专题3---分段函数与函数零点答案

专题3---分段函数与函数零点答案
专题3---分段函数与函数零点答案

11. 已知函数f(x)=?

????x ,x ≥0,x 2,x <0,则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x ≤32

时原不等式化为x 2>3-2x ,解得x <-3或1<x ≤32;x >32时原不等式化为x 2>(3-2x)2,解得32

<x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题.

11. 已知定义在实数集R 上的偶函数f(x),当x ≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________.

11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下:

令x 2

=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1].

本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题.

13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________.

13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14

.

12. 已知函数f(x)是定义在R 上的奇函数,且当x ≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________.

12. (4,+∞) 解析:由题意得f(x)=?

????-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=?????-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0,

即f(x -1)=?????-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为?????-x 2-x +2>-x +4,x ≤1, 或?

????x 2-5x +4>-x +4,x>1, 解得x >4.

11. 已知f(x)=?

????x 2+x (x ≥0),-x 2+x (x<0),则不等式f(x 2-x +1)<12的解集是________.

11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)=12.从而x 2-x +1<3,即x 2-x -2<0,∴ -1<x <2.本题主要考查函数的奇偶性、单调性的综合运用,属于中等题.

12. 已知函数f(x)=?????????12x ,x<0,(x -1)2,x ≥0.

若f(f(-2))>f(k),则实数k 的取值范围为________.

12. (log 12

9,4) 解析:由f(x)解析式画出f(x)示意图如下,又f(-2)=4,∴ 原不等式

等价于f(4)>f(k).设x<0,令f(x)=f(4)=9,解得x =log 12

9,设x>0,(x -1)2=9,得x =4

从而x

9,4).本题考查分段函数的图象,以及利用图象解决不等式问题,

同时考查了分类讨论与数形结合的数学思想.本题属于中等题.

12. 若函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数,如果实数t 满

足f(lnt)+f ???

?ln 1t ≤2f(1),那么t 的取值范围是________. 12. ????1e ,e 解析:f(lnt)+f(-lnt)=2f(lnt)≤2f(1) ,即f(lnt)≤f(1),又f(x)是偶函数且

在[0,+∞)上单调递增,从而有|lnt|≤1,∴ -1≤lnt ≤1,即t ∈????1e ,e .本题主要考查函数

的奇偶性与单调性的综合应用.本题属于中等题.

13. 设函数f(x)=?????1-|x -1|,x<2,12

f (x -2),x ≥2,则方程xf(x)-1=0根的个数为________. 13. 6 解析:方程xf(x)-1=0,显然x =0不是方程的解,因而原方程等价于y =f(x)与y =1x

两个函数图象的交点个数,f(x)示意图如下图所示.

∵ f(7)=18<17,从而x>7时f(x)=1x

无交点,因而原方程有6个解.

设函数f(x)=???14x ,x ∈????0,12,-x +1,x ∈????12,1,g(x)=asin ????π6x -a +2(a>0).若存在x 1、x 2∈[0,1],使得f(x 1)=g(x 2)成立,则实数a 的取值范围为________.

14. 已知函数f(x)=?

????kx +k ,x ≤0lnx ,x>0(其中k ≥0),若函数y =f[f(x)]+1有4个零点,则实数k 的取值范围是________.

14. k ≥1e 解析:令t =f (x),则f (t)+1=0,∴ ?????f (t )=-1,t =f (x ),

关于x 有4个解,又t =f (x)示意图如图.

f (t)=-1有两解:

t 2<-1,t 1=1e , 而f (x)=t (k ≥0),当t 2<-1时,由图象可知方程f(x)=t 肯定有两解;当t 1=1e

时,由题意知,方程f (x) = 1e 在x ∈R 上必须有两解,由图象知k ≥1e

.本题考查函数与方程的综合运用以及数形结合的数学思想.本题属于难题.

12. 已知f(x)是定义在R 上的奇函数,当0≤x ≤1时,f(x)=x 2,当x >1时,f(x +1)=f(x)+f(1).若直线y =kx 与函数y =f(x)的图象恰有5个不同的公共点,则实数k 的值为__________.

12. 22-2 解析:f(1)=1,从而f(x +1)=f(x)+1,当1≤x ≤2时,f(x)=f(x -1)+1=(x -1)2+1,直线y =kx 与y =f(x)图象关于原点对称,从而原题等价于直线y =kx 与y =f(x)在x 轴右边有2个交点(原点除外),从而y =kx 与y =(x -1)2+1在1≤x ≤2有唯一交点,即x 2-2x +2=kx 有1解,令Δ=(k +2)2-8=0得k =-2±22,又k >0,从而k =22-2.

已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=|x 2-2x +12

|.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是____________.

(0,12

)

13. 已知函数f(x)=?

????(2x -x 2)e x ,x ≤0,-x 2+4x +3,x >0,g(x)=f(x)+2k.若函数g(x)恰有两个不同的零点,则实数k 的取值范围为__________.

13. ????-72,-32∪(2+1e 2

,0) 解析:g(x)=0等价于-2k =f(x)有两个解.又函数f(x)的示意图如图所示.

即-(22+2)e -2<-2k <0或3<-2k <7.

从而k ∈????-72,-32∪(2+1e 2

,0).

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

复合函数零点个数问题

复合函数、分段函数零点个数问题 1.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判 断不正确... 的是【 】 A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】 A .13 B .16 C .18 D .22 6 已知函数31+,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 6 7. 已知函数f(x)=????? ax +1,x ≤0,log 2x , x >0。则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】 (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

高考数学函数零点专题

专题2.函数的零点 高考解读 求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x 轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力. 知识梳理 1.函数的零点与方程的根 (1)函数的零点 对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点. (2)函数的零点与方程根的关系 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (3)零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0, 这个c 也就是方程f (x )=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f (x ),g (x ),即把方程写成f (x )=g (x )的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系. 高频考点突破 考点一 函数的零点判断 例1、【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .1 2 - B .13 C .12 D .1 【变式探究】(1)函数f (x )=e x +1 2 x -2的零点所在的区间是( ) A. )2 1 ,0( B.)1,2 1( C .(1,2) D .(2,3) (2)已知偶函数y =f (x ),x ∈R 满足:f (x )=x 2-3x (x ≥0),若函数g (x )=????? log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( ) A .1 B .3 C .2 D .4 【方法技巧】函数零点的求法 (1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且

复合函数的零点个数问题

复合函数、分段函数零点个数问题 2012.12.31 1.(2013届八校联考理10)已知函数???<≥=) 0()-(log ) 0(3)(3x x x x f x ,函数 )()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...的是( ) A .若)(,41x g t = 有一个零点 B .若)(,4 1 2-x g t <<有两个零点 C .若)(,2-x g t =有三个零点 D .若)(,2-x g t <有四个零点 2、(2013届八校联考-文10)已知函数(0) ()lg()(0)x e x f x x x ?≥=?-0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2 +=x f x f 的零点的个数为 ________. 5.已知函数1+ (0)()0(=0) x x f x x x ?≠?=??? 则关于x 的方程 2 ()b ()0f x f x c ++= 有5个 不同的实数解的充要条件是( ) A b<-2且c>0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 6 已知函数31 +,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2 >+=a a x x f x 的零点个数不可能... 为( ) A 3 B 4 C 5 D 6

2020届高三数学专题练习之函数零点

2019届高三数学专题练习之函数零点 1.零点的判断与证明 例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 2.零点的个数问题 例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ?? ??? B .ln 31,93e ?? ??? C .ln 31,92e ?? ??? D .ln 3ln 3,93?? ??? 3.零点的性质 例3:已知定义在R 上的函数()f x 满足:()[)[) 22 2 0,121,0x x f x x x ?+∈?=?-∈-??,且()()2f x f x +=, ()25 2 x g x x += +,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5- B .6- C .7- D .8- 4.复合函数的零点 例4:已知函数()243f x x x =-+,若方程()()2 0f x bf x c ++=????恰有七个不相同的实根, 则实数b 的取值范围是( ) A .()2,0- B .()2,1-- C .()0,1 D .()0,2 一、选择题 1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4

2.已知a 是函数()12 log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( ) A .()00f x = B .()00f x > C .()00f x < D .()0f x 的符号不确定 3.函数2 ()2f x x a x =--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2 C .()0,3 D .()0,2 4.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内 B .(,)a -∞和(),a b 内 C .(),b c 和(),c +∞内 D .(,)a -∞和(),c +∞内 5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1 B .2 C .3 D .4 6.函数()22 01ln 0 x x x x x f x ?+-≤=? -+>?的零点个数为( ) A .3 B .2 C .7 D .0 7.已知函数()101 x x x f x ≤?? =?>??,则使方程()x f x m +=有解的实数m 的取值范围是( ) A .()1,2 B .(],2-∞- C .()(),12,-∞+∞ D .(][),12,-∞+∞ 8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( ) A .1,5?? +∞ ??? B .() 1,1,5?? -∞-+∞ ???

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

复合函数图像研究及零点个数问题

复合函数图像研究零点 例1、求方程02324=+-x x 实数解的个数为个。 例2、已知函数 则下列关于函数的零点个数的判断 正确的是( ) A. 当 时,有3个零点;当时,有2个零点 B. 当时,有4个零点;当时,有1个零点 C. 无论为何值,均有2个零点D. 无论为何值,均有4个零点 例3、已知函数f (x )=????? |ln x |,x >0x 2+4x +1,x ≤0 ,若关于x 的方程f 2(x )-bf (x )+c =0(b ,c ∈R )有8个不同的实数根,则b +c 的取值范围为( ) A .(-∞,3) B .(0,3] C .[0,3] D .(0,3) 例4、已知函数c bx ax x x f +++=23)(有两个极值点21,x x ,若211)(x x x f <=,则关 于x 的方程0)(2)(32=++b x af x f 的不同实根个数为。

及时训练 1、已知函数和在的图象如下所示: 给出下列四个命题: ①方程有且仅有6个根 ②方程有且仅有3个根 ③方程有且仅有5个根 ④方程有且仅有4个根 其中正确的命题是 .(将所有正确的命题序号填在横线上). 2、定义在()+∞,0上的单调函数函数)(x f ,对任意(),,0+∞∈x 都有[]4log )(3=-x x f f ,则函数21)()(x x f x g -=的零点所在区间是( ) A 、??? ??41,0 B 、??? ??21,41 C 、??? ??43,21 D 、? ?? ??1,43 )(x f y =)(x g y =]2,2[ -0)]([=x g f 0)]([=x f g 0)]([=x f f 0)]([=x g g

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

复合函数的零点个数问题

复合函数、分段函数零点个数问题 1.(2013届八校联考理10)已知函数???<≥=) 0()-(log ) 0(3)(3x x x x f x ,函数 )()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、(2013届八校联考-文10)已知函数(0)()lg()(0) x e x f x x x ?≥=?-0) ()-2(0) x x f x x x x ?=? -≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为________. 5.已知函数1+ (0)()0(=0) x x f x x x ?≠?=??? 则关于x 的方程 2()b ()0f x f x c ++= 有5个 不同的实数解的充要条件是( ) A b<-2且c>0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

分段函数零点问题研究

分段函数零点问题研究

分段函数作业 1. 已知函数f(x)=???(1-2a )x +3a ,x<1,lnx ,x ≥1 的值域为R ,那么实数a 的取值范围是________. 2. 已知函数f(x)=???(3a -1)x +4a ,x<1,log a x ,x ≥1在R 是单调函数,则实数a 的取值范围是______. 3. 已知函数f(x)=???x +2,x >a ,x 2+5x +2,x ≤a , 若函数g(x)=f(x)-2x 恰有3个不同的零点,则实数a 的取值范围是________. 4. 已知函数f(x)=? ??x 2,x ∈[0,+∞),x 3+a 2-3a +2,x ∈(-∞,0)在区间(-∞,+∞)上是增函数,则常数a 的取值范围是________. 5. 已知函数f(x)=? ????-x 2+4x ,x ≤4,log 2x ,x>4,若函数y =f(x)在区间(a ,a +1)上单调递增,则实数a 的取值范围是________. 6. 已知函数f(x)=?????(x -a )2 ,x ≤0,x +1x +a ,x>0,若f(0)是f(x)的最小值,则实数a 的取值范围为_____. 7. 已知函数f(x)=???|x|,x ≤m ,x 2-2mx +4m ,x>m , 其中m>0,若存在实数b ,使得关于x 的方程f(x)=b 有3个不同的根,则m 的取值范围是________. 8. 已知函数f(x)=?????1x +1-3,x ∈(-1,0],x ,x ∈(0,1], 且g(x)=f(x)-mx -m 在(-1,1]内有且仅有2个不同的零点,则实数m 的取值范围是________. 9. 已知函数f(x)=???(2a -4)x +2a -3,x ≤t ,-x 2+3x ,x>t , 无论t 取何值,函数f(x)在区间(-∞,+∞)上总是不单调,则实数a 的取值范围是________. 10. 设函数f(x)=???log 2??? ?-x 2,x ≤-1,-13x 2+43x +23,x>-1, 若f(x)在区间[m ,4]上的值域为[-1,2],则实数m 的取值范围为________.

复合函数零点(题)

复合函数零点 类型一:直接作图 1、直线1y =与曲线2y x x a =-+有4个交点,则a 的取值范围是 2、已知(x)f 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21(x)x 22 f x =-+.若函数(x)a y f =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 3、已知函数),0()0,()(+∞-∞ 是定义在x f 上的偶函数,当0>x 时, 1)(4)(2),2(2 1,20,12)(|1|-=?????>-≤<-=-x f x g x x f x x f x 则函数的零点个数为 类型二:与二次函数结合 1、设定义域为R 的函数2lg (>0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数 1)(3-)(2y 2+=x f x f 的零点的个数为______________. 2、已知函数 ,若关于 的方程 有 个不同的实数解,则实数 的取值范围是______. 3、设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++?=?--+≤??,若关于x 的方程2(x)3(x)0(a R)f f a -+=∈有8个不等的实数根,则a 的取值范围是( ) A. 1 (0,)4 B. 1(,3)3 C. (1,2) D. 9(2,)4 5.函数()y f x =是定义域为R 的偶函数,当0x ≥时,21,(02)16()1(),(2)2 x x x f x x ?≤≤??=??>??,若关 于x 的方程[]2()()0f x af x b ++=,,a b R ∈,有且仅有6个不同实数根,则实数a 的取

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

函数与函数地零点知识点的总结

函数及函数的零点有关概念 函数的概念:设 A 、 B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合A 中的任意一个数 x ,在 集合B 中都有唯一确定的数 f(x)和它对应,那么就称 f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x) , x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的 y 值叫做函数值,函数值的集 合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数(一)函数三要素 1.定义域:能使函数式有意义的实数 x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于 1. (5) 指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的 x 的值组成的 集合即交集.(7)三角函数正切函数 tan y x 中()2 x k k Z . (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义 . (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1) 已知f(x)的定义域是[a,b],求f[g(x)] 的定义域,是指满足 () a g x b 的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b 的条件下,求g(x)的值域; (3) 已知f[g(x)] 的定义域是[a,b], 求f[h(x)] 的定义域,是指在[,]x a b 的条件下,求g(x)的值域,g(x)的值 域就是h(x)的值域,再由h(x)的范围解出x 即可。2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法3).值域 : 先考虑其定义域3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法;3.2分段函数的值域是各段的并集3.3复合函数的值域

复合函数零点问题

复合函数零点问题 一、基础知识: 1、复合函数定义:设()y f t =,()t g x =,且函数()g x 的值域为()f t 定义域的子集,那么y 通过t 的联系而得到自变量x 的函数,称y 是x 的复合函数,记为()y f g x =???? 2、复合函数函数值计算的步骤:求()y g f x =????函数值遵循“由内到外”的顺序,一层层求出函数值。例如:已知()()2 2,x f x g x x x ==-,计算()2g f ???? 解:()2 224 f ==()()2412 g f g ∴==????3、已知函数值求自变量的步骤:若已知函数值求x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出x 的值。例如:已知()2x f x =,()2 2g x x x =-,若()0g f x =????,求x 解:令()t f x =,则()2 020g t t t =?-=解得0,2t t == 当()0020x t f x =?=?=,则x ∈? 当()2222x t f x =?=?=,则1x = 综上所述:1x = 由上例可得,要想求出()0g f x =????的根,则需要先将()f x 视为整体,先求出()f x 的值,再求对应x 的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义: 4、复合函数零点问题的特点:考虑关于x 的方程()0g f x =????根的个数,在解此类问题时,要分为两层来分析,外层是解关于 g(x)的方程,观察有几个t ,g(t)的值使得等式成立;内层 是结合着()f x =t ,求出每一个()f x =t 被几个x 对应,将x 的个数汇总后即为()0g f x =????的根的个数 例1:关于x 的方程()2 22 13120x x ---+=的不相同实根的个数是( ) A.3 B.4 C.5 D.8

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). < A.()2,1-- B.()1,0- C.()0,1 D.() 1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选 C. 二、 基础知识回顾

1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 · 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根

相关文档
最新文档