高中数学 第一章 数列的概念教案 北师大版必修5

高中数学 第一章 数列的概念教案 北师大版必修5
高中数学 第一章 数列的概念教案 北师大版必修5

数列的概念

教学目标

1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.

2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.

3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.

教学重难点

教学重点是数列的定义的归纳与认识;

教学难点是数列与函数的联系与区别.

教学过程

一.揭示课题

先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数

(板书)

象这样排好队的数就是我们的研究对象——数列. (板书)第一章 数列

(一)数列的概念

二.讲解新课

要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

②我国1998~2002年GDP 值(亿元):78345 82067 89442 95933 102389 ③五次人口普查的数量(百万):60193 72307 103188 116002 129533

④正弦函数x y sin =的图像在y 轴左边所有最低点从右向左,它们的横坐标依次

排成一列数:2π

- 2

5π- 29π- 213π- 217π- ……

⑤正整数 的倒数排成一列数:41,31,21,1…… ⑥某人2006年1~~12月工资,按月顺序排列为:1100 1100 1100 …… 1100 ⑦函数21x

y =当 依次取n ,...,3,2,1(*∈N n )时得到一列数:21,...,91,41,1n

请学生观察7列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.

(板书)1.数列的定义:按一定次序排成的一列数叫做数列.

为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述七个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.

由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.

对概念的理解

数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性? 教师提出问题:

1:1,2,3,4与4,3,2,1是否为同一数列?

2: -1,1,-1,1是否为一个数列?

遇到数学概念不但要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.

(板书)2.数列的表示法

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用

表示第一项,用 表示第一项,……,用 表示第 项,依次写

出成为

(板书)(1)列举法

. 简记为 .

一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法. (板书)(2)图示法

启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项

为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 41,31,21,1…为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势. 有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即

,这个函数式叫做数列的通项公式.

(板书)(3)通项公式法 认识数列的通项公式

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法。对应于函数的解析式法,认识数列的通项公式。

如 1100 1100 1100 …… 1100的通项公式为 1100=n a (121≤≤n ) 41,31,21,1… 的通项公式为n

a n 1=*∈N n ; 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.

例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.

除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.

(板书)3.数列与函数的关系

认识数列与函数的关系

数列中的数和它的序号是什么关系?哪个是变动的量,哪个是随之变动的量?你能联想到以前学过的哪些相关内容?

教师:举例。将序号写在上面,下面的相应位置写上数列的各项。首先引导学生说出上下两行是两组变量,然后分析这两组变量之间的关系。

学生:联想到函数间的变量依赖关系,认识到数列是函数。

教师:数列的定义域和值域分别是什么?

教师引导学生归纳出:数列可以看成是以正整数N*(或它的有限子集{1,2,3,…,n })为定义域的函数

)(n f a n =,当自变量按照从小到大的顺序依次取值时,所对应

的一列函数值。

数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集 ,或是正整数集 的有限子集 . 于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列. 例:P5课本例题

练习:(1)数列{}n a 的通项公式1n a n n

=

+-174是该数列中的第 16 项.

(2)已知数列{}n a 的通项公式2412n a n n =--,则4a = 12-,7a = 9 ,65是它

的第 11 项 ;从第 7 项起各项为正;{}n a 中第 2 项的值最小为 16-

(3){}n a 中29100n a n n =--,则值最小的项是第 4或5 项.

三.小结

1.数列的概念2.数列的四种表示四.作业略

五.板书设计

高中数学北师大版必修1全册知识点总结

高中数学必修1知识点 第一章集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集, R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

A B = 真子集 A ≠ ?B (或 B ≠ ?A ) B A ?,且B 中至少有一元素不属于A (1)A ≠ ??(A 为非空子 集) (2)若A B ≠ ?且B C ≠ ?,则 A C ≠ ? B A 集合 相等 A B = A 中的任一元 素都属于B ,B 中的任一元素都属于A (1)A ?B (2)B ?A A(B) (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. 【1.1.3】集合的基本运算 (8)交集、并集、补集 名 称 记 号 意义 性质 示意图 交集 A B I {|,x x A ∈且}x B ∈ (1)A A A =I (2)A ?=?I (3)A B A ?I A B B ?I B A 并集 A B U {|,x x A ∈或}x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A

北师大版高中数学必修五教学案

数列 1.1数列的概念 预习课本P3~6,思考并完成以下问题 (1)什么是数列?数列的项指什么? (2)数列的一般表示形式是什么? (3)按项数的多少,数列可分为哪两类? (4)数列的通项公式是什么?数列的通项公式与函数解析式有什么关系? [新知初探] 1.数列的概念 (1)定义:按一定次序排列的一列数叫作数列. (2)项:数列中的每一个数叫作这个数列的项. (3)数列的表示:数列的一般形式可以写成a1,a2,a3,…,a n…,简记为数列{a n}.数列的第1项a1,也称首项;a n是数列的第n项,也叫数列的通项. [点睛] (1)数列的定义中要把握两个关键词:“一定次序”与“一列数”.也就是说构成数列的元素是“数”,并且这些数是按照“一定次序”排列的,即确定的数在确定的位置. (2)项a n与序号n是不同的,数列的项是这个数列中的一个确定的数,而序号是指项在数列中的位次. (3){a n}与a n是不同概念:{a n}表示数列a1,a2,a3,…,a n,…;而a n表示数列{a n}中的第n 项. 2.数列的分类 项数有限的数列叫作有穷数列,项数无限的数列叫作无穷数列.

3.数列的通项公式 如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子叫作数列{a n }的通项公式. [点睛] (1)数列的通项公式实际上是一个以正整数集N +或它的有限子集{1,2,3,…,n }为定义域的函数解析式. (2)同所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. 4.数列的表示方法 数列的表示方法一般有三种:列表法、图像法、解析法. [小试身手] 1.判断下列结论是否正确.(正确的打“√”,错误的打“×”) (1)同一数列的任意两项均不可能相同.( ) (2)数列-1,0,1与数列1,0,-1是同一个数列.( ) (3)数列中的每一项都与它的序号有关.( ) 答案:(1)× (2)× (3)√ 2.已知数列{a n }的通项公式为a n =1-(-1)n +1 2,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,1 2 ,0 D .2,0,2,0 解析:选B 把n =1,2,3,4分别代入a n =1-(-1)n + 12中,依次得到0,1,0,1. 3.已知数列{a n }中,a n =2n +1,那么a 2n =( ) A .2n +1 B .4n -1 C .4n +1 D .4n 解析:选C ∵a n =2n +1,∴a 2n =2(2n )+1=4n +1. 4.数列1,3,6,10,x,21,…中,x 的值是( ) A .12 B .13 C .15 D .16 解析:选C ∵3-1=2,6-3=3,10-6=4, ∴? ???? x -10=5,21-x =6,∴x =15. [典例] (1){0,1,2,3,4};(2)0,1,2,3;(3)0,1,2,3,4,…; (4)1,-1,1,-1,1,-1,…;(5)6,6,6,6,6. [解] (1)是集合,不是数列;

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

(北师大版)高一数学必修1全套教案

(北师大版)高一数学必修1全套教案

第一章集合 课题:§0 高中入学第一课(学法指导) 教学目标:了解高中阶段数学学习目标和基本能力要求,了解新课程标准的基本思路,了解高考意向,掌握高中数学学习基本方法,激发学生学习数学兴趣,强调布置有关数学学习要求和安排。 教学过程: 一、欢迎词: 1、祝贺同学们通过自己的努力,进入高一 级学校深造。希望同学们能够以新的行动, 圆满完成高中三年的学习任务,并祝愿同 学们取得优异成绩,实现宏伟目标。 2、同学们军训辛苦了,收获应是:吃苦耐 劳、严肃认真、严格要求 3、我将和同学们共同学习高中数学,暂定 一年,… 4、本节课和同学们谈谈几个问题:为什么 要学数学?如何学数学?高中数学知识结

构?新课程标准的基本思路?本期数学教 学、活动安排?作业要求? 二、几个问题: 1.为什么要学数学:数学是各科之研究工具,渗透到各个领域;活脑,训练思维;计算机等高科技应用的需要;生活实践应用的需要。 2.如何学数学: 请几个同学发表自己的看法→共同完善归纳为四点:抓好自学和预习;带着问题认真听课;独立完成作业;及时复习。注重自学能力的培养,在学习中有的放矢,形成学习能力。 高中数学由于高考要求,学习时与初中有所不同,精通书本知识外,还要适当加大难度,即能够思考完成一些课后练习册,教材上每章复习参考题一定要题题会做。适当阅读一些课外资料,如订阅一份数学报刊,购买一本同步辅导资料. 3.高中数学知识结构: 书本:高一上期(必修①、②),高一下期(必

修③、④),高二上期(必修⑤、选修系列), 高二下期(选修系列),高三年级:复习资 料。 知识:密切联系,必修(五个模块)+选修系列(4个系列,分别有2、3、6、10个模块)能力:运算能力、逻辑思维能力、空间想像能力、分析和解决实际问题的能力、应用能力。 4.新课程标准的基本理念: ①构建共同基础,提供发展平台;②提供多样课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学应用意识;⑥与时俱进地认识“双基”;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系。 5.本期数学教学、活动安排: 本期学习内容:高一必修①、②,共72课时,

北师大版高中数学必修五期末综合测试卷

必修5期末综合测试卷 一、选择题:本大题共有10小题,每小题5分,共50分. 1.在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( ) A .49 B .50 C .51 D .52 2.设x >0,y >0,y x y x a +++=1,y y x x b +++=11,a 与b 的大小关系 () A .a >b B .a 0,,252645342=++a a a a a a 那么53a a +=() A.5 B.10 C.15 D.20 4.x 、y >0,x +y =1,且y x + ≤a 恒成立,则a 的最小值为() A 2C .2D .2 5.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ) A .135° B .90°C .120° D .150 6.设a 、a +1、a +2为钝角三角形的边,则a 的取值范围是( ) A 0<a <3B3<a <4 C1<a <3 D4<a <6 7.数列Λ,16 1 4 ,813,412,211前n 项的和为( ) A .22 12n n n ++ B .12212+++-n n n C .22 12n n n ++- D .2 2121 n n n -+- +

8.已知不等式250ax x b -+>的解集是{|32}x x -<<-,则不等式250bx x a -+>的解 是() A 32x x <->-或 B 12x <- 或13 x >- C 11 23 x - <<-D 32x -<<- 9.目标函数y x z +=2,变量y x ,满足?? ? ??≥<+≤+-125530 34x y x y x ,则有 () A .3,12min max ==z z B .,12max =z z 无最小值 C .z z ,3min =无最大值 D .z 既无最大值,也无最小值 10.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若 231n n S n T n =+,则n n a b =() A 23B 2131n n --C 2131n n ++D 21 34 n n -+ 二、填空题:共5小题,每小题5分,共25分. 11.若x>0,y>0,且 19 1=+y x ,则x+y 的最小值是___________ 12.不等式组6003x y x y x -+≥?? +≥??≤? 表示的平面区域的面积是 13.已知数列{}n a 中,1a =-1,1+n a ·n a =n n a a -+1,则数列通项n a =___________ 14.ΔABC 中,若C A C B A sin sin sin sin sin 2 22=+-那么角B=___________ 15.若方程x x a a 2 2 220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是_________________ 三、解答题:本大题共6小题,共75分。解答应写出文字说明,或演算步骤。 16.(本小题满分12分) 如图,在四边形ABCD 中,已知AD CD ,AD =10,AB =14,BDA =60,BCD =135. 求BC 的长. C D

2018年必修五《等差数列的前n项和》第二课时参考教案

课题: §2.3 等差数列的前n 项和 (第2课时) ●教学目标 知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值; 过程与方法:经历公式应用的过程; 情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。 ●教学重点 熟练掌握等差数列的求和公式 ●教学难点 灵活应用求和公式解决问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上一节课所学主要内容: 1.等差数列的前n 项和公式1:2 )(1n n a a n S += 2.等差数列的前n 项和公式2:2)1(1d n n na S n -+ = Ⅱ.讲授新课 探究:——课本P51的探究活动 结论:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? 由2n S pn qn r =++,得11S a p q r ==++ 当2n ≥时1n n n a S S -=-=22()[(1)(1)]pn qn r p n q n r ++--+-+=2()pn p q -+

1[2()][2(1)()]n n d a a pn p q p n p q -∴=-=-+---+=2p 对等差数列的前n 项和公式2:2)1(1d n n na S n -+ =可化成式子: n )2 d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 [范例讲解] 等差数列前项和的最值问题 例4 解略 小结: 对等差数列前项和的最值问题有两种方法: (1) 利用n a : 当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值 当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值 (2) 利用n S : 由n )2 d a (n 2d S 12n -+=利用二次函数配方法求得最值时n 的值 Ⅲ.课堂练习 1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。 2.差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值。 Ⅳ.课时小结 1.前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,一定是等差数列,该数列的 首项是1a p q r =++ 公差是d=2p 通项公式是111,12(),2n n n S a p q r n a S S pn p q n -==++=?=?-=-+≥?当时当时 2.差数列前项和的最值问题有两种方法: (1)当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值。

北师大版高中数学必修五模块测试卷

高中数学学习材料 (灿若寒星 精心整理制作) 必修五模块测试卷 (150分,120分钟) 一、选择题(每题5分,共60分) 1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 2 2A =c c b 2+,则△ABC 是( ) A.直角三角形 B.等腰三角形或直角三角形 C.等边三角形 D.等腰直角三角形 2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.80 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A. 23 B. 33 C. 43 D. 6 3 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 2 5 -?n - 5 1 ,则实数t 的值为( ) A.4 B.5 C. 54 D. 5 1 5.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( ) A.3 B.23 C.3或23 D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A. 44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a ≤6 6S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y = 2 1 x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n

(完整word版)高中数学必修五等差数列测试题

等差数列测试题 一、选择题(每小题5分,共40分) 1.设数列11,22,5,2,……则25是这个数列的 ( ) A.第六项 B.第七项 C.第八项 D.第九项 2.在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( ) A. a =2,b =5 B. a =-2,b =5 C. a =2,b =-5 D. a =-2,b =-5 3.首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83 <d ≤3 4.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( ) A .3 B .-3 C .-2 D .-1 5.在等差数列}{n a 中,,0,01110>,则在n S 中最大的负数为 ( ) A .17S B .18S C .19S D .20S 6.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( ) A.a 11 B.a 10 C.a 9 D.a 8 7.设函数f (x )满足f (n +1)= 2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A.95 B.97 C.105 D.192 8.已知无穷等差数列{a n },前n 项和S n 中,S 6S 8 ,则 ( ) A .在数列{a n }中a 7最大 B .在数列{a n }中,a 3或a 4最大 C .前三项之和S 3必与前11项之和S 11相等 D .当n ≥8时,a n <0 二、填空题(每小题6分,共30分) 9.集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________. 10.在等差数列{}n a 中,37104118,14.a a a a a +-=-=-记123n n S a a a a =++++L ,则13S =_____

北师大版高一数学必修1试题及答案

高一数学必修1质量检测试题(卷) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至6页。考试结束后. 只将第Ⅱ卷和答题卡一并交回。 第Ⅰ卷(选择题 共60分) 注意事项: 1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、选择题:本答题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.集合{0,1}的子集有 ( )个 A. 1个 B. 2个 C. 3个 D. 4个 2.已知集合2 {|10}M x x =-=,则下列式子正确的是 A .{1}M -∈ B . 1 M ? C . 1 M ∈- D . 1 M ?- 3.下列各组函数中,表示同一函数的是 A .1y =与0y x = B .4lg y x =与2 2lg y x = C .||y x =与2 y = D .y x =与ln x y e = 4.设集合{(,)|46},{(,)|53}A x y y x B x y y x ==-+==-,则B A = A .{x =1,y =2} B .{(1,2)} C .{1,2} D .(1,2) 5. 函数()ln 28f x x x =+-的零点一定位于区间 A. (1, 2) B. (2 , 3) C. (3, 4) D. (4, 5) 6.二次函数2 ()23f x x bx =++()b R ∈零点的个数是 A .0 B .1 C .2 D .以上都有可能 7.设 ()x a f x =(a>0,a ≠1),对于任意的正实数x ,y ,都有 A.()()()f xy f x f y = B. ()()()f xy f x f y =+ C.()()()f x y f x f y += D. ()()()f x y f x f y +=+

北师高中数学必修五知识点归纳(纯)

必修5知识点 第一章 解三角形 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的 半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > . —1—

第二章 数列 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差 中项.若2 a c b +=,则称b 为a 与 c 的等差中项. 19、若等差数列 {}n a 的首项是1 a ,公差是d ,则()11n a a n d =+-. 20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③1 1 n a a d n -=-; ④1 1n a a n d -=+;⑤n m a a d n m -=-. 21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{} n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+. —2—

最新北师大版高中数学必修二教案(全册)

最新北师大版高中数学必修二教案(全册) 第一章 推理与证明 合情推理(一)——归纳推理 课时安排:一课时 课型:新授课 教学目标: 1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。 2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。 教学重点:了解合情推理的含义,能利用归纳进行简单的推理。 教学难点:用归纳进行推理,做出猜想。 教学过程: 一、课堂引入: 从一个或几个已知命题得出另一个新命题的思维过程称为推理。 见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 二、新课讲解: 1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。 蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。 2、 三角形的内角和是,凸四边形的内角和是,凸五边形的内角和是 由此我们猜想:凸边形的内角和是 3、,由此我们猜想:(均为正实数) 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤: ⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。 三、例题讲解: 例1已知数列的通项公式,,试通过计算的值,推测出的值。 【学生讨论:】(学生讨论结果预测如下) (1) 180?360?540?(2)180n -??221222221,,,331332333+++<<<+++ a a m b b m +<+,,a b m {}n a 2 1()(1)n a n N n +=∈+12()(1)(1)(1)n f n a a a =--???-(1),(2),(3)f f f ()f n 113(1)1144 f a =-=-=

人教A版数学必修五2.2.1《等差数列》word教案

课题:2.2.1等差数列 教学目标: 1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。 2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力 3.情感目标: ①通过个性化的学习增强学生的自信心和意志力。 ②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。 ③体验从分外到大凡,又到分外的认知规律,培养学生勇于创新的科学精神。 教学重点: 教学重点是等差数列的定义和对通项公式的认识与应用。确凿把握定义是正确认识等差数列,解决相关问题的前提条件。通项公式是研究一个数列的严重工具。 教学难点: (1)理解等差数列“等差”的特点及通项公式的含义。 (2)等差数列的通项公式的推导过程及应用。 学情分析: 高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。

授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、情景引入: 1.观察梯田图片让学生对等差数列有一个直观的认识。 2.由生活中详尽的数列实例引入 (1)在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,你能预测出下一次的大致时间吗? 1682,1758,1834,1910,1986,() (2)你能根据规律在()内填上适合的数吗? 1,4,7,10,(),16,… 2,0,-2,-4,-6,()… 引导学生观察:以上3个数列有何规律? 引导学生得出“从第2项起,每一项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列.(板书课题) 二.新课探究,推导公式 1.学生自主归纳等差数列的概念. 如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。 强调: ①“从第二项起”满足条件;

高中数学北师大版必修1 全册 知识点总结

高中数学北师大版必修1 全册 知识点总结 第一章集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法 N 表示自然数集;N *或N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈;或者a M ?;两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来;写在大括号内表示集合. ③描述法:{x |x 具有的性质};其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素;则它有2n 个子集;它有21n -个真子集;它有21n -个非空子集;它有22n -非空真子集. 【1.1.3】集合的基本运算 (8)交集、并集、补集

A B B ?U 补集 {|,}x x U x A ∈?且%1 ( %1 %1 %1 %1 ⑼ 集合的运算律: 交换律:.;A B B A A B B A Y Y I I == 结合律:)()();()(C B A C B A C B A C B A Y Y Y Y I I I I == 分配律:)()()();()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===I U I U 等幂律:.,A A A A A A ==Y I 求补律:A ∩ A ∪=U 反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B) 第二章函数 §1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合;如果按照某种对应关系f ;对于集合A 中的 元素;在集合B 中都有 元素和它对应;这样的对应叫做 到 的映射;记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射;那么和A 中的元素a 对应的 叫做象; 叫做原象.二、函数1.定义:设A 、B 是 ;f :A →B 是从A 到B 的一个映射;则映射f :A →B 叫做A 到B 的 ;记作 .2.函数的三要素为 、 、 ;两个函数当且仅当 分别相

人教A版高中数学必修五等差数列教案一新

等差数列教学设计 一、教学目标: 知识与能力:理解等差数列的定义;掌握等差数列的通项公式;培养学生的观察、归纳 能力,应用数学公式的能力及渗透函数、方程思想 过程与方法:经历等差数列的产生过程和应用等差数列的基本知识解决问题的能力。 情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析能力,体验 从特殊到一般认知规律,培养学生积极思维,追求新知的创新意识。 二、教学重点:理解等差数列的概念,掌握等差数列的通项公式,体会等差数列与一次函数 之间的联系。 三、教学难点:概括通项公式推导过程中体现出的数学思想方法。 四、教学准备:根据本节知识的特点,为突出重点、突破难点,增加教学容量,便于学生更 好的理解和掌握所学的知识,我利用计算机辅助教学。 五、教学过程: (一) 创设情境,课题导入 复习上节课学习的数列的定义及数列的表示法。这些方法从不同的角度反映了数列的特点,下面我们来看这样的一些数列:(大屏幕显示课本41页的四个例子) ⑴、0 5 10 15 20 … … ⑵、48 53 58 63 ⑶、18 15.5 13 10.5 8 5.5 ⑷、10072 10144 10216 10288 10360 教师提出问题:以上四个数列有什么共同的特征?请同学们互相讨论。 (学生积极讨论。得到结论,教师指名回答) 共同特点:从第2项起,每项与它的前一项的差是同一个常数。 师:这些数列均具有相邻两项之差“相等”的特点,具有这种特点的数列,我们把它叫 做等差数列。 (二)设置问题,形成概念 等差数列:一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个 常数,那么这个数列就叫做等差数列。这个常数就叫做等差数列的公差, 常用字母d 表示。 师:等差数列的概念中的几个关键点是什么? 生(思考、讨论):第2项、每一项与它的前一项、同一个常数 教师在进一步强调。 师:如何用数学语言来描述等差数列的定义? 学生讨论后得出结论: 数学语言:d a a n n =--1 )2(≥n 或 d a a n n =-+1 n (≥1) (学生通过讨论,从而不断完善自己的认知结构) 师:同学们能否举一些等差数列的例子? (学生争先恐后地发言,教师随机指定两名学生回答。) 理解等差数列的概念是本节课的重点,为了加深对概念的理解,让学生讨论课本45页练习第4题,教师总结。 (三)等差数列的通项公式 师:如同我们在前一节看到的,能否确定一个数列的通项公式对研究这个数列具有重

北师大版高中数学必修知识点总结

北师大版高中数学必修3知识与题型归纳 第一章《统计》知识与题型归纳复习 (一)、抽样方法 1、简单随机抽样 (1)、相关概念:总体、个体、样本、样本容量。(2)、基本思想:用样本估计总体。 (3)、简单随机抽查概念。一般的,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ≤ ,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽 样。其特点:①总体个数有限;②逐个抽取;③不放回抽样;④等可能抽样。 (4)、抽样方法:①抽签法;②随机数表。 2、系统抽样 (1)、定义:当总体元素个数很大时,样本容量不宜太小,这时可将总体分为均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本(等距抽样)。 (2)、步骤:①编号;②分段;③不确定起始个体编号;④按规则抽取。 3、分层抽样 (1)、定义:当总体由差异明显的几部分组成时,为了使抽取的样本更好的反应总体情况,我们经常将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样。 适用特征①总体由差异明显的几部分组成;②分成的各层互不重叠;③各层抽取的比例等于样本客样在总体中的比例,即 N n 。 (二)、用样本的频率分布估计总体的分布(统计图表) 1、列频率分布表,画频率分布直方图: (1)计算极差(2)决定组数和组距(3)决定分点(4)列频率分布表(5)画频率分布直方图 2、茎叶图;3、扇形图; 4、条形图;5、折线图; 6、散点图。 (三)、用样本的数字特征估计总体的数字特征 1、有关概念 (1)、众数:频率分布最大值所对应的样本数据(或出现最多的那个数据)。 (2)、中位数:累积频率为0.5时,所对应的样本数据。 (3)、平均数:)(1 21n x x x n x +++= Λ (4)、三个概念的区别:①都是描述一组数据集中趋势的量,平均数较重要。②平均数的大小与每个数相关。③众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,众数更能反映问题,中位数仅与排列有关。 2、样本方差与样本标准差 1样本方差:( )()( )[]2 22212 1 x x x x x x n S n -++-+-=Λ样本方差大说明样本差异和波动性大。 (2)、样本标准差:方差的算术平方根( )()( )[]2 22211 x x x x x x n S n -++-+-= Λ (3)、要有单位,方差的单位是原数据的单位的平方,标准差的单位与原数据单位同。 (四)、变量的相关性: 1、变量与变量之间存在着的两种关系①函数关系:确定性关系。②相关关系:自变量的取值带有一定的随机性的两个变量之间的关系。

北师大版(新课标)高中数学课本目录大全(必修)

北师大版(新课标)高中数学课本目录大全(含必修和选修) 北师大必修 《数学1(必修)》 全书目录: 第一章集合 §1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 阅读材料康托与集合论 第二章函数 §1 生活中的变量关系 §2 对函数的进一步认识 §3 函数的单调性 §4 二次函数性质的再研究 §5 简单的幂函数 阅读材料函数概念的发展 课题学习个人所得税的计算 第三章指数函数和对数函数 §1 正整数指数函数 §2 指数概念的扩充 §3 指数函数 §4 对数 §5 对数函数 §6 指数函数、幂函数、对数函数增长的比较 阅读材料历史上数学计算方面的三大发明 第四章函数应用 §1 函数与方程 §2 实际问题的函数建模 阅读材料函数与中学数学 探究活动同种商品不同型号的价格问题

必修2 全书目录: 第一章立体几何初步 §1 简单几何体 §2 三视图 §3 直观图 §4 空间图形的基本关系与公理 §5 平行关系 §6 垂直关系 §7 简单几何体的面积和体积 §8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的 课题学习正方体截面的形状 第二章解析几何初步 §1 直线与直线的方程 §2 圆与圆的方程 §3 空间直角坐标系 阅读材料笛卡儿与解析几何 探究活动1 打包问题 探究活动2 追及问题 必修3 全书目录 第一章统计 §1 统计活动:随机选取数字 §2 从普查到抽样 §3 抽样方法 §4 统计图表 §5 数据的数字特征 §6 用样本估计总体 §7 统计活动:结婚年龄的变化 §8 相关性 §9 最小二乘法 阅读材料统计小史 课题学习调查通俗歌曲的流行趋势 第二章算法初步 §1 算法的基本思想 §2 算法的基本结构及设计

2017-2018学年北师大版高中数学必修五全册同步习题含解析

2017-2018学年北师大版高中数学 必修五全册同步习题 目录 第一章数列1.1数列1.1.1习题 第一章数列1.1数列1.1.2习题 第一章数列1.2等差数列1.2.1.1习题 第一章数列1.2等差数列1.2.1.2习题 第一章数列1.2等差数列1.2.2.1习题 第一章数列1.2等差数列1.2.2.2习题 第一章数列1.3等比数列1.3.1.1习题 第一章数列1.3等比数列1.3.1.2习题 第一章数列1.3等比数列1.3.2习题 第一章数列1.4数列在日常经济生活中的应用习题 第二章解三角形2.1正弦定理与余弦定理2.1.1习题 第二章解三角形2.1正弦定理与余弦定理2.1.2习题 第二章解三角形2.2三角形中的几何计算习题 第二章解三角形2.3解三角形的实际应用举例习题 第三章不等式3.1不等关系习题 第三章不等式3.2一元二次不等式3.2.1习题 第三章不等式3.2一元二次不等式3.2.2习题

第三章不等式3.3基本不等式3.3.1习题第三章不等式3.3基本不等式3.3.2习题第三章不等式3.4简单线性规划3.4.1习题第三章不等式3.4简单线性规划3.4.2习题第三章不等式3.4简单线性规划3.4.3习题

1.1数列的概念 课后篇巩固探究 A组 1.将正整数的前5个数作如下排列:①1,2,3,4,5;②5,4,3,2,1;③2,1,5,3,4;④4,1,5,3, 2. 则可以称为数列的是() A.① B.①② C.①②③D.①②③④ 解析:4个都构成数列. 答案:D 2.已知数列{a n}的通项公式为a n=,则该数列的前4项依次为() A.1,0,1,0 B.0,1,0,1 C.,0,,0 D.2,0,2,0 解析:把n=1,2,3,4分别代入a n=中,依次得到0,1,0,1. 答案:B 3.数列1,,…的一个通项公式是() A.a n= B.a n= C.a n= D.a n= 解析:1=12,4=22,9=32,16=42,1=231-1,3=232-1,5=233-1,7=234-1,故a n=. 答案:A

(完整版)北师大版高一数学必修2测试题及答案

考试时间:100 1 A 圆 2位置关系是A 平行3、一个西瓜切34 5.三个球的半径之比是1:2:3,那么最大的球的表面积是其余两个球的表面积之和的( ) A .1倍 B .2倍 C .541倍 D .4 31倍 6.以下四个命题中正确命题的个数是( ) ①过空间一点作已知平面的垂线有且只有一条 ②过空间一点作已知平面的平行线有且只有一条 ③过空间一点作已知直线的垂线有且只有一条 ④过空间一点作已知直线的平行线有且只有一条 A .1 B .2 C .3 D .4 7.若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A .1 B .-1 C .0 D .7 8.已知直线06:1=++my x l 和直线023)2(:2=++-m y x m l 互相平行,则实数m 的值是( ) A .-1或3 B .-1 C .-3 D .1或-3 A

9.已知直线l 的方程为02543=-+y x ,则圆12 2=+y x 上的点到直线l 的最大距离是( ) A .1 B .4 C .5 D .6 10.点)1,3,2(-M 关于坐标原点的对称点是( ) A .(-2,3,-1) B .(-2,-3,-1) C .(2,-3,-1) D .(-2,3,1) 二、填空题(每题4分共16分) 11、从长方体一个顶点出发的三个面的面积分别为6、8、12,则其对角线长为 12.将等腰三角形绕底边上的高旋转180o ,所得几何体是______________; 13.圆C :1)6()2(2 2=-++y x 关于直线0543=+-y x 对称的圆的方程是___________________; 14.经过点)4,3(--P ,且在x 轴、y 轴上的截距相等的直线l 的方程是______________________。 三、解答题(15、16、17题各题10分,18题14分) 15.过点P (1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程. 16.经过点P )3,2(-作圆2022=+y x 的弦AB ,使P 平分AB , 求:(1)弦AB 所在直线的方程;(2)弦AB 的长。 17.如图,Rt △ABC 所在平面外一点P 到△ABC 的三个顶点的距离相等,D 为斜边BC 上的中点,求证:PD ⊥平面ABC 。 18题:(14分) 已知圆C:25)2()1(22=-+-y x , 直线l :047)1()12(=--+++m y m x m (1)求证:直线l 过定点; (2)判断该定点与圆的位置关系; A B C P D

相关文档
最新文档