要通过定子绕组对电机励磁;这一点和其它发电机有着很明显的区别;srg的工作原理如下:

图5中电源vcc是一直流电源,既可以是电池,也可以是直流电机;三个电感分别表示srg 的三相绕组,igbt1~igbt6为与绕组相连的可控开关元件,6个二极管为对应相的续流二极管;当第一相绕组的开关管导通时即励磁阶段,电源给第一相励磁,电流的回路是由电源正极→上开关管→绕组→下开关管→电源负极,如图5a所示;开关管关断时,由于绕组是一个电感,根据电工理论,电感的电流不允许突变,电流的续流回路即发电阶段是绕组→上续流二极管→电源→下续流二极管→绕组,如图5b所示;

能量转换关系当忽略铁耗和各种附加损耗时,srg工作时的能量转换过程为:通电相绕组的电感处在电感下降区域内转子转离“极对极”位置,当开关管导通时,输入的净电能转化为磁场储能,同时原动机拖动转子克服srg产生的与旋转方向相反的转矩对srg做功使机械能也转化为磁场储能;当开关管关断时,srg绕组电流续流,磁场储能转化为电能回馈电源,并且机械能也转化为电能给电源充电;

图5 srg电路工作示意

sr发电机的运行特性 sr发电机的运行特性与sr电动机的运行特性类似,只不过将曲线沿速度轴翻转到转矩为负的第四象限,在此不再赘述;

4 结束语

虽然srd系统的发展历程仅仅二十余年,但它取得了令人瞩目的成绩;其产品已在电动车用驱动系统、家用电器、工业应用、伺服系统、高速驱动、航空航天等众多领域得到成功应用,其功率范围也覆盖了从10w到5mw的宽广范围;它已成为现代调速系统中一支不可忽视的竞争力量;作为一种结构简单、鲁棒性能好、价格便宜的新型调速系统,开关磁

阻电机及其调速系统引起各国电气传动界的广泛关注和浓厚兴趣,在世界范围内,正在形成理论研究和实际应用齐头并进的发展趋势;

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用二 低轴阻发电机参考资料 1 引言 开关磁阻电机驱动系统SDR具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力;这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用; SR电机是一种机电能量转换装置;根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程;本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理; 2 电动运行原理 转矩产生原理控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令正转或反转,导通相应的定子相绕组的主开关元件;对应相绕组中有电流流过,产 生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置;当转子转到被吸引的转子磁极与定子激磁相相重合平衡位置时,电磁转矩消失;此时 控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断 当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产 生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行;

(完整版)开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR 电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。

开关磁阻电动机驱动系统

开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。开关磁阻电机具有再生的能力,系统效率高。对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点:(1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。(2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。(3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。(4)功率变换器不会出现直通故障,可靠性高。(5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。(6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。(7)在宽广的转速和功率范围内都具有高效率(8)能四象限运行,具有较强的再生制动能力。(9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。与当前广泛应用的变频调速感应电动机相比,开关磁阻电机在成本、效率、调速性能、单位体积功率、可靠性、散热性等都具有明显的优势或竞争力。如果说第一代开关磁阻电机(1983年研制)在小功率范围的效率比高效变频调速感应电动机低,第二代开关磁阻电机(1988年研制)的效率已全面超过了高效变频调速感应电动机。更难得的是,开关磁阻电机在宽广的速度和功率范围内都能保持较高的效率,这是变频调速感应电动机难以比拟的。感应电动机要取得与直流电机相近的调速特性需采用复杂的矢量控制系统,而开关磁阻电机通过调整开通角、关断角、电压和电流,可以得到不同负载要求的机械特性,控制简单、灵活,能容易地实现软启动和四象限运行,而且由于这是一种纯逻辑的控制方式,很容易智能化,通过修改软件调整电机工作特性满足不同应用要求。由于开关磁阻电机固有的转矩波动,可能导致较大的噪声和振动,事实上这种情况的发生往往与电机设计和控制的不合理相关,通过优化电机设计和控制策略,转矩波动和噪声完全可以得到有效的抑制,正确认识到这一点对开关磁阻电机的开发和应用是很重要的。SRD Ltd.公司开发的伺服应用开关磁阻电机,转矩波动仅为0.05%。近年研究的最优励磁控制策略、两次换流控制策略、电机噪声根源、定子振动模态、定子固有频率计算等成果对降低电机噪声都有积极的促进作用。随着设计和制造水平的提高,噪声必将进一步降低。三、开关磁阻电机的应用近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。 3.1 电动车应用开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面:(1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。(2)开关磁阻电机很容易通过采用适当的控制策略和系统设计满足电动车四象限运行的要求,并且还能在高速运行区域保持强有力的制动能力。(3)开关磁阻电机有很好的散热特性,从而能以小的体积取得较大的输出功率,减小电机体积和重量。(4)通过调整开

SRD开关磁阻电机驱动系统控制原理

SRD开关磁阻电机驱动系统控制原理 SRD (Switched Reluctance Drive) 开关磁阻电机驱动系统是一种采 用交绕、直流偏置磁通和数字控制技术的新型电机驱动系统。相比于传统 的电机驱动系统,SRD系统具有简单的结构、高效的转换特性和灵活的控 制模式。本文将通过以下几个方面介绍SRD开关磁阻电机驱动系统的控制 原理。 1.SRD系统的基本结构 2.SRD系统的工作原理 SRD系统在运行时,通过控制定子线圈的电流方向和大小来控制电机 的转矩和转速。当定子线圈通电时,在铁心片之间产生磁场,吸引转子中 的铁心片。通过改变定子线圈的电流方向和大小,可以控制吸引和排斥转 子铁心片的力,从而控制电机的转矩。 3.SRD系统的控制模式 SRD系统采用数字控制技术,可以灵活地选择不同的控制模式。常见 的控制模式包括速度闭环控制、转矩闭环控制和位置闭环控制。速度闭环 控制通过测量电机的转速,并根据设定值调整电流的大小和方向来控制转速。转矩闭环控制通过测量电机的转矩,并根据设定值调整电流的大小和 方向来控制转矩。位置闭环控制通过测量电机的位置,并根据设定值调整 电流的大小和方向来控制位置。 4.SRD系统的控制策略 SRD系统采用先进的控制策略,如模糊控制、PID控制和自适应控制。在速度闭环控制模式下,可采用PID控制策略,根据转速误差和误差的变

化率来调整电流的大小和方向。在转矩闭环控制模式下,可采用自适应控 制策略,根据转矩误差和电流的变化率来调整电流的大小和方向。在位置 闭环控制模式下,可采用模糊控制策略,根据位置误差和电流的变化率来 调整电流的大小和方向。 5.SRD系统的优势 SRD系统相比传统的电机驱动系统具有以下几个优势:首先,SRD系 统结构简单,易于制造和维护。其次,SRD系统具有高效的转换特性,能 够实现高转矩密度和高效能的特点。此外,SRD系统的数字控制技术使其 具有灵活的控制模式和优秀的控制性能。 总结: SRD开关磁阻电机驱动系统通过控制定子线圈的电流方向和大小来控 制电机的转矩和转速,并采用数字控制技术实现灵活的控制模式。该系统 的控制原理包括基本结构、工作原理、控制模式、控制策略和优势等方面。SRD系统的优势在于结构简单、转换特性高效、控制灵活等特点。

开关磁阻电动机的性能及典型应用

开关磁阻电动机的性能及典型应用 开关磁阻电动机/龙门刨床/洗衣机/电动车 1引言 开关磁阻电动机驱动系统(SRD)由开关磁阻电机(SRM或SR电机)、功率变换器、控制器和检测器四个部分组成,是20世纪80年代初随着电力电子、计算机和控制技术的迅猛发展而发展起来的一种新型调速驱动系统。开关磁阻电动机为双凸极磁阻电机,利用磁阻最小原理产生磁阻转矩,因其结构极其简单坚固,调速范围宽,调速性能优异,而且在整个调速范围内都具有较高的效率,系统可靠性高而成为交流电机调速系统、直流电机调速系统和无刷直流电机调速系统的强有力的竞争者。开关磁阻电机已广泛或开始应用于电动车驱动、家用电器、通用工业、航空工业和伺服系统等各个领域,覆盖功率范围10W~5MW 的各种高低速驱动系统,呈现巨大的市场潜力[1]。 2结构与性能特点 2.1 电动机结构简单、成本低、适用于高速 开关磁阻电动机的结构比通常认为最简单的鼠笼式感应电动机还要简单,定子线圈为集中绕组,嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境;转子仅有硅钢片叠成,因此不会有鼠笼感应电动机制造过程中鼠笼铸造不良和使用中的断条等问题,转子机械强度极高,可工作于极高转速,转速可达每分钟10万转[2]。 2.2 功率电路简单、可靠 电动机转矩方向与绕组电流方向无关,即只需单方向绕组电流,相绕组串在主电路两功率管之间,不会发生桥臂直通短路故障,绕组相间耦合弱,缺相故障运行能力强,系统的容错能力强,可靠性高,可以适用于宇航等特殊场合。 2.3 高起动转矩,低起动电流 很多公司的产品可达到如下性能:起动电流为15%额定电流时,获得起动转矩为100%的额定转矩;起动电流为额定值的30%时,起动转矩可达其额定值的150%。对比其它调速系统的起动特性,如直流电动机为100%的起动电流,获得100%转矩;鼠笼感应电动机为300%的起动电流,获得100%的转矩。可见开关磁阻电动机具有软启动性能,起动过程中电流冲击小,电动机和控制器发热较连续额定运行时还小,因此特别适用于频繁起停及正反向转换运行的场合,如龙门刨床、铣床、冶金行业可逆轧机、飞锯、飞剪等。 2.4 调速范围宽,效率高 在额定转速和额定负载时运行效率高达92%以上,在所有的调速范围内,保持整体效率高达80%以上。 2.5 可控参数多,调速性能好 控制开关磁阻电动机的主要运行参数和常用方法至少有四种:相开通角、相关断角、相电流幅值和相绕组电压。可控参数多,意味着控制灵活方便,可以根据对电动机的运行要求和电动机的情况,采用不同控制方法和参数值,使之运行于最佳状态,还可使之实现各种不同的功能和特定的特性曲线,如使电动机具有完全相同的四象限运行(正转、反转、电动和制动)能力,并具有高起动转矩和串激电动机的负载能力曲线。 2.6 可通过机和电的统一协调设计满足各种特殊使用要求[3] 3典型应用 开关磁阻电动机优越的结构和性能使其应用领域非常广泛,下面对其三个典型应用进行分析。 3.1 龙门刨床 龙门刨床是机械加工行业的一种主要工作母机,刨床的工作方式是工作台带动工件做往复运动,当其正程运动时,固定于机架的刨刀刨削工件,反程运动时,刨刀抬起,工作台空行返回。该刨床主传动系统的

小功率高速开关磁阻电机驱动系统的设计与应用

小功率高速开关磁阻电机驱动系统的设计与应用 小功率高速开关磁阻电机驱动系统的设计与应用 1. 引言 1.1 主题介绍 在现代工业应用中,电机作为关键的能源转换装置,其驱动系统 的设计和应用一直是一个重要的研究领域。本文将深入探讨小功率高 速开关磁阻电机驱动系统的设计与应用,以介绍其原理、特点及在工 业领域中的重要性。 1.2 文章目的 本文的目的是通过深入剖析小功率高速开关磁阻电机驱动系统的 设计与应用,帮助读者深入理解其原理及其在不同领域中的广泛应用。 2. 小功率高速开关磁阻电机的概述 2.1 定义 小功率高速开关磁阻电机是一种采用电磁铁吸力控制转子运动的 电动机。它具有结构简单、高效能、高稳定性等特点,因此在很多应 用场景中取得了成功。 2.2 工作原理 小功率高速开关磁阻电机驱动系统的工作原理主要包括电磁铁的 磁性吸引力、开关磁阻控制、电流调节等。其关键是通过电流变化来

控制电磁铁的磁性吸引力,从而使转子运动。 2.3 特点和优势 小功率高速开关磁阻电机驱动系统具有领先的转矩密度、高响应 速度、宽速度范围、低惯性等特点。这些特点使其在精密仪器、自动 化设备等领域得到广泛应用。 3. 小功率高速开关磁阻电机驱动系统的设计与应用 3.1 系统设计 小功率高速开关磁阻电机驱动系统的设计主要包括电源设计、控 制器设计、传感器设计、保护设计等方面。其中,控制器设计是一个 核心环节,需要考虑实时性、稳定性、可靠性等因素。 3.2 电机参数选择 在小功率高速开关磁阻电机驱动系统的应用中,合理选择电机参 数至关重要。其中包括电机功率、电机转速、电机电流等参数的选取。这些参数将直接影响驱动系统的性能和使用效果。 3.3 驱动系统的应用 小功率高速开关磁阻电机驱动系统在工业领域中有着广泛的应用。它可以应用于机械加工设备、医疗设备、机器人等领域。它还可以用 于一些特殊环境,例如高温环境、高湿度环境等。 4. 小功率高速开关磁阻电机驱动系统的优势与挑战 4.1 优势 小功率高速开关磁阻电机驱动系统相对于传统的电机驱动系统具

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 1.工作原理: 开关磁阻电机是一种以磁阻为主要工作原理的电机。它利用电流在磁阻元件中产生的磁阻变化,从而实现驱动电机转动。该电机主要由定子和转子两部分组成。定子中心构造有磁阻元件(如磁阻电阻块或磁阻隐藏产生器),制造磁场,而转子是磁场作用下的动力元件。电机通过改变定子和转子之间的磁阻关系来实现转矩调速。 工作过程如下: (1)当电机通电时,定子中的磁场会激励转子周围的物质,并产生磁阻。 (2)通过改变通电线圈的电流方向,可以改变磁场中的磁阻分布和大小。 (3)转子在磁场影响下,会发生转动,转动角度和方向与磁阻的变化有关。 (4)控制系统通过改变电流的大小和方向,以调节磁场中的磁阻,从而控制电机的转速和转矩。 2.控制系统: (1)电源供应:控制系统需要提供稳定的电源供应,以保证电机正常工作。可以采用直流电源或交流电源供电,根据实际要求进行选择。 (2)电流控制:电流控制是开关磁阻电机的关键。通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。可以采用PID控制算法等来实现电流的闭环控制。

(3)角度控制:角度控制是实现电机转动角度的控制手段。可以通过位置传感器等装置来检测电机转子的位置,然后通过控制系统来调整电流方向和大小,从而实现电机转子在指定角度上停留或转动。 (4)速度控制:速度控制是根据实际需求来调节电机转速的手段。可以通过改变电流的大小和方向,或者改变供电频率等方式来实现速度的调节。 总结: 开关磁阻电机是一种利用磁阻变化实现驱动的电机,通过改变电流的大小和方向,可以实现对电机的转速和转矩的调节。其控制系统主要包括电源供应、电流控制、角度控制和速度控制等部分。利用这些控制手段,可以实现对开关磁阻电机的精确控制,满足各种实际应用需求。

开关磁阻电机原理和应用

开关磁阻电机原理和应用 开关磁阻电机是一种利用磁控件(磁阻部件)来产生力矩的电机。它 的工作原理基于由磁阻元件(通常是磁阻片或磁阻杆)组成的电磁系统, 通过改变磁通路的构型来调节电机力矩的大小。下面将详细介绍开关磁阻 电机的工作原理和应用。 一、工作原理: 开关磁阻电机由电磁系统、电子控制系统和机械传动系统组成。电磁 系统由一个或多个磁阻片或磁阻杆组成,通过改变这些磁阻元件之间的磁 通路来调节电机的力矩。电子控制系统通过控制电流的波形和大小,来控 制磁阻元件的磁化状态和磁力大小。机械传动系统由转子和输出轴组成, 通过电磁系统的力矩作用,在输出轴上产生机械输出。 1.电流波形调节:电子控制系统控制电流的方向和大小,通过改变电 流的波形,从而控制磁阻元件的磁化状态和磁力大小。这通常可以通过非 线性电感器件(如磁阻片)的磁化状态的变化来实现。 2.磁化状态调节:通过控制电流波形,可以改变电磁系统中磁阻元件 的磁化状态。这进一步改变了电磁系统中的磁通径和磁力分布,影响力矩 的大小。 3.磁力调节:改变磁阻元件之间磁通路的构型,可以调节电磁系统中 的磁力大小。例如,通过调节磁阻元件之间的距离或角度,可以改变磁通 径和磁阻元件之间的相互作用。这进一步影响电机的力矩输出。 4.力矩输出:通过电磁系统的磁力作用,将机械转矩传递到输出轴上,实现机械输出。

二、应用: 1.交通运输领域:开关磁阻电机可以用作电动汽车、混合动力汽车和电动自行车的驱动电机。与传统的驱动电机相比,它们具有更高的效率和更好的节能性能。 2.工业领域:开关磁阻电机可以应用于纺织机械、包装机械、食品机械等。它们具有快速响应和高精度调速的特点,能够满足工业生产对电机运行精度和可靠性的要求。 3.家用电器领域:开关磁阻电机可以应用于洗衣机、冰箱、空调等家用电器。它们具有低噪音、长寿命和节能等优点。 4.医疗设备领域:开关磁阻电机可以应用于电动轮椅、医用手术器械等医疗设备。它们具有精确控制和可靠性高的特点,能够满足医疗设备对电机运行的要求。 5.机器人领域:开关磁阻电机可以应用于机器人的关节驱动系统。它们具有高速响应和高精度控制的特点,能够实现机器人运动的精确控制和灵活性。 总而言之,开关磁阻电机是一种利用磁控件来产生力矩的电机。它的工作原理是通过改变磁通路的构型来调节电机力矩的大小,具有电磁系统简单、工作效率高、起动和制动性能好等优点。在交通运输、工业、家用电器、医疗设备和机器人等领域都有广泛的应用。

开关磁阻电机SRM的原理及建模

开关磁阻电机SRM的原理及建模 1、SRM工作原理 SRM的转矩是磁阻性质,其运行原理遵循“磁阻最小原理”——磁通总是要沿磁阻最小的路径闭合。当定子某相绕组通电时,所产生的磁场由于磁力线扭曲而产生切向磁拉力,试图使相近的转子极旋转到其轴线对齐的位置,即磁阻最小位置。 SRM为双凸极结构,其定、转子均由普通硅钢片叠加而成。转子上既无绕组也无永磁体,定子齿极上绕有几种绕组,径向相对的两个绕组可以串联或并联在一起,构成“一相”。转动方向总是逆着磁场轴线的移动方向,改变SRM的定子绕组的通电顺序,即可改变电机的转动方向;而改变通电相电流的方向,并不影响转子转动的方向。 2、SRM控制方式 (1)斩波控制: 在SRM起动、低、中速运行时,电压不变,旋转电动势引起的压降小,电感上升期的时间长,而的值相当大,为避免电流脉冲峰值超过电流的允许值,采用滞环控制来限制电流。 如本文中的电流滞环控制模块的作用是实现电流斩波,两个输入分别为实际电流和参考电流,输出即作为SRM的输入信号,模块结构如图1-1所示。当A 相主开关开始导通,相电流I从零开始上升,当I超过参考电流且偏差大于滞环比较器的环宽时,即实际电流I大于电流上限值Imax,开始斩波;主开关器件关断,I下降,当I低于参考电流且偏差大于滞环比较器的环宽时,即实际电流I小于电流下限值控制Imin,主开关器件重新导通,I便开始上升,如此主开关器件反复通断,直到转子转到关断角的位置时,主开关器件关断,I一直下降到零。当转子转过一个周期后,这相电流斩波过程又开始重复。 一般斩波是在相电感变化区域内进行的,由于电机的平均电磁转矩与相电流I的平方成正比,因此通过设定相电流允许限值Imax和Imin,可使SRM工作在恒转矩区。在一个周期内,由于相绕组电感不同,电流的变化率也不同,因此,斩波频率疏密不均。在低电感区,斩波频率较高;高电感区,斩波频率下降。其电流波形如图1-2所示。 (2)角度控制: 直接调控主开关器件的导通角θon和关断角θoff,可以影响电机的励磁过程。通常导通角只能在电感不变和电感增大的区域,关断角只能在电感上升区域或电感最大区域,不能在电感下降区域。θon提前或θoff推后都增加励磁时间,增励

开关磁阻电机的工作原理

开关磁阻电机的工作原理 开关磁阻电机是一种常见的电机类型,它基于磁阻效应来实现电机转动。下面将详细介绍开关磁阻电机的工作原理。 一、磁阻效应简介 磁阻效应是指材料在外磁场作用下,磁通量通过材料时会引起材料内部磁场的变化。根据材料的磁导率和磁场的变化情况,磁阻效应可分为正磁阻效应和负磁阻效应。正磁阻效应是指在磁场作用下,磁通量增加时,材料的磁导率减小;负磁阻效应则相反,磁通量增加时,材料的磁导率增大。 二、磁阻电机的基本结构 开关磁阻电机由转子、定子、磁阻切换器和电源组成。其中,转子是电机的旋转部分,定子是电机的固定部分,磁阻切换器用于切换磁通的路径,电源提供电流给电机。 三、工作原理 1. 初始状态:在电机初始状态下,磁阻切换器将磁通量导向转子的一个极性,使得转子与定子之间存在磁阻。 2. 通电启动:当电源给电机提供电流时,电流通过定子线圈,产生磁场。此时,由于磁阻切换器的作用,磁通量无法直接通过转子,导致转子受到磁阻的阻碍,无法自由转动。

3. 磁阻切换:在转子受到磁阻的阻碍时,磁阻切换器会切换磁通的路径,使得磁通量可以通过转子。通过切换,磁通量的路径发生变化,从而改变了转子所受到的磁阻大小。 4. 磁阻变化:磁阻切换后,转子所受到的磁阻发生变化,转子受到的力矩也随之改变。根据磁阻效应的原理,当转子在磁阻变化的作用下,会趋向于转到较小磁阻路径的方向运动。 5. 转动运行:当转子受到磁阻的作用,趋向于转到较小磁阻路径的方向运动时,电机开始转动。转子的转动会继续改变磁阻切换器的状态,从而引起磁通量的改变,进一步推动转子的转动。这样就实现了电能向机械能的转换,使得电机正常运行。 四、优势和应用 开关磁阻电机具有以下优势: 1. 结构简单:相比传统的电机结构,开关磁阻电机的结构较为简单,减少了动力传输的损耗。 2. 超低速驱动:开关磁阻电机具有较好的低速性能,在一些特殊应用中具有优势。 3. 节能环保:开关磁阻电机的能效较高,能够有效节约能源和减少环境污染。 开关磁阻电机的应用非常广泛,例如: 1. 家电领域:开关磁阻电机可以用于洗衣机、冰箱、空调等家电产

开关磁阻电机原理和应用

开关磁阻电机 开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继、调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,高。主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。 其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。 特征 开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 优点 ◆其结构简单,价格便宜,电机的转子没有绕组和磁铁。 ◆电机转子无永磁体,允许较高的。由于绕组均在定子上,电机容易冷却。效率高,损耗小。

◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。 ◆转子上没有电刷结构坚固,适用于高速驱动。 ◆转子的转动惯量小,有较高转矩惯量比。 ◆调速范围宽,控制灵活,易于实现各种再生制动能力。 ◆并具频繁启动(1000次/小时),正向反向运转的特殊场合使用。 ◆且启动电流小,启动转矩大,低速时更为突出。 ◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。 ◆可通过机和电的统一协调设计满足各种特殊使用要求。 缺点 其工作原理决定了,如果需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。 因其要使用位置传感器,增加了结构复杂性,降低了可靠性。 对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会体现的更加明显。 如果单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要加入更加复杂的算法。 另外,运行时噪音和振动较大、非线形性强也是开关磁阻电机需要解决的问题。 目前国内实用的磁阻电机属于初级阶段,部分产品控制相对粗放,电机的响应速度慢、低速下的脉动大,难以实现较高的控制精度。 结构原理 双凸极结构 磁阻电机的定子铁芯有六个齿极,转子铁芯有四个齿极,均由导磁良好的硅钢片冲制后叠成。 开关磁阻电机构造[1] 与普通电机一样,转子与定子之间有很小缝隙,转子可在定子内自由转动。 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。 在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。在转子上没有线圈,这是磁阻电机的主要特点。三相6/4结构工作原理

开关磁阻电机结构特点

开关磁阻电机结构特点 一、简介 开关磁阻电机是一种特殊的电机结构,它采用了磁阻作为磁通量的控制方式,通过开关磁阻元件对磁路进行切换来实现转子的运动。它具有结构简单、体积小、功率密度高等特点,逐渐得到了广泛应用。 二、基本结构 开关磁阻电机主要由固定子、转子和控制电路组成。固定子一般由两个磁极和一个磁性介质组成,磁极通过电磁线圈产生磁场。转子由可以旋转的磁阻材料制成,通常采用了磁粉材料,这种材料具有低磁导率的特性。控制电路根据转子位置的反馈信号,对电流进行控制,从而实现电机的正常运转。 三、工作原理 开关磁阻电机的工作原理是利用磁阻改变矢量磁场强度的特性,通过控制磁阻材料的磁导率来产生磁通量。当磁阻材料的磁导率较小时,磁通量较小,转子受到较小的转矩作用,实现低速运动;当磁阻材料的磁导率较大时,磁通量增大,转子受到较大的转矩作用,实现高速运动。 四、主要特点 开关磁阻电机具有以下几个主要特点: 1. 结构简单 开关磁阻电机的结构相对简单,主要由固定子、转子和控制电路组成,部件较少,组装容易。 2. 体积小 由于结构简单,开关磁阻电机的体积相对较小,适用于空间有限的应用场景。

3. 功率密度高 开关磁阻电机采用了高效的磁阻控制方式,可以实现高功率输出,具有较高的功率密度。 4. 高效节能 由于磁阻控制方式能够准确地控制磁通量,开关磁阻电机具有较高的效率,节能效果显著。 五、应用领域 开关磁阻电机由于其结构特点,被广泛应用于以下几个领域: 1. 家用电器 开关磁阻电机可以用于家用电器中的风扇、空调、洗衣机等产品中,其小巧的体积和高效的工作方式能够提供稳定的动力输出。 2. 汽车电子 开关磁阻电机可以用于汽车电子中的电动发动机、空调压缩机等部件中,其高功率密度和高效节能的特点能够提供稳定而高效的驱动力。 3. 工业自动化 开关磁阻电机可以用于工业自动化设备中的定位系统、机械臂等部件中,其快速响应和准确的控制能够满足复杂的工业应用需求。 4. 医疗器械 开关磁阻电机可以用于医疗器械中的输液泵、手术机械等设备中,其结构紧凑和稳定的输出能够提供可靠的运动控制。 六、发展趋势 随着科学技术的发展和应用需求的不断增加,开关磁阻电机在未来也有着广阔的发展前景。未来的开关磁阻电机可能会在以下几个方面得到进一步改进:

相关文档
最新文档