三角形的两条内外角平分线夹角的模型解决问题

三角形的两条内外角平分线夹角的模型解决问题
三角形的两条内外角平分线夹角的模型解决问题

1、如图所示,在△ABC 中,∠ABC ,∠ACB 的平分线相交于点O ,根据下列条件,求∠BOC 的度数。

(1)若∠ABC =80°,∠ACB =40°,则∠BOC =___;

(2)若∠ABC =∠ACB =80°,则∠BOC =___;

(3)若∠A =90°,则∠BOC =___;

(4)若∠A =x °,则∠BOC =___;

(5)探究:从以上四个小题中,你能得出∠BOC 与∠A 的数量关系吗?若能,写出∠BOC 与∠A 的关系,并说明理由。

3、如图,在△ABC 中,分别延长△ABC 的边AB ,AC 到D ,E ,∠CBD 与∠BCE 的平分线相交于点P ,爱动脑筋的小明在写作业时发现如下规律:

A)若∠A=50°,则∠P=65°=90°?2

50?; B)若∠A=90°,则∠P=45°=90°?2

90?; C)若∠A=100°,则∠P=40°=90°?2100?;

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

三角形外角定理.doc

北师大版八上第七章第五节 《三角形内角和定理2》 教学设计 郑州市第七十五中学郑红莉

《三角形内角和定理2》教学设计 郑州市第七十五中学郑红莉 一课标要求 掌握三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,证明三角形任意两边之和大于第三边。 二基于对教材的理解 本节课是北师大版八年级上册第七章第五节《三角形内角和定理》第2 课时的内容,学生在前一节课中已经学习了三角形内角和定理的证明和应用,因此本节课是对三角形知识学习的延伸,主要涉及三角形的外角定义,三角形两个外角定理及应用,同时进一步熟悉和掌握证明的步骤、格式、方法、技巧。 三基于对考试要求的分析 能利用三角形内角和定理推论进行角度计算和角度数量关系证明。 四基于对学情的分析 1、学生已有知识基础。 学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。 2、已有的活动经验 具备一定的学习能力,包括自学和交流,具备有条理的思考分析和表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象

的材料来理解相关知识和概念。 3、学习本节可能出现的难点 学生仅具备初步的利用定理推理证明的能力,但如何证明几何中的不等关系可能存在困难,另外证明的方法、技巧有待提高。 4、学生座次表 A C A C A B B D B D B D A C A C A C B D B D B D A C A C A C 前后四人为一组,A 为组长,每一组课堂表现有积分累计 B D B D B D AB 层通过预习能描述判断三角形外角,并能推理证明三角形外角有关定理及进行有关应用, CD层通过自学及与同桌交流能说出三角形 外角定义,并能结合图形会描述三角形外角的两个定理及简单的应用。五学习目标 1.通过视频引入活动一,会判断和作出三角形的外角; 2.通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理验证过程; 3.通过小组合作,会运用三角形内角和定理的两个推论解决相关问题 【学习重点】三角形有关外角的两个定理的应用 【学习难点】会用三角形的内角和定理的两个推论解决几何证明和几

(完整版)解析三角形中两条角平分线组成的角

解析三角形中两条角平分线组成的角 当同学们学完三角形的角平分线后,利用角平分线来解决相关几何题就应运而生。这儿作者只是给大家归纳了几种利用三角形两条角平分线组成的角的解析方法,以便大家在平时的作业时可简便计算。 一、三角形两内角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACB 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o 又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵BO,CO 是∠ABC 与∠ACB 的角平分线 ∴∠OBC= 2 1∠ABC ∠OCB =2 1∠ACB ∴∠OBC+∠OCB=21∠ABC+2 1∠ACB =2 1(∠ABC+∠ACB) ∴∠OBC+∠OCB=2 1(180o -n o ) =90o -21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o - 21 n o ) =180o -90o + 21 n o =90o +2 1 n o 即:∠BOC=90o +2 1 ∠A 通过上述解题过程不难发现,其实三角形的两内角平分线组成的角应为90o 与第三角的一半的和。 二、三角形两外角角平分线组成的角: 如图,△ABC 中 ∠A=n o ∠CBD 与∠BCE 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:在△ABC 中 ∠A+∠ABC+∠ACB= 180o C

又 ∵∠A=n o ∴∠ABC+∠ACB=180o -n o ∵∠ABC+∠CBD=180o ∠ACB+∠BCE=180o ∴∠CBD+∠BCE=360o -(∠ABC+∠ACB) =360o -180o +n o =180o +n o ∵BO,CO 是∠DBC 与∠ECB 的角平分线 ∴∠OBC= 2 1∠CBD ∠OCB =2 1∠BCE ∴∠OBC+∠OCB=21∠CBD+2 1∠BCE =2 1(∠CBD+∠BCE) ∴∠OBC+∠OCB=2 1(180o +n o ) =90o +21 n o 在△BOC 中 ∠OBC+∠OCB+∠BOC= 180o ∴∠BOC=180o -(∠OBC+∠OCB) =180o -(90o + 2 1 n o ) =180o -90o -2 1 n o =90o -2 1 n o 即:∠BOC=90o -21 ∠A 由此我们可发现三角形的两个外角角平分线所组成的角等于90o 与第三角的一半的差。 三、三角形一内角角平分线与一外角角平分组成的角: 如图,△ABC 中 ∠A=n o ∠ABC 与∠ACD 的角平分线BO,CO 相交与点O ,求∠BOC 的度数? 解:∵∠ACD 为△ABC 的外角 ∴∠ACD=∠A+∠ABC ∵BO,CO 是∠ABC 与∠ACD 的角平分线 ∴∠OBC=2 1∠ABC ∠OCB =2 1∠ACD =21(∠A+∠ABC) A E

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

三角形角平分线专题讲解(精选.)

二由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这 种尝试与猜想是在一定的规律基本之图1-1 B

上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠∠,如取,并连接、,则有△≌△,从而为我们证明线段、角相等创造了条件。 例1. 如图 1-2,,平分∠,平分∠, 点E 在上,求证:。 分析:此题中就涉及到角平分线, 可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。 简证:在此题中可在长线段上截取,再证明,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长与的延长线交于一点来证明。自已试一试。 例2. 已知:如图 1-3,2,∠∠,,求证⊥ 图1-2 D B C

相似三角形典型模型及例题

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1:相似三角形模型 一:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (平行)(不平行) (二)8字型、反8字型 B C B C(蝴蝶型) (平行)(不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: (五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: 二:相似三角形判定的变化模型 一线三等角的变形

. 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。求证:(1)△AME ∽△NMD; (2)ND 2 =NC·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB·DF=AE·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. (2)双垂型 A C D E B D E

三角形的高、中线与角平分线(全国优质课一等奖)

2008年全国第六届初中数学优质课比赛教案 课题:§7.1.2三角形的高、中线与角平分线 教材:人教版义务教育课程标准实验教科书七年级数学下册第65~66页 授课教师:临川一中陈良琴 [教材分析] 1、本节教材的地位与作用: 学生已学习了角的平分线,线段的中点,垂线和三角形的有关概念及边的性质等,本节课在此基础上进一步认识三角形,为今后学习三角形的内切圆及三心等知识埋下了伏笔.本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线. 通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别.另外,本节内容也是日后学习等腰三角形等特殊三角形的基础.故学好本节内容是十分必要的. 2、教学重点: 能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.3、教学难点: 在钝角三角形中作高. 4、教学关键: 运用好数形结合的思想,特别是研究三角形的角平分线、中线、高时,从折叠、度量入手,获得三种线段的直观形象,以便准确理解上述基本知识。 [教学目标] 基于上述对教材地位与作用的分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标: (1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点. (2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心. [学情分析] 七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望.同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养. [教学过程] 本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

直角三角形的边角关系(含答案)

学生做题前请先回答以下问题 问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________. 问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______. 问题3:默写特殊角的三角函数值: 问题4:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理. 直角三角形的边角关系 一、单选题(共14道,每道7分) 1.式子2cos30°-tan45°-的值是( ) A. B.0 C. D.2 答案:B 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 2.如果△ABC中,,则下列说法正确的是( ) A.△ABC是直角三角形 B.△ABC是等腰三角形 C.△ABC是等腰直角三角形 D.△ABC是锐角三角形

答案:A 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 3.已知为锐角,且,那么的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:锐角三角函数的增减性 4.如图,在Rt△ABC中,tanB=,BC=,则AC等于( )

A.3 B.4 C. D.6 答案:A 解题思路: 试题难度:三颗星知识点:解直角三角形 5.在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:锐角三角函数的定义 6.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( ) A. B. C. D. 答案:B 解题思路:

三角形角平分线部分经典题型

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm. 图1图2 2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是() A .mn 3 1 B. mn 2 1 C.mn D.2mn 3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶ DB=3∶5,则点D到AB的距离是。 4.如图,已知BD是∠ABC的角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。 5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2, 则两平行线间AB、CD的距离等于。 6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( ) A、DE=DF B、AE=AF C、BD=CD D、∠ADE=∠ADF 7.到三角形三条边的距离都相等的点是这个三角形的() A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点 8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。 9.如图,已知相交直线AB和CD,及另一直线EF。如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。 3题图 D C B A z .. ..

z .. .. D C B A 10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。 A.9 cm B.5 cm C.6 cm D.不能确定 11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250 ,那么∠2的度数是 . 12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD?相等吗?说明理由. 14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD . 15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180° 16、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE. O B A P A B C D E D C A B E

三角形的角及倒角模型

三角形的角及倒角模 型 Revised on November 25, 2020

第二讲三角形的角及倒角模型 1、如图1,求证:AB+AE>BC+CD+DE 1 2、如图2,AC、BD是四边形ABCD的对角线,且AC、BD相交于点O,求证:AC+BD> 2(AB+BC+CD+AD)。 3、如图3,⊿ADE和⊿ABC中,∠EAD=∠AED=∠BAC=∠BCA=45°又有∠BAD=∠BCF, (1)求∠ECF+∠DAC+∠ECA的度数; (2)判断ED与FC的位置关系,并对你的结论加以证明。 4、求∠a的度数。 5、如图5,∠A=30°,求∠B+∠C+∠D+∠E的度数。 6、将图6-1中线段AD上一点E(点A、D除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A、∠B、∠C、∠D、∠E(∠AED)之间有什么关系 7、如图7,在⊿ABC中D是BC上任意一点,E是AD上任意一点,试说明:AB+AC>BE+EC。 8、如图8,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,则∠C =。 9、如图9所示,点E和点D分别在⊿ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,试探索∠F与∠B,∠D的关系:。

10、如图10,⊿ABC的一条外角平分线是CE,F是CA延长线上一点,FG∥EC交AB于点G,已知∠DCE=50°,∠ABC=40°,求∠FGA的度数。 11、如图11,在⊿ABC中,∠B=∠C,FD⊥BC,ED⊥AB,∠AFD=158°,则∠EDF =。 12、如图12-1,BP、CP是任意⊿ABC的∠B、∠C的角平分线。 (1)探求∠BPC与∠A的数量关系。 (2)∠BPC能等于90度吗说明理由。 (3)当∠A为多少度时,∠BPC=2∠A (4)把图12-1中的⊿ABC变成图12-2中的四边形ABCD,BP、CP仍然是∠B、∠C的角平分线,猜想∠BPC与∠A,∠D有何数量关系(只写出猜想结果,不写说理过程)。 13、如图13,在⊿ABC中,∠ABC的两个外角平分线交于点F,探索∠F和∠A的关系。 14、如图14,在⊿ABC中,∠ABC的平分线与∠ABC的外角平分线交于点A 1 ,若∠A= 40°,则∠A 1为度;同样的方法作出∠A 2 ,则∠A 2 的度数是度;依次下 去,当作出∠A n 时,它的度数是度。 15、如图15,由图15-1的⊿ABC沿DE折叠得到图15-2;图3;图4。(1)如图2,猜想∠BDA+CEA与∠A的关系,并说明理由; (2)如图3,猜想∠BDA+CEA与∠A的关系,并说明理由; (3)如图4,猜想∠BDA+CEA与∠A的关系,并说明理由;

三角形边角关系教案

14.1 三角形中的边角关系(1) -------边的关系 1.三角形的概念 2.三角形的表示方法及分类 3.三角形三边之间的关系 1.了解三角形的概念,掌握分类思想。 2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3.让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。 三教学重难点: 1.重点:了解三角形的分类,弄清三角形三边关系 2.难点:对两边之差小于第三边的领悟 四教学准备: 1.教师准备:多媒体课件 2.学生准备:四根小木条 五课时安排: 一节课 六教学过程: (一)创设情境,探究新知 1.请同学们仔细观察一组图片,找出你熟悉的图形三角形,引入课题 我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。 (二)合作交流,探究新知 你能画一个三角形吗? 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形 3.自学指导: 认真看书67页的内容。注意三角形边的表示方法。 并思考下面问题: (1)知道三角形的顶点,边,角等概念,会用几何符号表示一个三角形; (2)会把三角形按边进行分类,知道每类三角形的特征;

(3)知道等腰三角形的腰,底边,顶角,底角等概念; 依次向学生介绍有关知识 4.巩固练习(多媒体展示) 5.合作探究三角形的三边关系 有这样的四根小棒(6cm、8cm、12cm、18cm)请你任意的取其中的三根,首尾连接,摆成三角形。 (1)有哪几种取法? (2)是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? (3)用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? 小组活动:学生自主探索并合作交流满足怎样的数量关系的三根小棒能组成三角形; 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形中任何两边的和大于第三边 三角形中任意两边的差与第三边有什么关系?你能根据上面的结论,利用不等式的性质加以说明吗? 三角形中任何两边的差小于第三边 6.讲解例题 例1 :例:一根木棒长为7,另一根木棒长为2,若要围成三角形,那么则第三根木棒长度应在什么范围呢? 解:设第三条边长为a cm,则 7-2<a<7+2 即5<a<9 结论:其它两边之差< 三角形的一边< 其它两边之和 例2:已知:等腰三角形周长为18cm,如果一边长等于4cm,求另两边的长? 解(1)设等腰三角形的底边长为4 cm,则腰长为x cm。根据题意,得 x+x+4=18 解方程,得 x=7

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

第二节 与三角形有关的角-学而思培优

第二节与三角形有关的角一、课标导航 二、核心纲要 1.三角形内角和定理及其应用 180 (1)三角形内角和定理:三角形三个内角的和是. (2)三角形内角和定理的应用 ①在三角形中已知两角可求第三角,或已知各角之间关系,求各角; ②证明角之间的关系. 2.三角形的外角 (1)定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角. (2)性质:三角形的一个外角等于与它不相邻的两个内角之和, 三角形的一个外角大于与它不相邻的任何一个内角. 360 (3)三角形外角和定理:三角形外角和是. (4)三角形外角的性质的应用 ①已知外角和与它不相邻两个内角中的一个可求“另一个”; ②可证一个角等于另两个角的和; ③利用它作为中间关系式证明两个角相等; ④利用它证明角的不等关系. 3.几何模型

4.思想方法 (1)分类讨论. (2)方程思想, 本节重点讲解:一个性质(外角的性质),两大定理(三角形内、外角和定理),两个思想,四个模型(“小旗”模型,“飞镖”模型,“8”字模型和角平分线相关模型). 三、全能突破 基 础 演 练 1.-副三角板,按图11-2—1所示方式叠放在一起,则图中α∠的度数是( ). 75.A o B 60. 65.C o D 55. 2.如图11-2 -2所示,在△ABC 中,,,ABD A BDC C ABC ∠=∠∠=∠=∠则A ∠的度数为( ). 36.A 72.B 108.C 144.D 3.我们知道:等腰三角形的两个底角相等,已知等腰三角形的一个内角为,40 则这个等腰三角形的顶角 为( ). 40.A 100.B o C 10040.或 005070.或D

三角形中的边角关系测试卷

《三角形中的边角关系》测试卷 一、选择题 1、三角形的三边分别为3,1-2a,8,则a 的取值范围是( ) -2 2、下列不属于命题的是( ) A.两直线平行,同位角相等; B.如果x 2=y 2 ,则x =y ; C.过C 点作CD ∥EF ; D.不相等的角就不是对顶角。 3、如果三角形的一个内角等于其它两个内角的差,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 斜三角形 4、四条线段的长度分别为4、6、8、10,可以组成三角形的组数为( ) .3 5、如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2 B .3 C .4 D . 5 6、一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 7、图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为 4 21 平方公分,则此方格纸的面积为多少平方公分? A . 11 B . 12 C . 13 D . 14 8、已知如图,∠A=32°,∠B=45°,∠C=38°则ΔDFE 等于( ) ° ° ° ° 9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°, 那么∠2的度数是( ) A .32° B .58° C .68° D .60° 10、已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° 11、已知等腰三角形的一个内角为040,则这个等腰三角形的顶角为 ( ) A.0 40 B.0 100 C.0 40或0 100 D.0 70或0 50 二、填空题 A B 30° 45° α 1 2

三角形中线与角平分线专题(二)

三角形中线与角平分线专题(二) 1、三角形外角平分线的四个经典结论: 结论一:三角形任意两个角平分线的夹角与第三个角的数量关系 已知如图1,BP 平分∠ABC ,CP 平分∠ACB ,求∠P 与∠A 的数量关系. 01902P A ∠=+∠ 结论二:三角形任意两个角相邻的外角的平分线说夹角与第三个角的关系. 已知如图2,BP 平分外角CBE ∠,CP 平分外角BCF ∠,求P ∠与A ∠的数量关系. 01902P A ∠=-∠ 结论三:三角形中任意一个角平分线与另一个角外角平分线的夹角与第三个角的关系 如图,BP 平分ABC ∠,CP 平分外角ACD ∠,求P ∠与A ∠的数量关系. 12 P A ∠=∠ 结论四:结论三延伸 如图,CE BE 、分别平分ACD ABC ∠∠和,连结EA ,则EA 为HAC ∠的平分线 21A E F B C 2 1P B A C

应用举例: 例1:在四边形ABCD 中,?=∠120D ,?=∠100A 、ABC ∠、ACB ∠的角平分线的交与点E ,试求BEC ∠的度数. 例2:在ABC ?中,三个外角的平分线所在的直线相交构成 DEF ?,试判断DEF ?的形状. 例3:如图3,在ABC ?中,延长BC 到D ,ABC ∠与ACD ∠的角平分线相较于1A 点,BC A 1∠与CD A 1∠的平分线交与2A 点,以此类推,若?=∠96A ,则=∠5A ,=∠n A . 图三 图四 例4:点M 是ABC ?两个角的平分线的交点,点N 是ABC ?两个外角的平分线的交点, 如果∠CMB ∶∠CNB=3∶2,那么=∠CAB 例5:( 2011年省是中考题)△ABC 的外角∠ACD 的平分线CP 的角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______.

三角形的角及倒角模型

第二讲 三角形的角及倒角模型 1、 如图1,求证:AB +AE >BC +CD +DE 2、 如图2,AC 、BD 是四边形ABCD 的对角线,且AC 、BD 相交于点O ,求证:AC +BD >2 1(AB +BC +CD +AD )。 3、 如图3,⊿ADE 和⊿ABC 中,∠EAD =∠AED =∠BAC =∠BCA =45°又有∠BAD =∠BCF , (1) 求∠ECF +∠DAC +∠ECA 的度数; (2) 判断ED 与FC 的位置关系,并对你的结论加以证明。 4、 求∠a 的度数。 5、如图5,∠A =30°,求∠B +∠C +∠D +∠E 的度数。 6、将图6-1中线段AD 上一点E (点A 、D 除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A 、∠B 、∠C 、∠D 、∠E (∠AED )之间有什么关系? 7、如图7,在⊿ABC 中D 是BC 上任意一点,E 是AD 上任意一点,试说明:AB +AC >BE +EC 。 8、如图8,已知DM 平分∠ADC ,BM 平分∠ABC ,且∠A =27°,∠M =33°,则∠C = 。 9、如图9所示,点E 和点D 分别在⊿ABC 的边BA 和CA 的延长线上,CF 、EF 分别平分∠ACB 和∠AED ,试探索∠F 与∠B ,∠D 的关系: 。 10、如图10,⊿ABC 的一条外角平分线是CE ,F 是CA 延长线上一点,FG ∥EC 交AB 于点G ,已知∠DCE =50°,∠ABC =40°,求∠FGA 的度数。 11、如图11,在⊿ABC 中,∠B =∠C ,FD ⊥BC ,ED ⊥AB ,∠AFD =158°,则∠EDF

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

三角形中线和角平分线在解题中的应用(整理八种方法)

解三角形题目的思考 文科:在△ABC 中,D 是BC 的中点,若AB=4,AC=1,∠BAC=60°,则AD=_______; 理科:在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 常规解法及题根: (15年新课标2理科)?ABC 中,D 是BC 上的点,AD 平分∠BAC ,?ABD 是?ADC 面积的2倍。 (Ⅰ)求C B ∠∠sin sin ; (Ⅱ) 若AD =1,D C = 22求BD 和AC 的长. (15年新课标2文科)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (I )求sin sin B C ∠∠ ; (II )若60BAC ∠=o ,求B ∠. 重点结论:角平分线性质: (1)平分角 (2)到角两边距离相等 (3)线段成比率 中点性质与结论: (1)平分线段; (2)向量结论; (3)两个小三角形面积相等。 题目解法搜集: 解法1(方程思想):两边及夹角,利用余弦定理求第三边,然后在小三角形中求解; 在△ABC 中,D 在BC 上,AD 平分∠BAC ,若AB=3,AC=1,∠BAC=60°,则AD=_______; 解:在△ABC 中,222BC =AB +AC -2AB AC cos BAC=7∠g g ,则7 因为AD 平分∠BAC ,则AB BD AC DC = ,所以BD=37,DC=7; 在△ABD 中,设AD=x ,利用cos ∠BAD=cos30°=222 2AB AD BD AB AD +-g 即2 22373323x x +-??=?,解得x= 933344。 若在△ADC 中,设AC=m ,则273=1216x x +-,解得x=333。

相关文档
最新文档