信号分析与处理 作业

信号分析与处理 作业
信号分析与处理 作业

目录

摘要

在科学技术迅速发展的今天,几乎所有的工程技术领域中存在数字信号,这些信号进行有效处理,以获取我们需要的信息,正有力地推动数字信号处理学科的发展。为了对信号进行可视化直观分析,引入MATLAB 作为信号仿真与调试工具,借助于M APLE 内核提供的信号处理工具箱不仅可以生成信号,还可计算系统的响应,并完成对连续系统的时域、频域及复频域的分析。通过实例表明了便捷性,可以提高工作效率,同时也证明了M ATLAB在理论分析中的重要性,因此MATLAB成为信号分析与处理的一种重要的工具。本文将就MATLAB 在信号除噪和信号延迟两方面的应用进行分析与介绍。

关键词:信号仿真,响应,信号分析与处理

- 1 -

一.MATLAB简介

MATLAB是功能强大的科学及计算软件,它不但具有以矩阵为基础的强大数学计算和分析功能,而且还具有丰富的可视化图形表现功能和方便的程序设计功能。MATLAB的应用领域极为广泛,除了数学计算和分析外,还被广泛地应用于自动控制、系统仿真、数字信号处理、图形图像分析、数理统计、人工智能、虚拟现实技术、通信工程、金融系统等领域,因此,MATLAB是面向21世纪的计算机程序设计及科学计算语言。

二.课题的主要内容

(一)信号除噪

简介:在工程当中,信号采集过程当中,经常由于各方面的原因,使得我们的目标信号当中掺杂进各种噪声信号,给我们在后续的信号分析,处理,使用带来各种的不便。因此,信号除噪在工程当中的重要性可见一斑。而MATLAB 就是一种进行信号除噪很好的工具。

MATLAB进行信号除噪的主要原理是应用相关分析实现的。

在工程当中,相关分析经常用于识别含噪声信号序列中是否存在周期性分量并提取周期量。具体原理如下:

检测淹没在随机噪声中的周期信号。由于周期信号的自相关函数仍是周期性的,且频率保持不变,而随机噪声信号随着延迟增加,它的自相关函数将减到零。因此在一定延迟时间后,排除了随机信号的干扰,而被干扰信号的自相关函数中保留了周期信号的信息。

我们以下面的例子进行分析与说明,

m=30;%%%%设置采样点数

t1=1:m;%%%%采样数

xinhao=cos(0.25*pi*t1);%%%%目标信号

2

zaosheng=rand(1,m)-0.5;%%%%噪声信号

x=xinhao+zaosheng;%%%%含有噪声的正弦信号

lag=500;

[c,lags]=xcorr(x,lag,'unbiased');%%%%求含噪声正弦信号的自相关函数

[c1,lags]=xcorr(zaosheng,lag,'unbiased');%%%% 求含噪声信号的自相关函数

rxx=conv(x,fliplr(x));

rdd=conv(zaosheng,fliplr(zaosheng));

rcc=conv(xinhao,fliplr(xinhao)); %%%%rcc,rxx与rdd都是用卷积的形式进行自相关预算%%%%

k=-29:29;%%%%设置绘图的采样区间

subplot(3,2,1);

plot(t1,x);

title('信号与噪声的叠加结果');

xlabel('t');

ylabel('x(t)');

subplot(3,2,3);

plot(t1,zaosheng);

title('噪声信号');

xlabel('t');

3

ylabel('noise');

subplot(3,2,5);

plot(t1,xinhao);

title('目标信号');

xlabel('t');

ylabel('xinhao');

subplot(3,2,2);

stem(k,rxx);

title('含噪声正弦自相关序列'); xlabel('k');

ylabel('幅度');

subplot(3,2,4);

stem(k,rdd);

title('噪声序列的自相关序列'); xlabel('k');

ylabel('幅度');

subplot(3,2,6);

stem(k,rcc);

title('信号序列自相关序列'); xlabel('k');

4

ylabel('幅度');

运行程序,结果如图所示,由下图我们可以清楚的看到,含噪声的正弦序列自相关曲线在k=0(移位为零)处有一个最大的峰值,并且在k=8的整数倍都有幅值不等的峰值,有着明显的周期特性,这就说明该正弦序列的周期是8。而在图中给出的噪声序列的自相关序列,()

r k仅仅在k=0(移位为零)处有一个

xx

最大的峰值。这是因为噪声序列的样本值互不相关,在其他位移量处的()

r k峰

xx

值都很小。具有周期性的信号,的自相关趋向有着同样的周期性。因此,我们可以下结论:利用自相关的性质我们可以清楚地得到混合信号的中的周期信号的特性。

5

应用MATLAB自身的自相关函数xcorr来绘制曲线作为再次验证。如下图:

6

通过上述的例子以及背景知识的阐述,我们可以清楚的看到MATLAB在信号除噪方面的应用以及原理。

7

(二)估计信号延迟的时间

在工程当中,由于各种原因,我们要测的信号总比实际上信号的发生时刻要晚一些,也就是我们平时所说的信号延迟,而通常情况下,我们需要计算或者测得两个信号序列之间的延迟时间,以便于以后信号分析与处理中的进行。

在这里我们估计两个信号时间延迟的方法是应用相关函数。

设观测序列y[n]是x[n]的延迟信号:y[n]=w[n-n’],则[]

R m在n=n’

xu

的时候达到最大值。因此找相关函数的最大值时的延迟,即两个信号的延迟时间。

下面就以下程序进行分析:

clear all

N=1000;%%%%设置数据采样点数

n=0:N-1;%%%%采样点

Fs=500;

t=n/Fs;

lag=200;

x1=90*sinc(pi*(n-0.1*Fs));%%%%信号1,sinc(x)为取样函数

y1=50*sinc(pi*(n-0.3*Fs));%%%%信号2

[c,lags]=xcorr(y1,x1,lag,'unbiased');%%%%求互相关函数

subplot(2,2,1);

plot(t,x1,'r');

hold on;

8

plot(t,y1,'b');

xlabel('t');

ylabel('x(t) y(t)');

title('原始信号');

grid;

subplot(2,2,2);

plot(lags/Fs,c,'r');

xlabel('t');

ylabel('Rxy(t)');

title('互相关');

grid;

运行程序后,所得曲线图像:

9

有上述的由MATLAB绘制的图像我们可以清楚地看出,互相关信号的峰值出现在0.2秒出,这就反映两信号的时差,因此可以清楚地知道两个信号的时移为0.2秒。运用这个原理我们可以推广在其他方面的应用,比如,检测信号回声,检测管道损伤,测定血液流动速度,制造雷达等。

10

结论

通过上述示例,可以看出MATLAB的引入为信号分析与处理提供了便捷的分析方法,生动形象的波形演示,应用者不仅能直观地领会和理解理论知识,而且从大量的数据推导和计算中解放出来,使得数字信号处理理论简单化、实用化。作为机械专业的研究生,我们熟练的掌握着个工具对于我们以后的学习以及科研是很有帮助。

11

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

西电随机信号大课后复习

随机信号大作业 班级:02xxxx 姓名:xx

学号:02xxxxx 第一章 1.23上机题:设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。试用Matlab编程产生其三个样本函数。 解:程序: clc clear m=unifrnd(0,2*pi,1,10); for k=1:3 t=1:0.1:10; X=5*cos(t+m(k)); plot(t,X); hold on

end title('其三个样本函数'); xlabel('t');ylabel('X(t)'); grid on ;axis tight ; 由 Matlab 产生的三个样本函数如下图所示: 第二章 2.22 上机题:利用Matlab 程序设计一正弦型信号加高斯白噪声的复合信号。 (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 1 2 3 4 5 6 7 8 9 10 -4-3-2-101 23 4其三个样本函数 t X (t )

解:取数据如下: 正弦信号的频率为:fc=10HZ,抽样频率为:fs=100HZ; 信号:x=sin(2*pi*fc*t); 高斯白噪声产生复合信号y: y=awgn(x,10); 复合信号y通过理想滤波器电路后得到信号y3 ,通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)); y3的幅度分布特性可以通过傅里叶变换得到Y3(jw)=fft(y3),y3的功率谱密度:G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))。 程序: clear all; fs=100; fc=10; n=201; t=0:1/fs:2; x=sin(2*pi*fc*t); y=awgn(x,10); m=50; i=-0.49:1/fs:0.49; for j=1:m R(j)=sum(y(1:n-j-1).*y(j:199),2)/(n-j); Ry(49+j)=R(j);

现代信号处理大作业

现代信号处理大作业 姓名:潘晓丹 学号:0140349045 班级:A1403492

作业1 LD 算法实现AR 过程估计 1.1 AR 模型 p 阶AR 模型的差分方程为: )()()(1 n w i n x a n x p i i =-+ ∑=,其中)(n w 是均值为0的白噪声。 AR 过程的线性预测方法为:先求得观测数据的自相关函数,然后利用Yule-Walker 方程递推求得模型参数,再根据公式求得功率谱的估计。 Yule-Walker 方程可写成矩阵形式: ??????? ? ????????= ??????? ? ?? ???? ????????????? ??? ??--+-+--000)()2()1(1) 0() 2()1()()2()0()1()2()1()1()0() 1()() 2()1()0(2 σp a a a r p r p r p r p r r r r p r r r r p r r r r p p p xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx 1.2 LD 算法介绍 Levinson-Durbin 算法可求解上述问题,其一般步骤为: 1) 计算观测值各自相关系数p j j r xx ,,1, 0),( =;)0(0xx r =ρ;i=1; 2) 利用以下递推公式运算: ) 1(1,...,2,1),()()()() ()()(2 1111 1 1 1 i i i i i i i i i i i j xx i xx i k i j j i a k j a j a k i a j i r j a i r k -=-=--==-?+ -=-----=-∑ρρρ 3) i=i+1,若i>p ,则算法结束;否则,返回(2)。 1.3 matlab 编程实现 以AR 模型:xn=12xn-1-12xn-2+w(n)为例,Matlab 程序代码如下: clear; clc;

Altium Designer中进行信号完整性分析

在高速数字系统中,由于脉冲上升/下降时间通常在10到几百p秒,当受到诸如内连、传输时延和电源噪声等因素的影响,从而造成脉冲信号失真的现象; 在自然界中,存在着各种各样频率的微波和电磁干扰源,可能由于很小的差异导致高速系统设计的失败;在电子产品向高密和高速电路设计方向发展的今天,解决一系列信号完整性的问题,成为当前每一个电子设计者所必须面对的问题。业界通常会采用在PCB制板前期,通过信号完整性分析工具尽可能将设计风险降到最低,从而也大大促进了EDA设计工具的发展…… 信号完整性(Signal Integrity,简称SI)问题是指高速数字电路中,脉冲形状畸变而引发的信号失真问题,通常由传输线不阻抗匹配产生的问题。而影响阻抗匹配的因素包括信号源的架构、输出阻抗(output impedance)、走线的特性阻抗、负载端的特性、走线的拓朴(topology)架构等。解决的方式可以采用端接(termination)与调整走线拓朴的策略。 信号完整性问题通常不是由某个单一因素导致的,而是板级设计中多种因素共同作用的结果。信号完整性问题主要表现形式包括信号反射、信号振铃、地弹、串扰等; 1,Altium Designer信号完整性分析(机理、模型、功能) 在Altium Designer设计环境下,您既可以在原理图又可以在PCB编辑器内实现信号完整性分析,并且能以波形的方式在图形界面下给出反射和串扰的分析结果。 Altium Designer的信号完整性分析采用IC器件的IBIS模型,通过对版图内信号线路的阻抗计算,得到信号响应和失真等仿真数据来检查设计信号的可靠性。Altium Designer的信号完整性分析工具可以支持包括差分对信号在内的高速电路信号完整性分析功能。 Altium Designer仿真参数通过一个简单直观的对话框进行配置,通过使用集成的波形观察仪,实现图形显示仿真结果,而且波形观察仪可以同时显示多个仿真数据图像。并且可以直接在标绘的波形上进行测量,输出结果数据还可供进一步分析之用。 Altium Designer提供的集成器件库包含了大量的的器件IBIS模型,用户可以对器件添加器件的IBIS模型,也可以从外部导入与器件相关联的IBIS模型,选择从器件厂商那里得到的IBIS 模型。 Altium Designer的SI功能包含了布线前(即原理图设计阶段)及布线后(PCB版图设计阶段)两部分SI分析功能;采用成熟的传输线计算方法,以及I/O缓冲宏模型进行仿真。 基于快速反射和串扰模型,信号完整性分析器使用完全可靠的算法,从而能够产生出准确的仿真结果。布线前的阻抗特征计算和信号反射的信号完整性分析,用户可以在原理图环境下运行SI仿真功能,对电路潜在的信号完整性问题进行分析,如阻抗不匹配等因素。 更全面的信号完整性分析是在布线后PCB版图上完成的,它不仅能对传输线阻抗、信号反射和信号间串扰等多种设计中存在的信号完整性问题以图形的方式进行分析,而且还能利用规则检查发现信号完整性问题,同时,Altium Designer还提供一些有效的终端选项,来帮助您选择最好的解决方案。 2,分析设置需求 在PCB编辑环境下进行信号完整性分析。 为了得到精确的结果,在运行信号完整性分析之前需要完成以下步骤:

工程教育专业认证标准

工程教育专业认证标准(讨论稿) (2011年11月) 1.总则 (1)本标准适用于普通高等学校工程教育本科专业认证。 (2)本标准提供工程教育本科培养层次的基本质量要求。 (3)本标准由通用标准和专业补充标准组成。

2.通用标准 2.1 专业目标 2.1.1 专业设置 专业设置适应国家和地区、行业经济建设的需要,适应科技进步和社会发展的需要,符合学校自身条件和发展规划,有明确的服务面向和人才需求。申请认证或重新认证的专业必须具有: 1.明确充分的专业设置依据和论证,有相应学科作依托,专业口径、布局符合学校的定位。 2.明确的、可衡量、公开的人才培养目标。根据经济建设和社会发展的需要、自身条件和发展潜力,确定在一定时期内培养人才的层次、类型和人才的主要服务面向。 3.至少已有3届毕业生。 2.1.2 毕业生能力 专业必须证明所培养的毕业生达到如下知识、能力与素质的基本要求: 1.具有较好的人文社会科学素养、较强的社会责任感和良好的工程职业道德; 2.具有从事工程工作所需的相关数学、自然科学知识以及一定的经济管理知识; 3.掌握扎实的工程基础知识和本专业的基本理论知识,了解本专业的前沿发展现状和趋势; 4.具有综合运用所学科学理论和技术手段分析并解决工程问题的基本能力; 5.掌握文献检索、资料查询及运用现代信息技术获取相关信息的基本方法; 6.具有创新意识和对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力; 7.了解与本专业相关的职业和行业的生产、设计、研究与开发的法律、法规,熟悉环境保护和可持续发展等方面的方针、政策和法津、法规,能正确认识工程对于客观世界和社会的影响; 8.具有一定的组织管理能力、较强的表达能力和人际交往能力以及在团队

现代信号处理作业

信号时频分析技术及matlab仿真 电路与系统王冠军 201128013926153 摘要:本文介绍了时频分析的一些基础理论,对短时傅里叶变换Wigner-Ville分布做了简单介绍,运用MATLAB语言实现了旨在构造一种时间和频率的密度函数,以揭示信号中所包含的频率分量及其演化特性的wigner-ville分布。并对时频分析方法的优缺点进行了分析。 关键词:时频分析短时傅里叶变换wigner-ville分布 1 引言 基于Fourier变换的传统信号处理技术从信号频域表示及能量的频域分布的角度揭示了信号在频域的特征。但Fourier变换是一种整体变换,只能为人们提供信号在时域或频域的全局特性而无法了解信号频谱随时间变化的情况。因此,需要使用一种时间和频率的联合函数来表示信号,这种表示简称为信号,也就是信号的时频分析。 2 时频分析方法 信号时频分析主要研究非平稳信号或时变信号的频谱含量是怎样随时间变化的。时频分析是当今信号处理领域的一个主要研究热点,目前常用时频分析方法主要有短时傅里叶变换、Gabor展开、小波变换、Wigner-Ville分布。本文主要介绍了短时傅里叶变换和Wigner-Ville分布两种分析方法。 2.1 短时傅立叶变换STFT 从历史上看,信号的时频分析用的最多的是短时傅立叶变换,这种变换的基本思想是用一个窗函数乘时间信号,该窗函数的时宽足够窄,使取出的信号可以被看成是平稳的,然后进行的傅立叶变换可以反映该时宽中的频谱变化规律,如果让窗随时间轴移动,可以得到信号频谱随时间变化的规律。对于时变信号,了解不同时刻附近的频域特征是至关重要的。因此,人们采用时间—频率描述时变信号,将一维的时域信号映射到一个二维的时域平面,全面反映观测信号的时频联合特征。短时傅立叶变换反映了这一思想,对于时变信号,采用某一滑动窗函数截取信号,并认为这些信号是准平稳的,然后,再分别对其进行傅立叶变换,构成时变信号的时变谱。短时傅立叶变换是一种常用的时—频域分析方法,其基本思想

信号与系统大作业

中北大学 信号与系统综合性报告 学院:仪器与电子学院 专业:电子科学与技术 学号姓名:王鹏 学号姓名:张艺超 学号姓名:郭靖锋 学号姓名:蔡宪庆 学号姓名: 指导教师: 张晓明 2019年5 月13 日

1 设计题目时频域语音信号的分析与处理 2 设计目标对语音信号进行时频域分析和处理的基本方法 3 设计要求 1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中; 2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段; 3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱; 4)生成滤波后的语音文件,分析听觉效果。 4 理论分析 声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的 通过查阅资料显示,实际人声频率范围 男:低音82~392Hz,基准音区64~523Hz 男中音123~493Hz,男高音164~698Hz 女:低音82~392Hz,基准音区160~1200Hz 女低音123~493Hz,女高音220~1.1KHz 声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。声音可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。 5 实验内容及步骤 5.1 获取音频文件 5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频 件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频 5.2 音频的时域处理 5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时, 由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像 5.3 音频的频域处理 5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。 5.3.2 观察频域图,分析男女声特点。 5.4 噪声的去除 5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。 5.4.2 将去除噪声的数组转换成音频文件

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/553170261.html, for more information,please refer to https://www.360docs.net/doc/553170261.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

西电随机信号分析大作业

随机信号分析大作业 学院:电子工程学院 班级:021151 学号:02115037 姓名:隋伟哲

第一题:设有随机信号X(t)=5cos(t+a),其中相位a是在区间(0,2π)上均匀分布的随机变量,使用Matlab编程产生其三个样本函数。 解: 源程序如下: clc;clear; C=2*pi*rand(1,3);%在[0,2π]产生均匀分布的相位角 t=1:.1:80; y1=5*cos(t+C(1)); %将产生的随机相位角逐一代入随机过程中 y2=5*cos(t+C(2)); %将产生的随机相位角逐一代入随机过程中 y3=5*cos(t+C(3)); %将产生的随机相位角逐一代入随机过程中 plot(t,y1,'r-'); hold on; plot(t,y2,'g--'); hold on; plot(t,y3,'k-'); xlabel('t');ylabel('X(t)'); grid on;axis([0 30 -8 8]); title('随机相位的三条样本曲线'); 产生的三条样本曲线:

第二题:利用Matlab程序设计一正弦型信号加高斯白噪声的复合信号。(1)分析复合信号的功率谱密度、幅度分布特性; (2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性; (3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。 解:设定正选信号的频率为10HZ,抽样频率为100HZ x=sin(2*pi*fc*t)

(1)正弦函数加上高斯白噪声: y=awgn(x,10) y 的幅度分布特性可以通过傅里叶变换得到: Y(jw)=fft(y) y 的功率谱密度: G(w)=Y(jw).*conj(Y(jw)/length(Y(jw))) 随机序列自相关函数的无偏估计公式为: 1 01()()()N m xx n R m x n x n m N m --==+-∑ 01m N ≤≤- (2)复合信号 y 通过RC 积分电路后得到信号y2 通过卷积计算可以得到y2 即:y2= conv2(y,b*pi^-b*t) y2的幅度分布特性可以通过傅里叶变换得到: Y2(jw)=fft(y2) y2的功率谱密度: G2(w)=Y2(jw).*conj(Y2(jw)/length(Y2(jw))) (3)复合信号 y 通过理想滤波器电路后得到信号y3 通过卷积计算可以得到y3 即:y3=conv2(y,sin(10*t)/(pi*t)) y3的幅度分布特性可以通过傅里叶变换得到: Y3(jw)=fft(y3) y3的功率谱密度: G3(w)=Y3(jw).*conj(Y3(jw)/length(Y3(jw)))

现代信号处理大作业题目+答案

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

西南交大现代信号处理作业

现代信号处理作业 1.(5″)证明下面定理:任何一个无偏估计子方差的下界叫作Cramer-Rao 下界 定理:令1(,,)N x x x =为一样本向量,(|)f x θ是x 的条件密度,若?θ是θ的一个无偏估计子,且(|)/f x θθ??存在,则 22 1 ??var()()[ln (|)]E E f x θ θθθθ =-≥? ? 式中?ln (|)()()f x K θθθθθ ?=-?。其中()K θ是θ的某个不包含x 的正函数。 2.(10″)Wiener 滤波是信号处理中最常用和基础的波形估计工具之一,对其在自己研究领域的应用情况进行一个简单综述。 3.(5″)二阶滑动平均过程由 2()()1(1)2(2), {()~(0,)}x n w n b w n b w n w n N σ=+-+- 定义,式中2(0,)N σ表示正态分布,其均值为零、方差为2σ。求x(n)的功率谱。 4.(20″)信号的函数表达式为: ()sin(2100)sin(2300)()sin(2200)()()x t t t A t t dn t n t πππ=++++,其中,A(t)为一随时间 变化的随机过程,dn(t)为经过390-410Hz 带通滤波器后的高斯白噪声,n(t)为高斯白噪声,采样频率为1kHz ,采样时间为2.048s 。 (1) 利用现代信号处理知识进行信号的谱估计; (2) 利用现代信号处理知识进行信号的频率提取; (3) 分别利用Wiener 滤波和Kalman 滤波进行去噪; (4) 利用Wigner-Ville 分布分析信号的时频特征。 5.(10″)附件中表sheet1 为某地2008年4月28日凌晨12点至2008年5月4日凌晨12点的电力系统负荷数据,采样时间间隔为1小时,利用ARMA 方法预测该地5月5日的电力系统负荷,并给出预测误差(5月5日的实际负荷数据如表sheet2)。

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

南邮现代信号处理最后大作业4道题目(含答案)

南邮研究生“现代信号处理”期末课程大作业 (四个题目任选三题做) 1. 请用多层感知器(MLP )神经网络误差反向传播(BP )算法实现异或问题(输入为[00;01;10;11]X T =,要求可以判别输出为0或1),并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补),进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001)第四章附录提供的数据(pp.352-353),试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1) Levinson 算法 2) Burg 算法 3) ARMA 模型法 4) MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11), 系统输入是取值为±1的随机序列)(n x ,其均值为零;参考信号)7()(-=n x n d ;信道具有脉冲响应: 1 2(2)[1cos( )]1,2,3()20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等),且信道受到均 值为零、方差001.02 =v σ(相当于信噪比为30dB)的高斯白噪声)(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线): 1) 横向/格-梯型结构LMS 算法 2) 横向/格-梯型结构RLS 算法 并分析其结果。

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

现代信号处理作业

1.总结学过的滤波器设计方法,用matlab 仿真例子分析不同设计方法的滤波器的性能及适应场合。 答: 1.1模拟低通滤波器的设计方法 1.1.1 Butterworth 滤波器设计步骤: ⑴.确定阶次N ① 已知Ωc 、Ωs 和As 求Butterworth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp()的衰减 Ap 求Butterworth DF 阶数N ③ 已知Ωp 、Ωs 和 Ω=Ωp 的衰减Ap 和As 求Butterworth DF 阶数N 3dB p Ω≠-/10 /1022(/)10 1,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 根据公式: 在左半平面的极点即为的极点,因而 1.1.2 切比雪夫低通滤波器设计步骤: ⑴.确定技术指标 归一化: ⑵.根据技术指标求出滤波器阶数N 及: ⑶.求出归一化系统函数 其中极点由下式求出: ()a H s 2,2N ()()a a H s H s -()a H s ,2,,N p Ωp αs Ωs α/1p p p λ=ΩΩ=/s s p λ=ΩΩε0.12 10 1δε=-p δα=

或者由和S 直接查表得 2.数字低通滤波器的设计步骤: (1) 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 (2)将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫: N ()a H p /s s p λ=ΩΩ0.1210 1δ ε=-p δα=

现代信号处理大作业题目 答案.

研究生“现代信号处理”课程大型作业 (以下四个题目任选三题做 1. 请用多层感知器(MLP 神经网络误差反向传播(BP 算法实现异或问题(输入为 [00;01;10;11]X T =,要求可以判别输出为0或1 ,并画出学习曲线。其中,非线性函数采用S 型Logistic 函数。 2. 试用奇阶互补法设计两带滤波器组(高、低通互补,进而实现四带滤波器组;并画出其频响。滤波器设计参数为:F p =1.7KHz , F r =2.3KHz , F s =8KHz , A rmin ≥70dB 。 3. 根据《现代数字信号处理》(姚天任等,华中理工大学出版社,2001第四章附录提供的数据(pp.352-353,试用如下方法估计其功率谱,并画出不同参数情况下的功率谱曲线: 1 Levinson 算法 2 Burg 算法 3 ARMA 模型法 4 MUSIC 算法 4. 图1为均衡带限信号所引起失真的横向或格型自适应均衡器(其中横向FIR 系统长M =11, 系统输入是取值为±1的随机序列(n x ,其均值为零;参考信号7((-=n x n d ;信道具有脉冲响应: 12(2[1cos(]1,2,3(20 n n h n W π-?+=?=???其它 式中W 用来控制信道的幅度失真(W = 2~4, 如取W = 2.9,3.1,3.3,3.5等,且信道受到均

值为零、方差001.02=v σ(相当于信噪比为30dB的高斯白噪声(n v 的干扰。试比较基 于下列几种算法的自适应均衡器在不同信道失真、不同噪声干扰下的收敛情况(对应于每一种情况,在同一坐标下画出其学习曲线: 1 横向/格-梯型结构LMS 算法 2 横向/格-梯型结构RLS 算法 并分析其结果。 图1 横向或格-梯型自适应均衡器 参考文献 [1] 姚天任, 孙洪. 现代数字信号处理[M]. 武汉: 华中理工大学出版社, 2001 [2] 杨绿溪. 现代数字信号处理[M]. 北京: 科学出版社, 2007 [3] S. K. Mitra. 孙洪等译. 数字信号处理——基于计算机的方法(第三版[M]. 北京: 电子工

哈工大测试大作业——信号的分析与系统特性——锯齿波

1 题目: 写出下列信号中的一种信号的数学表达通式,求取其信号的幅频谱图(单边谱和双边谱)和相频谱图,若将此信号输入给特性为传递函数为)(s H 的系统,试讨论信号参数的取值,使得输出信号的失真小。 (选其中一个信号) 000 2=tan ,=45,=1w 2K T s T π ααπ= =假设锯齿波的斜取周期,则圆周率,A=1 2 幅频谱和相频谱 00()(+nT )(

所以0001111 (t)=(sin(w t)+sin(2w t)+sin(3w t)+223 w π-…) 转换为复指数展开式的傅里叶级数: 0000000-20 2 1-0 --1 00-02222 0001= (t)e =e 11 =e e |11 = e (2) T jnw t T n jnw t jnw t jnw t jnw t c w dt T t dt t jnw jnw jnw n w n w w π-??-+? ???+-=? ? 其中 当n=0时,01 = =22 A c ,0=0? ; =1,2,3,n ±±±当… 时, 111 222n n c A n π=== , 1,2,32 =1,2,32 n n n π ?π?=??? ?-=---?? 等 等 用Matlab 做出其双边频谱 图 1锯齿波双边幅频谱 A = 1 T0 = 1

随机信号分析大作业

随机信号分析大作业

一、实验目的 基于随机过程的莱斯表达式产生窄带随机过程。 二、实验内容及实验原理 1,基于随机过程的莱斯表达式 00()()cos ()sin y t a t t b t t ωω=- (3.1) 2,实验过程框图如下: 3,理想低通滤波器如图所示: 图1 理想低通滤波器 ()20 A H ?ω ?ω≤ ?ω=? ??其它 (3.2) 设白噪声的物理谱0=X G N ω() ,则系统输出的物理谱为 2 2 0=()=20 Y X N A G H G ?ω ?0≤ω≤ ?ωωω???()() 其它 (3.3) 输出的自相关函数为:

1 ()()cos 2Y Y R G d τωωτωπ ∞ = ? /2 200 1cos 2N A d ωωτωπ ?= ? (3.4) 2 0sin 242 N A ωτωωτπ ??=? ? 可知输出的自相关函数()Y R τ是一个振荡函数。计算高斯白噪声x(t)、限带白噪声()a t 、()b t 及窄带随机过程()y t 的均值,并绘出随机过程各个随机过程的自相关函数,功率谱密度图形。 三、MATLAB 实验程序 function random(p,R,C) %产生一个p 个点的随机过程 %--------------------------高斯窄带随机过程代码--------------------------% n=1:p; w=linspace(-pi,pi,p); wn=1/2*pi*R*C; [b,a]=butter(1,wn,'low'); %产生低通滤波器 Xt=randn(1,p); %产生p 个点均值为0方差为1的随机数,即高斯白噪声 at=filter(b,a,Xt); %让高斯白噪声通过低通滤波器 y_at=at.*cos(w.*n); %产生随机过程a (t ) y_bt=at.*sin(w.*n); %产生随机过程b (t ) yt=y_at-y_bt; %产生一个p 个点的高斯窄带随机过程 subplot(211) plot(yt) title('高斯窄带随机过程y(t)') subplot(212) pdf_ft=ksdensity(yt) ; plot(pdf_ft) title('y(t)的概率密度图') disp('均值如下') E_Xt=mean(y_at) E_at=mean(y_at) E_bt=mean(y_bt) E_ft=mean(yt) %-----------------------自相关函数代码如下--------------------------% figure(2) R_Xt=xcorr(Xt); %高斯白噪声X(t)的自相关函数 R_at=xcorr(at); %限带白噪声的自相关函数 R_y_at=xcorr(y_at); %随机过程a(t).coswt 的自相关函数 R_y_bt=xcorr(y_bt); %随机过程b(t).coswt 的自相关函数 R_ft=xcorr(yt);

相关文档
最新文档