数学分析第二型曲线积分

数学分析第二型曲线积分
数学分析第二型曲线积分

数学分析第二型曲线积分

————————————————————————————————作者:————————————————————————————————日期:

§2 第二型曲线积分 教学目的与要求:

掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. 教学重点,难点:

重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容:

第二型曲线积分

一 第二型曲线积分的意义

在物理学中还碰到另一种类型的曲线积分问题。例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。

为此在曲线B A )

内插入1-n 个分点121,,,-n M M M Λ,与n M B M A ==,0一起把有向曲线B A )

分成n 个有向小曲线段),,2,1(1n i M M i i Λ=-,若记小曲线段i i M M 1-的弧长为

i s ?,则分割T 的细度为

i n

i s T ?=≤≤1max 。

设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么

)),(),,((),(y x Q y x P y x F =。

又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=?i i i x x x 与1--=?i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记

),(1i i M M y x L i i ??=-,

于是力),(y x F 在小曲线段i i M M 1-上所作的功

i i i i i i M M i i i y Q x p L F W i i ?+?=?≈-),(),(),(1ηξηξηξ,

其中),(i i ηξ为小曲线段i i M M 1-上任一点。因而力),(y x F 沿曲线B A )

所作的功近似的等于

∑∑∑===?+?≈=n

i i i i n i i i i n i i y Q x p W W 1

1

1

),(),(ηξηξ

当细度0→T 时,上式右边和式的极限就应该是所求的功。这种类型的和式的极限就是下面所要讨论的第二型曲线积分。

定义1 设函数),(y x P 与),(y x Q 定义在平面有向可求长度曲线上。对L 的任一分割

T ,它把L 分成n 个小曲线段

),,2,1(1n i M M i i Λ=-

其中B M A M n ==,0。记各小曲线段i i M M 1-的弧长为i s ?,分割T 的细度i n

i s T ?=≤≤1max 。

又设T 的分点i M 的坐标为),(i i y x ,并记。在每个小曲线段i i M M 1-上任取一点),(i i ηξ,若极限

∑∑=→=→?+?n

i i

i

i

T n

i i

i

i

T y

Q x

p 1

1

),(lim

),(lim

ηξηξ

存在且与分割T 与点),(i i ηξ的取法无关,则称此极限为函数),(y x P ,),(y x Q 沿有向曲线

L 上的第二型曲线积分,记为

?+L

dy y x Q dx y x P ),(),(或?

+AB

dy y x Q dx y x P ),(),( )1(

上述积分也可写作

??+L

L

dy y x Q dx y x P ),(),(

或 ?

?+AB

AB

dy y x Q dx y x P ),(),(

为书写简洁起见,)1(式常简写成

?+L

Qdy Pdx 或?

+AB

Qdy Pdx

若L 为封闭的有向曲线,则记为

?+L

Qdy Pdx

)2(

若记),()),,(),,((),(dy dx ds y x Q y x P y x F ==,则)1(式可写成向量形式 ??L

ds F 或?

?AB

ds F )3(

于是,力)),(),,((),(y x Q y x P y x F =沿有向曲线B A L )

:对质点所作的功为

?+=L

dy y x Q dx y x P W ),(),(。

倘若L 为空间有向可求长度曲线,),,(),,,(),,,(z y x R z y x Q z y x P 为定义在L 上的函数,则可按上述办法类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为

?++L

dz z y x R dy z y x Q dx z y x P ),,(),,(),,(, )4(

或简写成

?++L

Rdz Qdy Pdx 。

当把)),(),,(),,((),(y x R y x Q y x P y x F =与),,(dz dy dx ds =看作三维向量时,)4(式也可表示成)3(式的向量形式。

第二型曲线积分与曲线L 的方向有关。对同一曲线,当方向由A 到B 改变为由B 到A 时,每一小曲线段的方向都改变。从而所得的i i y x ??,也随之改变符号,故有

??

+-=+BA

AB

Qdy Pdx Qdy Pdx

而第一型曲线积分的被积表达式只是函数),(y x f 与弧长的乘积,它与曲线L 的方向无关。这是两种类型曲线积分的一个重要区别。

类似于第一型曲线积分,第二型曲线积分也有如下一些重要性质:

1. 若),,2,1(k i dy Q dx P AB i i Λ=+?存在,则dy Q c dx P c k i i i L

k i i i ??

?

??+??? ??∑?∑--11也存在,且

()∑?∑?∑=--+=??

?

??+???

??k

i L

i k i i i L k i i i Qdy Pdx c dy Q c dx P c 111,

其中),,2,1(k i c i Λ=为常数。

2. 若有向曲线L 是由有向曲线k L L L Λ,,21首尾相接而成,且

)

,,2,1(k i Qdy Pdx i

L Λ=+?

存在,则

?+L

Qdy

Pdx 也存在, 且

∑?

?=+=+k

i L L

i

Qdy Pdx Qdy Pdx 1

。二 第二型曲线积分的计算

与第一型曲线积分一样,第二型曲线积分也可化为定积分来计算。

设平面曲线

??

?==)

()

(:t y t x L ψ?,],[βα∈t 其中)(),(t t ψ?在[]βα,上具有一阶连续导函数,且点A 与B 的坐标分别为()()()αψα?,与

()()()βψβ?,。又设),(y x P 与),(y x Q 为L 上的连续函数,则沿L 从A 到B 的第二型曲线

积分

()()()()()()()()[]dt

t t t Q t t t P dy y x Q dx y x P L

??'+'=+β

αψψ??ψ?,,),(),(

)6(

仿照1中定理1.20的方法分别证明

()()()()dt

t t t P dx y x P L

??'=β

α?ψ?,),(,

()()()()dt t t t Q dx y x Q L

??

'=β

α

ψψ?,),(,

由此便可得公式)6(,这里不再赘述了。

对于沿封闭曲线的第二型曲线积分)2(的计算,可在L 上任意选取一点作为起点,沿L 所指定的方向前进,最后回到这一点。

例1 计算

?-+L

dy x y xydx )(,其中L 分别沿如图320-中路线

(i)直线AB ;

(ii)ACB (抛物线:1)1(22

+-=x y ); (iii)ADBA (三角形周界) 解 (i)直线AB 的参数方程为???+=+=t

y t

x 211, ]1,0[∈t 。

故由公式)6(可得

()()[]()

6

252512211)(1

210

=

++=+++=-+???

dt t t dt t t t dy x y xydx AB

。 (ii)曲线ACB 为抛物线21,1)1(22

≤≤+-=x x y ,所以

()[]()[

](){}

??

--+-++-=-+2

1

2

2

14112112)(dx

x x x x x dy x y xydx ACB

()

3

10123532102

1

23=

-+-=?dx x x x 。

(iii)这里L 是一条封闭曲线,故可从A 开始,应用上段的性质2,分别求沿DB AD ,和BA 上的线积分然后相加即可得到所求之曲线积分。

沿

线

)

21(1,:≤≤==x y x x AD 的线积分为

2

3)(2

1

=

==-+???

xdx xydx dy x y xydx AD

AD

。 沿直线)31(,2:≤≤==y y y x DB 的线积分为

0)2()()(3

1

=-=-=-+???

dy y dy x y dy x y xydx DB

DB

沿直线BA 的线积分可由(i)及公式)5(得到

6

25)()(-

=-+-=-+??

AB

BA

dy x y xydx dy x y xydx 所以

38625023)()(-=??

?

??-++=

-=-+??

DB

L

dy x y dy x y xydx 例2 计算

?

+L

ydx xdy ,这里:L (i)沿抛物线22x y =,从O 到B 的一段(图20-4)

;(ii)沿直线段x y OB 2:=;(iii)沿封闭曲线OABO 。

解 (i) []

23

6

62)4(1

21

2==

=+=+???

dx x dx x x x ydx xdy L

。 (ii)

22

1

4)22(10

=?

=+=+??

dx x x ydx xdy L

。 (iii)在OA 一段上,;10,0≤≤=x y 在AB 一段上,;20,1≤≤=y x 在BO 一段上与(ii)一样是x y 2=从1=x 到0=x 的一段。所以

,001

==+??

o

OA

dx ydx xdy

,212

1

==+??

dx ydx xdy AB

,2-=+-=+??

OB

BO

ydx xdy ydx xdy (见(ii))。

因此

0220=-+=++=+?

?

?

?BO

AB

OA

L

ydx xdy 。

对于沿空间有向曲线的第二型曲线积分的计算公式也与)6(式相仿。设空间有向光滑曲线L 的参量方程为

:L ??

?

??===),(),(),(t z z t y y t x x βα≤≤t , 起

))

(),(),((αααz y x ,终点为

))

(),(),((βββz y x ,则

[]??

'+'+'=++β

α

dt

t z t z t y t x R t y t z t y t x Q t x t z t y t x P Rdz Qdy Pdx L

)())(),(),(()())(),(),(()())(),(),((。)7(

这里要注意曲线方向与积分上下限的确定应该一致。 例3 计算第二型曲线积分 ?

+-+=

L

dz x dy x y xydx I 2)(,

其中L 是螺旋曲线bt z t a y t a x ===,sin ,cos ,从0=t 到π=t 上的一段。

解 由公式)7(,

()2

1)cos cos sin cos sin cos (20

2222223a dt b a t t a t a t t a I t =

+-+-=?π

π

0222332sin 21)1(21sin 21sin 3

1????????? ??+++--=t t b a t a t a

π)1(2

12

b a +=

。 例4 求在力),,(z y x x y F ++-作用下,

(i)质点由A 沿螺旋线1L 到B 所作的功(图520-),其中

π20,,sin ,cos :1≤≤===t bt z t a y t a x L ;

(ii)质点由A 沿直线2L 到B 所作的功。

解 如本节开头所述,在空间曲线L 上力F 所做的功为

??+++-=?=L

L

dy z y x xdy ydx ds F W )(。

(i)

由于bdt dz tdt a dy tdt a dx ==-=,cos ,sin ,所以

?-=+++--=π

ππ20

2222222)(2)sin cos cos sin (a b dt b t ab t ab t a t a W t 。

(ii)2L 的参量方程为

b t t z y a x π20,,0,≤≤===。

由于,,0,0dt dz dy dx ===所以

)(2)(20

b a b dt t a W b

πππ+=+=?

复习思考题、作业题: 1 (1)(4), 2

第二型曲线积分

§2 第二型曲线积分 教学目的:掌握第二型曲线积分的定义,性质和计算公式. 教学要求:(1)掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. (2)了解两类曲线积分的联系. 教学建议:(1) 要求学生必须掌握第二型曲线积分的定义和计算公式. (2)两类曲线积分的联系有一定的难度,可要求较好学生掌握,并布置这方面习题 教学程序: 一. 第二型曲线积分的定义: 1. 力场()),( , ),(),(y x Q y x P y x =沿平面曲线L 从点A 到点B 所作的功: 一质点受变力F(x,y)的作用沿平面曲线C 运动,当质点从C 之一端点A 移动到另一端B 时,求力F(x,y)所做功W. 大家知道,如果质点受常力 F 的作用沿直线运动, 位移为s.那末这个常力所做功为 W=||F||||s||cos θ 其中||F||.||s||分别表示向量(矢量)的长度,θ为F 与S 的夹角 现在问题的难度是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?还是用折线逼近曲线和局部一常代变的方法来解决它(微分分析法). 为此,我们对有向曲线C 作分割 },,.....,,{110n n A A A A T -=,即在AB 内 插入n-1个分点,,.....,,121-n M M M 与 A=n M B M =,0一起把曲线分成n 个有向 小曲线段i i M M 1-(i=1,2,……,n)以Si ? 记为小曲线段i i M M 1-的弧长.}max{Si ?=λ 设力F(x,y)在x 轴和y 轴方向上的投影分别为 P(x,y)与Q(x,y) 即F(x,y)=(P(x,y),Q(x,y))=P(x,y)i+Q(x,y)j 由于),,().,(111i i i i i i y x M y x M --- 记11,---=?-=?i i i i i i y y y x x x 和i i m C 1-=(),(y x ??) 从而力F(x,y)在小曲线段i i M M 1-上所作的功 i W ),(i F ηξ≈i i m C 1-= P(j i ηξ,)i x ?+Q (j i ηξ,)i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力F 沿C(AB)所作的功可近似 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),()),((ηη 当0→λ时,右端积分和式的极限就是所求的功,这种类型和式极限计算上述形式的和式上极限,得

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线y=22ax x -到点o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()11sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

数学分析第八章不定积分

第八章不定积分 §1 不定积分概念与基本积分公式 正如加法有其逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算———积分法.我们已经知道,微分法的基本问题是研究如何从已知函数求出它的导函数,那么与之相反的问题是:求一个未知函数,使其导函数恰好是某一已知函数.提出这个逆问题,首先是因为它出现在许多实际问题之中.例如:已知速度求路程;已知加速度求速度;已知曲线上每一点处的切线斜率(或斜率所满足的某一规律),求曲线方程等等.本章与其后两章(定积分与定积分的应用)构成一元函数积分学. 一原函数与不定积分 定义1 设函数f 与F 在区间I 上都有定义.若 F ′( x) = f( x ), x ∈I, 则称F 为f 在区间I 上的一个原函数. - 1 例如, 1 3 x 3 是x 2 在( - ∞,+ ∞) 上的一个原函数, 因为(1 3 1 x 3)′= x 2 ; 又如 2 cos 2 x 与- 2 cos 2 x + 1 都是sin 2 x 在(-∞, + ∞) 上的原函数, 因为 ( -1 cos 2 x )′= ( -1 cos 2 x + 1)′= sin 2 x . 2 2 如果这些简单的例子都可从基本求导公式反推而得的话,那么 F( x) = x arctan x - 1 ln (1 + x 2 ) 2 是f ( x) = arctan x 的一个原函数, 就不那样明显了.事实上, 研究原函数必须解决下面两个重要问题: 1 .满足何种条件的函数必定存在原函数? 如果存在, 是否唯一? 2 .若已知某个函数的原函数存在, 又怎样把它求出来? 关于第一个问题, 我们用下面两个定理来回答; 至于第二个问题, 其解答则是本章接着要介绍的各种积分方法.

数学分析 重积分

第二十一章重积分 教学目的:1.理解并掌握二重积分的有关概念及可积条件,进而会计算二重积分; 2.理解三重积分的概念,掌握三重积分的计算方法,并能应用其解决有关的数学、物理方面的计算问题; 教学重点难点:本章的重点是重积分的计算和格林公式;难点是化重积分为累次积分。 教学时数:22学时 § 1 二重积分概念 一.矩形域上的二重积分 :从曲顶柱体的体积引入. 用直线网分割 . 定义二重积分 . 例1用定义计算二重积分 . 用直线网 分割该正方形 , 在每个正方形上取其右上顶点为介点 . 解 . 二. 可积条件 : D . 大和与小和. Th 1 , .

Th 2 , . Th 3 在D上连续 , Th 4 设 D ) . 若在D上有界 , 且 ( 或 在D \ 上连续 , 则 三.一般域上的二重积分: 1.定义:一般域上的二重积分. 2.可求面积图形: 用特征函数定义. 四.二重积分的性质 : 性质1 . 性质2 关于函数可加性 . 在D上可积在 性质3 则 和可积 , 且. 性质4 关于函数单调性 . 性质5 .

性质6 . 性质7 中值定理 . Th 若区域D 的边界是由有限条连续曲线 ( 或 在D上可积 . )组成 , 在D上连续 , 则 例3去掉积分中的绝对值 . § 2 二重积分的计算 二. 化二重积分为累次积分: 矩形域上的二重积分: 1. 2. 简单域上的二重积分: 简推公式, 一般结果]P219Th9. 例1 , . 解法一P221例3 , 解法二为三角形, 三个顶点为 . 例2 , . P221例2. 的两直交圆柱所围立体的体积 . P222例4. 例3求底半径为

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

数学分析第二型曲线积分

数学分析第二型曲线积分

————————————————————————————————作者:————————————————————————————————日期:

§2 第二型曲线积分 教学目的与要求: 掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别. 教学重点,难点: 重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容: 第二型曲线积分 一 第二型曲线积分的意义 在物理学中还碰到另一种类型的曲线积分问题。例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。 为此在曲线B A ) 内插入1-n 个分点121,,,-n M M M Λ,与n M B M A ==,0一起把有向曲线B A ) 分成n 个有向小曲线段),,2,1(1n i M M i i Λ=-,若记小曲线段i i M M 1-的弧长为 i s ?,则分割T 的细度为 i n i s T ?=≤≤1max 。 设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么 )),(),,((),(y x Q y x P y x F =。 又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=?i i i x x x 与1--=?i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记 ),(1i i M M y x L i i ??=-, 于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W i i ?+?=?≈-),(),(),(1ηξηξηξ, 其中),(i i ηξ为小曲线段i i M M 1-上任一点。因而力),(y x F 沿曲线B A ) 所作的功近似的等于 ∑∑∑===?+?≈=n i i i i n i i i i n i i y Q x p W W 1 1 1 ),(),(ηξηξ 当细度0→T 时,上式右边和式的极限就应该是所求的功。这种类型的和式的极限就是下面所要讨论的第二型曲线积分。

第二型曲线积分论文

目录 1 引言 (1) 2 文献综述 (1) 2.1国内外研究现状 (1) 2.2国内外研究现状评价 (1) 2.3提出问题 (2) 3预备知识 (2) 3.1第二型曲线积分的定义 (2) 3.2第二型曲线积分的性质 (3) 4第二型曲线积分的计算 (4) 4.1直接计算 (4) 4.2利用格林公式计算 (12) 4.3利用曲线与路径无关计算 (14) 4.4利用奇偶对称性计算 (16) 4.5利用数学软件Mathmatic进行计算 (16) 5结论 (19) 5.1主要观点 (19) 5.2启示 (19) 5.3局限性 (19) 5.4努力方向 (19) 参考文献 (20)

1 引言 第二型曲线积分与第一型曲线积分相比有明显不同的几何意义和物理意义,第一型曲线积分可以看成是定积分的计算,其意义较容易理解,计算也相对简单.而第二型曲线积分又称为对坐标的积分,具有第一型曲线积分不具有的方向性,计算较为复杂,物理意义十分明显,变力分别在x轴,y轴沿曲线做功,这在物理学上有着重要的应用. 对于不同类型的被积函数,对应的计算方法也不同.为了使计算更为简单,本文阐述了第二类曲线积分的计算方法,不仅可以通过参数方程转化为定积分来计算,而且对于平面曲线还可以通过格林公式转化为对二重积分的计算,第二类曲线积分还可以通过对称性分奇偶两种情况简化计算或利用了数学软件Mathmatic进行计算. 2 文献综述 2.1 国内外研究现状 查阅相关文献,众多数学教育者从不同角度和侧面探讨了第二型曲线积分的计算.刘玉琏在文献[1]中论述了第二形曲线积分的概念及其性质;富景龙在文献[2]中概括了第二型曲线积分被积函数的类型;薛嘉庆在文献[3]中讲了被积函数的类型不同有不同的计算方法,并给出了相应的例子;刘国均等在文献[4-5]中探究了第二型曲线积分可以化为定积分来计算,并给出公式及相应的证明;刘莲芬等在文献[6-7]介绍了在第二型曲线积分的计算中将路径的参数方程表示出来;王景克在文献[8-9]简述了做题常用的技巧;陈先开在文献[11-12]研究了曲线积分与路径无关问题与如何判断曲线积分与路径无关;陈文灯,黄先开在文献[13]中介绍了格林公式,并提供了一定的实例,并通过实例总结了计算第二型曲线积分的一般步骤;武艳等在文献[14]给出利用对称性计算第二型曲线积分,使得计算简单;阳明盛及林建华在文献[15]中提出了用数学软件Mathemactica解题的调用格式,使得复杂的计算简单化. 2.2国内外现状评价 从上面相关的研究中可以看出,许多对第二型曲线积分计算的研究者从不同的方面进行了相应的研究,但都只是从某一个方面进行讨论,大部分文献都没有结合数学软件Mathmatic进行空间画图及计算.

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

华东师范大学数学系《数学分析》讲义重积分【圣才出品】

第21章重积分 21.1本章要点详解 本章要点 ■二重积分的概念 ■二重积分的定义、存在性及性质 ■格林公式 ■曲线积分与路径无关的定义 ■二重积分的变量替换 ■三重积分的定义、计算 ■重积分的应用 重难点导学 一、二重积分的概念 1.平面图形的面积 (1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类 ①Δi上的点都是P的内点; ②Δi上的点都是P的外点,即; ③Δi上含有P的边界点.

图21-1 将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ). 由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记 显然有 通常称I P 为P 的内面积,P I 为P 的外面积. (2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积. (3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得 S p (T )-s p (T )<ε (4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

数学分析之定积分

第九章定积分 教学要求: 1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 4.理解并熟练地应用定积分的性质; 5.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点: 1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 3.理解并熟练地应用定积分的性质; 4.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学时数:14学时 § 1 定积分概念(2学时) 教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;

教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1.曲边梯形的面积: 2. 变力所作的功: 二、不积分的定义: 三、举例: 例1已知函数在区间上可积 .用定义求积分. 解取等分区间作为分法, . 取 .= . 由函数在区间上可积 ,每个特殊积分和之极限均为该积分值 . 例2已知函数在区间上可积 ,用定义求积分. 解分法与介点集选法如例1 , 有 .

上式最后的极限求不出来 , 但却表明该极限值就是积分. 例3讨论Dirichlet函数在区间上的可积性 . 四、小结:指出本讲要点 § 2 Newton — Leibniz公式(2学时) 教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分. Th9.1 (N — L公式)( 证 ) 例1求ⅰ> ; ⅱ> ; 例2 求. §3可积条件(4学时) 教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题. 教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 一、必要条件: Th 9.2 ,在区间上有界. 二、充要条件:

数学分析8不定积分总练习题

第八章 不定积分 总练习题 求下列不定积分: (1)∫4 3x 1 x 2x --dx ;(2)∫xarcsinxdx ;(3)∫ x 1dx +;(4)∫e sinx sin2xdx ; (5)∫x e dx ;(6)∫1 x x dx 2-;(7)∫x tan 1x tan 1+-dx ;(8)∫32)2-x (x -x dx ; (9)∫ x cos dx 4;(10)∫sin 4 xdx ;(11)∫4 x 3x 5-x 23+-dx ;(12)∫arctan(1+x )dx ; (13)∫2x x 47+dx ;(14)∫x tan tanx 1tanx 2++dx ;(15)∫100 2 x) -(1x dx ; (16)∫2x arcsinx dx ;(17)∫xln ??? ??+x -1x 1dx ;(18)∫x sinx cos dx 7;(19)∫e x 2 2x 1x -1??? ??+dx ; (20)I n =∫ u v n dx, 其中u=a 1+b 1x ,v=a 2+b 2x ,求递推形式解. 解:(1)∫ 4 3x 1 x 2x --dx=∫41x dx-2∫12 1x dx-∫4 1x - dx =5445x -13241213x -3 4 ∫43 x +C. (2)∫xarcsinxdx=-2 1 ∫arcsinxd(1-x 2)=-2 1(1-x 2)arcsinx+2 1 ∫(1-x 2)darcsinx =-21(1-x 2)arcsinx+21∫2x -1dx =-21(1-x 2)arcsinx+21 ∫t sin -12dsint =-21(1-x 2)arcsinx+21∫cos 2tdt=-21(1-x 2)arcsinx+81 ∫(1+cos2t)d2t =-21(1-x 2)arcsinx+4t +81sin2t+C=-21(1-x 2)arcsinx+41arcsinx +4 1 sintcost+C =2x 2arcsinx-41arcsinx +2x -14 x +C. (3)∫x 1dx +=∫t 1dt 2+=∫t 12tdt +=2∫t 1t 1++dt-2∫t 1dt +=2t-2ln|1+t|+C =2x -2ln|1+x |+C. (4)∫e sinx sin2xdx=2∫e sinx sinxcosxdx=2∫sinxde sinx =2e sinx sinx-2∫e sinx dsinx

第二类曲线积分典型例题解析

第二类曲线积分典型例 题解析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

高等数学(2)第12章第二类曲线积分典型例题解析 例1 若对任意的x ,y 有y P x Q ??≡??,设C 是有向闭曲线,则?+C y Q x P d d = . 解:由格林公式将 其中D 为C l 围成的平面区域,及条件y P x Q ??≡??知,应该填写:0 例2._______d d =+-?y x x y l ,其中l 是延圆周1)1()1(22=-+-y x 正向一周. 解:因为圆周1)1()1(22=-+-y x 所围圆面积D 为:π?21,由格林公式得:???+=+-D l y x y x x y d d )11(d d =π2,应该填写:π2 例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分?+l y Q x P d d 与路径无关的充分必要条件是( ). A .在域D 内恒有y Q x P ??=?? B .在域D 内恒有y P x Q ??=?? C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+?'l y Q x P D .在D 内任一条闭曲线l '上,曲线积分0d d =+?' l y Q x P 解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则 ?+l y y x Q x y x P d ),(d ),(与路径无关D y x y P x Q ∈??=???),(,。 所以选择:B 例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .?+C y x x yx d d 332 B .?-C y x x y d d C .?-C y x x xy d d 22 D .?+C y y x yx d d 332

数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时) 【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。 【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。 【教学难点】求不定积分的技巧。 【教学过程】 一、原函数与不定积分 (一) 原函数 定义1 设函数与在区间)(x f )(x F I 上有定义。若 )()(x f x F =′, I x ∈, 则称为在区间)(x F )(x f I 上的一个原函数。 如:331x 是在R 上的一个原函数;2x x 2cos 21?, 12cos 2 1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。 x 2sin x 2cos ?x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? )(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。 )(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。 )(x F (证明在第九章中进行。) 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f

数必为无穷多个)。(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证:(i)这是因为[] .),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有 [] I x x f x f x G x F C x F ∈=?=′?′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡?,)()(. 口 (二) 不定积分 定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作: ∫dx x f )( 其中∫积分号;被积函数; ????)(x f ??dx x f )(被积表达式;??x 积分变量。 注1: 是一个整体记号; ∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。 C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。故有 ——先积后导正好还原; ∫=′)(])([x f dx x f 或 。 ∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。 +=′C x f dx x f )()(或 ∫。 +=C x f x df )()(如: C x dx x +=∫332, C x xdx +?=∫2cos 212sin 。 不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用 一、曲面的面积 问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积. 分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=?n i i S 1 ≈∑=?n i i A 1 , 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积. ∴当T →0时,可用和式∑=?n i i A 1 的极限作为S 的面积. 建立曲面面积计算公式: ∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=) ,(),(11 22i i y i i x f f ηξηξ++. ∵A i 在xy 平面上投影为σi , ∴△A i = i i γσcos ?=i i i y i i x f f σηξηξ?++),(),(122. 又和数∑=?n i i A 1 =∑=?++n i i i i y i i x f f 1 22),(),(1σηξηξ是连续函数

),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有 △S=∑=→?++n i i i i y i i x T f f 1220 ),(),(1lim σηξηξ=??++D y x dxdy y x f y x f ),(),(122, 或△S=∑ =→?n i i i T 1 cos lim γσ=??∧ D z n dxdy ) ,cos(, 其中),cos(∧ z n 为曲面的法向量与z 轴正向夹角的余弦. 例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤2 1 , 0≤θ≤2π}, 又z x = 2 2y x x += r r θcos =cos θ, z y =22y x y +=r r θsin =sin θ, ∴△S=??++D y x dxdy z z 221=?? π θ20210 2rdr d = π4 2. 例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=?'+b a dx x f x f )(1)(22π. 证:由上半旋转面方程为z=22)(y x f -, 得 z x = 2 2)()()(y x f x f x f -', z y = 2 2 )(y x f y --. 即有 221y x z z ++=2 22 2222)()()()(1y x f y y x f x f x f -+-'+=2 222)()) (1)((y x f x f x f -'+. ∴S=??--'+b a x f x f dy y x f x f x f dx ) () (2 22)()(1)(2=??-'+b a x f dy y x f dx x f x f )(0222)(1 )(1)(4 =??---'+b a x f x yf d x f y dx x f x f ) (0 1 2 22))(()(11)(1)(4

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分 5三重积分 一、三重积分的概念 引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i n i i i i T V f ?∑=→10 ),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i n i V ≤≤. 概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i n i V ≤≤. 在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i n i i i i V f ?∑=1 ),,(ζηξ. 定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有 J V f i n i i i i -?∑=1 ),,(ζ ηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z) 在V 上的三重积分,记作J=???V dV z y x f ),,(或J=???V dxdydz z y x f ),,(,其中 f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域. 注:当f(x,y,z)=1时,???V dV 在几何上表示V 的体积.

数学分析9.1定积分概念

数学分析9.1定积分 概念 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

F(x)≈F(ξi ), x ∈[x i-1,x i ], i=1,2,…,n. 于是质点从x i-1位移到x i 时,力F 所作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

相关文档
最新文档