生物化学填空名词解释简答题

生物化学填空名词解释简答题
生物化学填空名词解释简答题

填空:

1、结合酶,其蛋白质部分称酶蛋白,非蛋白质部分称辅助因子,二者结合其复合物称全酶。

2、三羧酸循环是由乙酰辅酶A与草酰乙酸缩合成柠檬酸开始的,每循环一次有4次脱氢、2次脱羧和1次底物水平磷酸化。

3、体内缺乏酪氨酸酶引起白化病,缺乏葡萄—6—磷酸脱氢酶引起蚕豆病,缺乏维生素C引起坏血病。

4、DNA复制的保真性至少要依赖三种机制遵守严格的碱基配对规律、聚合酶在复制延长中对碱基的选择功能、复制出错时有即时的校读功能。

5、氨基酸活化需要氨酰tRNA合成酶催化,使氨基酸的羧基与tRNA3'-OH之间以脂链相连,产物是氨酰tRNA。

6、通风是尿酸生成过多而引起的。

7、嘌呤核苷酸的从头合成分为两个阶段,首先合成IMP,然后再将其转化变成AMP和GMP。

8、蛋白质胶体状态的稳定因素是蛋白质分子上的表面电荷和水化膜。

9、糖酵解的最终产物是乳酸,糖有氧氧化的终产物是二氧化碳和水。

10、氨基酸在等电点(pl)时,以兼性离子形式存在,在pH>pl时以阴离子存在,在pH

11、尿素分子中的2个氮原子,一个来自氨,一个来自天冬氨酸。

12、糖原合成中,除A TP供能外,还需UTP供能,关键酶是糖原合酶,葡萄糖的供体是UDPG。

13、Cyt aa3可直接将电子传个氧,故又称为细胞色素氧化酶。

14、体内生成A TP的方式有氧化磷酸化和底物水平磷酸化两种。

15、原核生物RNA聚合识别酶、结合模板DNA的部位,也是控制转录的关键部位,称为启动子。

16、Watson-Crick提出的双螺旋结构中,磷酸核糖处于分子外侧,碱基处于分子内侧,螺旋每上升一圈核苷酸数为10。

17、无活性状态的酶的前体称为酶原。

18、酮体由乙酰乙酸、β-羟丁酸和丙酮组成。

名词解释:

1、增色效应:是指变性后的DNA溶液的紫外吸收增强的效应。DNA吸收高峰的波长为260nm。

2、底物水平磷酸化:底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成A TP的过程。

3、一碳单位:某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团。

4、糖异生:从非糖化合物转变成葡萄糖或糖原的过程。

5、框移突变:指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变。

6、蛋白质一级结构:蛋白质分子中的氨基酸残基的排列顺序。

7、氧化磷酸化:呼吸链电子传递释放的能量用于ADP的磷酸化,生成A TP的过程。

8、生物氧化:指物质在生物体内的氧化过程。物质经生物氧化最终生成H2O和CO2,并逐步释放能量,以维持生命活动。

9、呼吸链:代谢物分子中的氢原子在脱氢酶作用下激活脱落后,经过一系列传递体的传递,最终将电子交给被氧化酶激活的氧而生成水的全部体系,称为呼吸链。

10、同工酶:指催化的化学反应相同,酶蛋白的分子结构、理化性质及免疫学性质等不同的一组酶。

11、分子杂交:是利用DNA变性与复性这一基本性质来进行DNA或RNA定性或定量分析的一项技术。

12、分子病:由于基因突变,导致其编码的蛋白质分子中氨基酸序列异常而引起的遗传性疾病。

13、酶的最适pH:在某一pH时,酶、底物、辅酶的解离状态最适合相互结合及催化反应,反应速度最大。此pH称为酶的最适pH。

14、痛风:因核酸大量摄入和分解产生大量尿素,或尿酸排泄障碍,造成血中尿酸含量过高,尿酸盐晶体即可沉积于关节、软骨组织而导致痛风。

15、不饱和脂肪酸:碳链中含有不饱和双键的脂肪酸。

16、P/O比值:每消耗1mol氧原子时ADP磷酸化成A TP所需消耗的无机磷的摩尔数。

17、核酶:具有催化功能的RNA分子。

18、核苷酸酶:能使核苷酸水解为核苷和磷酸的酶。

19、脂肪动员:脂库中贮存的脂肪经常有一部分经脂肪酶的水解作用而释放出脂肪酸与甘油,称为脂肪的动员。

20、半保留复制:DNA复制时,亲代DNA的两条链解开,分别作为模板,在DNA聚合酶的作用下以四种三磷酸核苷为原料,根据碱基互补配对原则,合成新的双链DNA分子,其中一条链来自亲本,另一条为新合成的,这种复制方式为半保留复制。

简答题:

1、描述NADH氧化呼吸链的电子传递途径?

答:NADP→复合体Ⅰ→CoQ→复合体Ⅲ→Cyt c→复合体Ⅳ→O2

2、描述蛋白质二级结构的定义,种类和维系键?

答:定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

种类:α-螺旋,β-螺旋,β-转角,无规卷曲。维系键:氢键。

3、简述Km的意义?

答:(1)Km值等于酶促反应速度达到最大反应速度一半时所对应的底物浓度。(2)是酶的特征常数之一。不同的酶Km值不同,同一种酶与不同底物反应Km值也不同,(3)Km值可近似的反应酶与底物的亲和力大小:Km值大,表明亲和力小;Km值小,表明亲合力大。

4、生物转化包括哪几项?每项包括哪些反应类型?

答:分为两项,第一项包括氧化、还原、水解反应,第二项为结合反应。

5、试述酶原激活的机制及其生理意义?

答:酶原是指某些酶在细胞内合成或初分泌时没有活性,这种无活性的酶前体称作酶原。酶原激活指酶原向酶转化的过程。酶原激活实际上是酶的活性中心形成的或暴露的过程,其意义在于保证酶在其特定的部位和环境发挥催化作用,酶原还可以视为酶的贮存形式。

6、何为脂肪动员?简述激素对脂肪动员的调节?

答:脂肪动员:脂库中贮存的脂肪经常有一部分经脂肪酶的水解作用而释放出脂肪酸与甘油,称为脂肪的动员。

激素的调节:在脂肪动员中,脂肪细胞内激素敏感性三酰甘油脂肪酶起决定性的作用,它是脂肪分解的限速酶,称为激素敏感性脂肪酶。肾上腺素、去甲肾上腺素、胰高血糖素等激活HSL,苏瑾脂肪动员;胰岛素、前列腺素E及烟酸等抑制HSL,抑制脂肪的动员。

7、抑制呼吸链的抑制剂有几种?各有什么抑制特点?

答:(1)呼吸链抑制剂:阻断呼吸链中某些部位电子传递。

(2)解偶联剂:使氧化与磷酸化过程脱离。使包浆测H+不通过ATP合酶而由其他途径回流基质侧。

(3)ATP合酶抑制剂:对电子传递及ADP磷酸化有抑制作用。

8、简述尿素循环过程?

答:肝脏是动物生成尿素的主要器官,由于精氨酸酶的作用使精氨酸水解为鸟氨酸及尿素。精氨酸在释放了尿素后产生的鸟氨酸,和氨甲酰磷酸反应产生瓜氨酸,瓜氨酸又和天冬氨酸反应生成精氨基琥珀酸,精氨基琥珀酸为酶裂解,产物为精氨酸及延胡索酸。由于精氨酸水解在尿素生成后又重新反复生成,故称尿素循环。

9、简述胞浆中软脂酸进行β-氧化时的主要步骤?

答:(1)脂酸的活化——脂酰CoA的生成。(2)脂酰CoA进入线粒体。(3)脂酰CoA的β-氧化。

问答题:

1、说明血糖的来源和去路?

答:来源(1)糖类消化吸收(2)肝糖原分解(3)糖异生作用(4)其他单糖的转化。

去路(1)氧化分解(2)合成糖原(3)转化成非糖物质(4)转变成其他糖或糖衍生物

2、试述血氨的来源和去路?

答:血氨的来源:①氨基酸脱氨基作用产生的氨( 主要来源) 。②肠道吸收的氨,包括肠道细菌腐败作用产生的氨和肠道尿素经肠道细菌尿素酶水解产生的氨。③肾小管上皮细胞分泌的氨,主要来自谷氨酰胺。

血氨的去路:①在肝脏合成尿素( 最主要去路) 。②合成谷氨酰胺及非必需氨基酸。③合成重要的含氮化合物

3、试比较酶的竞争性抑制与非竞争性抑制的作用

答:

竞争性抑制非竞争性抑制

抑制剂的结构与底物结构相似与底物无关

与酶结合的部位活性中心活性中心以外

动力学特征Km增大,Vm不变Km不变,Vm减少

4、DNA双螺旋结构模型的基本要点?

答:(1) 主链:两条反向平行的多核苷酸主链组成了DNA的双螺旋,螺旋的直径是2nm。主链处于双螺旋的外侧,碱基对与轴线垂直,排列在内侧;(2) 碱基对:碱基对通过氢键结合,遵循嘌呤和嘧啶碱基配对的原则,即A和T配对,G和C配对的原则;(3) 螺距:1个螺距是3.4nm,其中包含了10个核苷酸;(4) 大沟和小沟:DNA双螺旋模型中有大沟和小沟的存在。通常,大沟是蛋白质识别遗传信息的重要场所。

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

科二生化简答题及名词解释

第二章 1 DNA双螺旋结构模型的要点有哪些?此模型如何解释Chargaff定律? A天然DNA分子由两条反平行的多聚脱氧核苷酸链组成,一条链的走向为5’→3’,另一条链的走向为3’→5’。两条链沿一个假想的中心轴右旋相互盘旋,形成大沟和小沟。 b磷酸和脱氧核糖作为不变的骨架成分位于外侧,作为可变成分的碱基位于内侧,链间的碱基按A=T(两个氢键),G=C配对(三个氢键)配对形成碱基平面,碱基平面与螺旋纵轴近于垂直。 c螺旋的直径为2nm,相邻碱基平面的垂直距离为0.34nm。因此,螺旋结构每隔10bp重复一次,间距为3.4nm d DNA双螺旋结构是非常稳定的。稳定力量主要有两个,一是碱基堆积力,二是碱基配对的氢键。 2 原核生物与真核生物mRNA的结构有哪些区别? ①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。 ②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。 ③原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时(RNA噬菌体中的RNA除外)。真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日。 ④原核与真核生物mRNA的结构特点也不同。 原核生物mRNA一般5′端有一段不翻译区,称前导顺序,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6A等。真核生物mRNA通常都有相应的前体。从DNA转录产生的原始转录产物可称作原始前体(或mRNA前体)。一般认为原始前体要经过hnRNA核不均-RNA 的阶段,最终才被加工为成熟的mRNA。 3从两种不同细菌提起DNA样品,其腺嘌呤核苷酸残基分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种脱氧核苷酸残基相对百分组成,两种细菌中有一种是从温泉(64°C)种分离出来的,该细菌DNA具有何种碱基组成?为什么? 腺嘌呤核苷酸残基分别占其碱基总数的32%:A 32% G 18% C 18% T 32% 腺嘌呤核苷酸残基分别占其碱基总数的17%:A 17% G 33% C 33% T 17% 由于含氢键越多,DNA越稳定,GC碱基对之间是三个氢键,AT碱基对之间是两个氢键,所以腺嘌呤核苷酸残基分别占其碱基总数的17%的这一种DNA比较稳定,是从温泉中分离出来的。 4正确写出下列寡核苷酸的互补的DNA和RNA序列 (1)GATCAA(2)TGGAAC (3)ACGCGT (4)TAGCAT DNA 5’UUGATC3’5’GTTCCA3’5’ACGCGT3’5’ATGCTA3’RNA 5’UUGAUC3’5’G UU CCA3’5’ACGCG U3’5’A UGCU A3’

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化考试名词解释

生化考试名词解释 2. 别构酶:又称为变构酶,是一类重要的调节酶。其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。 3. 酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、B-羟基丁酸及丙酮统称为酮体。在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。 4. 糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。 5. EMP 途径:又称糖酵解途径。指葡萄糖在无氧条件下经过一定反应历程被分 解为丙酮酸并产生少量ATP和NADH+H+的过程。是绝大多数生物所共有的一条主流代谢途径。 6. 糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。 7. 氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP 中,这种伴随放能的氧化作用而使ADP 磷酸化生成ATP 的过程称为氧化磷酸化。根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。

8. 三羧酸循环:又称柠檬酸循环、TCA 循环,是糖有氧氧化的第三个阶段,由乙酰辅酶 A 和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成 CO2 和水及大量能量。 9. 糖异生:由非糖物质转变为葡萄糖或糖原的过程。糖异生作用的途径基本上是糖无氧分解的逆过程--- 除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。 10. 乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。剧烈运动后,骨骼肌中的糖经无氧分解产生大量的乳酸,乳酸可通过细胞膜弥散入血,通过血液循环运至肝脏,经糖异生作用再转变为葡萄糖,葡萄糖经血液循环又可被运送到肌肉组织利用。 11. 血糖:指血液当中的葡萄糖,主要来源是膳食中消化吸收入血的葡萄糖及肝糖原分解产生的葡萄糖,另外还有糖异生作用由中间代谢物合成的葡萄糖。 19. 比活力:是表示酶制剂纯度的一个指标,指每毫克酶蛋白(或每毫克蛋白氮)所含的酶活力单位数(有时也用每克酶制剂或每毫升酶制剂含多少活力单位来表示),即:比活力=活力单位数/酶蛋白(氮)毫克数。 20. 0.14摩尔法:一种分离提取DNP和RNP的方法,DNP的溶解度在低浓度盐溶液中随盐浓度的增加而增加,在1mol/L的NaCl溶液中溶解度比在纯水中高2倍,

生物化学名词解释及简答题

生物化学 1、生物化学的主要内容是什么? 答:(一)生物体的化学组成、分子结构及功能 (二)物质代谢及其调控 (三)遗传信息的贮存、传递与表达 2、氨基酸的两性电离、等电点是什么? 答:氨基酸两性电离和等电点,氨基酸的结构特征为含有氨基和羧基。氨基可以接受质子而形成NH4+,具有碱性。羧基可释放质子而解成COO—,具有酸性。因此氨基酸具有两性解离的性质。在酸性溶液中,氨基酸易解离成带正电荷的阳离子,在碱性溶液中,易解成带负电的阴离子,因此氨基酸是两性电解质。当氨基酸解离成阴、阳离子趋势相等,净电荷为零时,此时溶液和PH值为氨基酸的等电点。 3、什么是肽键、蛋白质的一级结构? 答:在蛋白质分子中,一个氨基酸的a羧基与另一个氨基酸的a氨基,通过脱去一分子的H2O所形成化学键(---CO—NH--- )称为肽键。蛋白质肽链中的氨基酸排列顺序称为蛋白质一级结构。 4、维持蛋白质空间结构的化学键是什么? 答:维持蛋白质高级结构的化学键主要是次级键,有氢键、离子键、疏水键、二硫键以及范德华引力。 5、蛋白质的功能有哪些? 答:蛋白质在体内的多种生理功能可归纳为三方面: 1.构成和修补人体组织蛋白质是构成细胞、组织和器官的主要材料。 2.调节身体功能 3. 供给能量 6、蛋白质变性的概念及其本质是什么?

答:天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 7、酶的特点有哪些? 答:1、酶具有极高的催化效率 2、酶对其底物具有较严格的选择性。 3、酶是蛋白质,酶促反应要求一定的PH、温度等温和的条件。 4、酶是生物体的组成部分,在体内不断进行新陈代谢。 8、名词解释:酶活性中心、必需基团、结合基团、催化基团 答:酶活性中心:对于不需要辅酶的酶来说,活性中心就是酶分子在三维结构上比较靠近的少数几个氨基酸残基或是这些残基上的某些基团,它们在一级结构上可能相距甚远,甚至位于不同的肽链上,通过肽链的盘绕、折叠而在空间构象上相互靠近;对于需要辅酶的酶来说,辅酶分子,或辅酶分子上的某一部分结构往往就是活性中心的组成部分。一般还认为活性中心有两个功能部位:第一个是结合部位,一定的底物靠此部位结合到酶分子上,第二个是催化部位,底物的键在此处被打断或形成新的键,从而发生一定的化学变化。 酶的分子中存在有许多功能基团例如,-nh2、-cooh、-sh、-oh等,活性中心是酶分子中能与底物特性异结合,并将底物转化为产物的部位。酶分子的功能团基团中,那些与酶活性密切相关的基团称做酶的必需基团。有些必需基团虽然在一级结构上可能相距很远,但在窨结构上彼此靠近,集中在一起形成且定窨构象的区域,能与底物特异的结合,并将底物转化为产物。这一区域称为酶的活性中心。但并不是这些基团都与酶活性有关。一般将与酶活性有关的基团称为酶的必需基团 构成酶活性中心的必需基团可分为两种,与底物结合的必需基团称为结合基团,促进底物发生化学变化的基团称为催化基团。活性中心中有的必需基团可同时具有这两方面的功能。还有些必需基团虽然不参加酶的活性中心的组成,但为维持酶活性中心应有的空间构象所必需,这些基团是酶的活性中心以外的必需基团 9、酶共价最常见的形式是什么? 答:酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化甩脱甲化、腺苷化与脱腺苷化,以及—SH与—S—S—的互变等。 10、酶促反应动力学中,温度对反应速度的影响是什么?

生物化学名词解释

名词解释 1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G.C(或C.G)和A.T(或T.A)之间进行,这种碱基配对的规律就称为碱基配对规律。 11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。 12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。 13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生化复习题 名词解释

生化复习题 1.蛋白质一级结构:就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白 质最基本的结构。 2.蛋白质二级结构:是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。 3.超二级结构:是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此 相互作用,形成规则的二级结构聚集体 4.蛋白质三级结构:蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成 具有一定规律的三维空间结构 5.蛋白质四级结构:具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽 链间通过次级键相互组合而形成的空间结构 6.蛋白质等电点:某一pH值的溶液中,蛋白质分子解离成的正电荷和负电荷相等,净电荷 为零,此溶液的pH值即为该蛋白质的等电点 7.肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 8.核酸的变性与复性:变性指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸 的天然构象和性质发生改变。复性指变性DNA 在适当条件下,二条互补链全部或部分恢复到 天然双螺旋结构的现象。 9.退火:热变性DNA一般经缓慢冷却后即可复性,此过程称之为" 退火" 10.增色效应:核酸(DNA和RNA)分子解链变性或断链,其紫外吸收值(一般在260nm处测量) 增加的现象 11.减色效应:核酸(DNA和RNA)复性,其紫外吸收值(一般在260nm处测量)减少的现象 12.碱基堆积力:每个碱基对平行伸展并且与上面的和下面的碱基对非常靠近,这一现象叫 做碱基堆积。碱基堆积力是指在DNA双螺旋结构中,碱基对平面垂直于中心轴,层叠于双螺旋的内侧,相邻疏水性碱基在旋进中彼此堆积在一起相互吸引形成的作用力。维持DNA 双螺旋结构的稳定的力主要是碱基堆积力。 13.超螺旋DNA:DNA本身的卷曲,一般是DNA双螺旋的弯曲,包括负超螺旋或正超螺旋的结 果。 14.DNA的一级结构:在多核苷酸链中,脱氧核糖核苷酸的排列顺序,称为DNA的一级结构。 由于脱氧核糖核苷酸的差异主要是碱基不同,因此也称为碱基序列。 15.DNA的二级结构:是指构成DNA的多聚脱氧核苷酸链之间通过链间氢键卷曲而成的构象。 16.结合蛋白质:由蛋白质和非蛋白质2部分组成,水解时除了产生氨基酸外还产生非蛋白 部分。 17.蛋白质变性作用:蛋白质变性是指蛋白质在某些物理和化学因素作用下其特定的空间 构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。 18.蛋白质盐析作用:蛋白质溶液中加入高浓度中性盐后,因破坏蛋白质的水化层并中和 其电荷,促使蛋白质颗粒相互聚集而沉淀。 19.酶的活性中心:指酶分子中直接和底物结合,并和酶催化作用直接有关的部位 20.酶的专一性:一定条件,一种酶只能催化一种或一类结构相似的底物进行某种类型反 应的特性 21.竞争性抑制作用:通过增加底物浓度可以逆转的一种酶抑制类型。一个竞争性抑制剂通 常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使得Km增大,而Vmax不 变。

名词解释及答案生物化学

1. 氨基酸(ami no acid ):是含有一个碱性氨基(-NH )和一个酸性羧基(-COOH)的有机化合物,氨基一般连在a -碳上。氨基酸是蛋白质的构件分子。 2. 必需氨基酸( essential amino acid ):指人(或其它脊椎动物)自己不能合成,需要从食物中获得的氨基酸。 3. 非必需氨基酸( nonessential amino acid ):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4. 等电点( pI, isoelectric point ):使氨基酸处于兼性离子状态,分子的静电荷为零, 在电场中不迁移的pH值。 5. 肽键( peptide bond ) : 一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的酰氨键。 6. 肽( peptide ) : 两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 7. 茚三酮反应( ninhydrin reaction ):在加热条件下,a -氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 8. 层析( chromatography ) : 按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 9. 离子交换层析( ion-exchange column ):使用带有固定的带电基团的聚合树脂或凝胶层析柱。一种用离子交换树脂作支持剂的层析技术。 10. 透析( dialysis ):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 11. 凝胶过滤层析(gel filtration chromatography , GPC:也叫做分子排阻层析/凝胶渗 透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技 术。 12. 亲合层析( affinity chromatograph ):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 13. 高压液相层析( HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 14. 凝胶电泳( gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 15.SDS-聚丙烯酰胺凝胶电泳(SDS-PAG):在去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAG唄跟分子的大小有关,跟分子所带的电荷大小、多少无关。 16. 等电聚焦电泳( IEF):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰胺凝胶制造一 个pH梯度,电泳时,每种蛋白质迁移到它的等电点( pI )处,即梯度中为某一pH时,就不再带有净的正或负电荷了。 17. 双向电泳(two-dimensional electrophoresis ):等电聚焦电泳和SDS-PAGE的组合,即在同一块胶上先进行等电聚焦电泳(按照pl )分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 18. Edman 降解( Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过 程。N末端氨基酸残基被苯异硫氰酸酯(PITC)修饰,然后从多肽链上切下修饰的残基,再经 层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 19. 同源蛋白质( homologous protein ):在不同生物体内行使相同或相似功能的蛋白质,例如血红蛋白。 20. 构型( configuration ) : 有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断

生物化学名词解释

1、active site 活性部位:有些必需基团虽然在一级结构上可能相距很远,但在形成空间结构时彼此靠近,集中在一起,形成具有一定空间结构的区域,并能与底物特异地结合,将底物转化为产物。这一区域,称为酶的活性部位。 2、catalytic antibody 催化性抗体:对某一化学反应的过渡态具有特异催化能力的抗体.,可由过渡态类似物作为免疫原产生. 如:N-甲基中卟啉诱导产生的抗体 3、catalytic triad 催化三角区(三分体):胰凝乳蛋白酶的三个残基(组、丝、天冬氨酸)所形成的具特定构象的催化中心。 4、hemophilia 血友病:某些凝血因子的缺陷或缺失所致的遗传性疾病;导致创伤后长时间流血不止.典型的血友病(A)的特点是由于从凝血酶原转变为凝血酶异常缓慢从而血凝固时间延长.病因是抗血友病因子Ⅷ功能缺陷,此性状是X连锁隐性遗传的. 5、double-reciprocal plot双倒数图:此指Lineweaver Burk图,用1/S(X轴)对1/V(Y轴)作图,此为一直线。 6、regulatory subunit of A TCase (A TCase酶的调控亚基):由不同亚基组成的多亚基酶中的一个单位,具有调节功能而无催化功能. 7、concerted model协同(变构)模型:that all subunits in a molecule switch from the T to the R state in unison. The central tenet of the concerted model is that symmetry is preserved in allosteric transitions. 8、PKA蛋白激酶A:是一种结构最简单、生化特性最清楚的蛋白激酶。由两个催化亚基和两个调节亚基组成,在没有cAMP时,以钝化复合体形式存在。cAMP与调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放出催化亚基。活化的蛋白激酶A催化亚基可使细胞内某些蛋白的丝氨酸或苏氨酸残基磷酸化,于是改变这些蛋白的活性,进一步影响到相关基因的表达。 9、pseudosubstrate in PKA假底物: 10、zymogen酶原指酶的非活性前体,常可通过蛋白酶部分水解转化为酶.此术语特别指胰腺酶的无催化活性的酶原(如…),它们在分泌后经切除某一肽段而被激活. 11、π-chymotrypsinπ-胰凝乳蛋白酶: 12、master activation step (by protease) 主要激活步骤 13、pancreatic trypsin inhibitor胰腺(分泌的)胰蛋白酶抑制剂 14、γ-carboxyglutamateγ-羧基谷氨酸一种非编码氨基酸,它的多个残基存在于许多钙结合蛋白(如凝血蛋白酶原) 中.它是蛋白质生物合成后谷氨酸残基经依赖VK的羧化作用形成的. 15、S erpins: serine protease inhibitor丝氨酸蛋白酶抑制剂(抑制蛋白) ?Antitrypsin and antithrombin are serpins, a family of serine protease inhibitors. 16、a carbonium ion (in lysozyme)碳正离子 17、a cyclic phosphate (in ribonuclease A)环磷酸(中间物) 18、zinc-containing proteolytic enzyme 含锌蛋白水解酶 19、HIV-1 protease HIV-1蛋白酶一种天冬氨酸蛋白酶,是两个亚基的同二聚体.它作为蛋白水解酶的功能对HIV(病毒)的生命周期是必须的.它的这一功能作为设计抗AIDS药物的目标。 20、ribozyme 核酶具催化活性的RNA分子.如RNase P和L19(兼具核糖核酸酶又具RNA 聚合酶的功能).它对生命起源的研究具有特殊意义. 21、feedback inhibition (in catalytic activity of enzyme)反馈抑制一个酶作为代谢途经中的组分,它的活性受到它以后步骤的产物的累积性抑制.如… 22、calmodulin钙调蛋白一种热稳定的依赖于钙的酸性小型调节蛋白,每个分子与四个钙离子结合因而能刺激许多真核酶(或酶系统).如:许多依赖钙的蛋白激酶

相关文档
最新文档