CURE聚类算法的实现

CURE聚类算法的实现
CURE聚类算法的实现

CURE聚类算法的实现

任务背景

聚类(clustering)就是将数据对象分组成为多个类或簇(cluster),在同一簇中的对象之间具有较高的相似度,而不同的簇中对象差别较大。相异度是根据描述对象的属性值来计算的。距离是经常采用的度量方式。聚类分析源于许多研究领域,包括数据挖掘,统计学,生物学,以及机器学习。

作为统计学的一个分支,聚类分析已经被广泛的研究了许多年,主要集中在基于距离的聚类分析。基于k-means(k-平均值),k-medoids(k-中心点)和其他一些方法的聚类分析工具已经被加入到许多统计分析软件包或系统中,例如

S-Plus,SPSS,以及SAS。

CURE(Clustering Using Representatives)是一种针对大型数据库的高效的聚类算法。基于划分的传统的聚类算法得到的是球状的,相等大小的聚类,对异常数据比较脆弱。CURE采用了用多个点代表一个簇的方法,可以较好的处理以上问题。并且在处理大数据量的时候采用了随机取样,分区的方法,来提高其效率,使得其可以高效的处理大量数据。

基本目标

聚类算法CURE的算法实现。对图形进行聚类,在时间,结果方面对其性能进行评估。

算法流程

CURE的算法在开始时,每个点都是一个簇,然后将距离最近的簇结合,一直到簇的个数为要求的K。它是一种分裂的层次聚类。算法分为以下6步:

1)从源数据对象中抽取一个随机样本S。

2)将样本S分割为一组划分。

3)对划分局部的聚类。

4)通过随机取样提出孤立点。如果一个簇增长得太慢,就去掉它。

5)对局部的簇进行聚类。

6)用相应的簇标签标记数据。

算法设计

(1)基本聚类算法

procedure cluster(S, k) /*将数据集S聚类成为k个簇*/

begin

1. T := build_kd_tree(S) /*对应数据集S建立一个K-DTree T*/

2. Q := build_heap(S) /*对应数据集S建立一个堆Q*/

3. while size(Q) > k do { /*聚类直至簇的个数为k */

4. u := extract_min(Q) /*找到最近的两个簇u,v */

5. v := u.cloest

6. delete(Q, v)

7. w := merge(u, v) /*将u,v合并为簇w */

8. delete_rep(T, u);delete_rep(T, v);insert_rep(T, w)

9. w.cloest := x /* x is an arbitrary cluster in Q*/

10. for each x∈Q do{ /*调节因合并带来的T和Q的变化*/

11. if (dist(w,x) < dist(w,w.cloest))

12. w.cloest := x

13. if x.cloest is either u or v {

14. if dist(x, x.cloest) < dist(x.w)

15. x.cloest := cloest_cluster(T, x, dist(x,w))

16. else

17. x.cloest := w

18. relocate(Q, x)

19. }

20. else if dist(x, x.cloest) > dist(x, w) {

21. x.cloest := w

22. relocate(Q, x)

23. }

24. }

25. insert(Q, w)

26. }

end

此程序段用到的数据结构有Heap,和K-DTree。为了合并距离最短的两个聚类,需要构建一个K-DTree来找到空间中的一聚类最近的一个聚类,之后把K-DTree 中的聚类按照其与最近的聚类的距离进行排序(用的是堆排序),找到最近的两个的聚类,将它们合并(对应函数merge())。

(2)Merge算法

procedure merge(u, v) /*合并两个簇,并确定新簇的中心点和代表点*/ begin

1. w := u ∪v

2. w.mean :=/*求新簇w的中心点*/

3. tmpSet := ? /*用来存c个代表点的集合*/

4. for i := 1 to c do { /*选出c个代表点*/

5. maxDist := 0 /*距中心点或代表点最远的点作为代表点*/

6. foreach point p in cluster w do {

7. if i = 1

8. minDist := dist( p, w.mean )

9. else

10. minDist := min{ dist( p, q ) : q ∈tmpSet }

11. if( minDist >= maxDist ) {

12. maxDist := minDist

13. maxPoint := p

14. }

15. }

16. tmpSet := tmpSet ∪{ maxPoint }

17. }

18. foreach point p in tmpSet do /*按照收缩因子α处理代表点*/

19. w.rep := w.rep ∪{ p + α*( w.mean – p )}

20. return w

end

此程序段同时描述了如何选取代表点:

对每个簇选择c个分布较好的点,通过系数α向中心收缩,其中0 <α<1。α小,收缩小,可以区分拉长的簇;α大,靠近中心点,得到的簇更紧凑。

显然,如果α=1,聚类w的代表点就是w.mean,即其中心点,此时类似于Centroid-base approach,即中心点代表簇,当α=0,此时类似于All-points approach,即所有点代表簇。

簇之间的距离定义为:两个簇的代表点之间的最小距离,即:

点到簇的距离与此类似,是该点到最近的簇的代表点的距离。

c个代表点体现了簇的物理几何形状;向中心收缩可以降低异常点的影响。两个簇组合后的新簇,则重新选择c个点作为簇的代表。

(3)数据取样:

在对大规模数据库进行聚类分析时,数据取样是一种常用的提高聚类效率的方法,即对整个数据库进行数据取样,然后对取样数据库进行聚类分析,而对未被取样的数据进行聚类标注。这样,对大规模数据库的聚类分析就转化为对较小规模的取样数据库的聚类分析。由于没有考虑到整个数据库的数据,聚类质量必然会受到影响。但是,只要取样均匀且取样率适当,则取样数据库也可以较好地反映整个数据库状况,从而在保证聚类质量的同时提高聚类效率。

定理1:对一个簇u,如果取样大小s满足:

那么,样本中属于簇u的点的个数小于f|u|的概率小于δ,0<=δ<=1

因此,采用chernoff bounds来确定的最小的取样数据量:

这就表示着如果我们只关心数据点数目大于的聚类,且最小的聚类至少有ξ个数据点,那么我们只需要一个独立于原始数据点个数的取样数目。

(4)分区方法

分区过程如下:将所有样本分成p个分区,每个分区大小n/p。每个分区内作聚类,直到分区内的簇的个数为n/pq, q > 1。或者指定一个距离阈值,当最近簇距离大于阈值,则停止。在CURE算法中,

First pass 每个分区:

Second pass 总聚类:

p,q的最好选值:使n/pq为k的2~3倍。

其优点是:减少执行时间;减少输入数据,保证可以在内存中存放所有聚类的代表点。

(5)标记数据所属的簇

因为CURE用c个点来代表一个聚类,因此在聚类完成后,对未参加聚类的数据或新增的数据进行标注从而计算聚类的可信度时,其可以准确的识别非球状数据集,使得标注更加准确。

(6)异常点的处理

1.随机取样,过滤了大多数的异常点;

2.异常点所在的簇的点个数少于正常簇的点的个数,此时分两个阶段消除异常点。

a. 第一阶段:增长速度慢的簇作为异常,以点的个数作为阈值。Fraction(簇的个数为初始簇个数的比例;比如:1/3)的取值很重要;当簇的个数减少到fraction 时,开始作消除异常点的操作。

b. 第二阶段:在第一阶段中,可能有些相近的异常点已经组合,所以进行第二阶段中异常点形成的簇非常小,很容易鉴别。

数据取样算法:

在对大规模数据库进行聚类分析时,数据取样是一种常用的提高聚类效率的方法,即对整个数据库进行数据取样,然后对取样数据库进行聚类分析,而对未被取样的数据进行聚类标注。这样,对大规模数据库的聚类分析就转化为对较小规模的取样数据库的聚类分析。由于没有考虑到整个数据库的数据,聚类质量必然会受到影响。但是,只要取样均匀且取样率适当,则取样数据库也可以较好地反映整个数据库状况,从而在保证聚类质量的同时提高聚类效率。与以前的基于取样的聚类算法相比。

取样算法:这种算法只需扫描一遍被取样数据库,而且使用恒定的内存空间,便可以从N个记录中随机取出n个取样记录。其基本思想是:从第N-n+1条记录开始,做下列操作。设当前处理的是第t个记录(n+1≤t≤N),u是产生的一个随机数(u∈〔0,t-1〕),若u

应该能够有效地代表原数据库。若取样率太低,取样数据库必然会丢失原数据库的某些特质,导致聚类效果失真。

测试方法:对图形(事实上相当于2维的数据库数据)进行聚类。

输入:左图

输出:类似右图,即把两组点分开,可以用颜色的不同来表示

一个图形约有几万个点,取样数目在k*500至k*1000(k为分组的数目),左右,可以自己掌握。

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告 1.数据源描述 1.1数据特征 本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。数据集中总共有68个地区,主要分布在美国和加拿大。一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。 图1 数据格式 例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。 1.2任务要求 聚类。采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。 2.数据预处理 2.1数据清理 所给数据集中包含一些对聚类过程无用的冗余数据。数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。例如: ①abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ②abelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ③abelmoschus moschatus,hi,pr 上述数据中第①行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的②③两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集

K - M e a n s 聚 类 算 法

基于K-means聚类算法的入侵检测系统的设计 基于K-means聚类算法的入侵检测系统的设计 今天给大家讲述的是K-means聚类算法在入侵检测系统中的应用首先,介绍一下 聚类算法 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,有关世界空间地域的研究,则形成了地理学。 又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。 事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analysis)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 (聚类分析我们说得朴实一点叫做多元统计分析,说得时髦一点叫做数据挖掘算法,因为这个算法可以在一堆数据中获取很有用的信息,这就不就是数据挖掘吗,所以大家平时也不要被那些高大上的名词给吓到了,它背后的核心原理大多数我们都是可以略懂一二的,再

比如说现在AI这么火,如果大家还有印象的话,以前我们在大二上学习概率论的时候,我也和大家分享过自然语言处理的数学原理,就是如何让机器人理解我们人类的自然语言,比如说,苹果手机上的Siri系统,当时还让杨帆同学帮我在黑板上写了三句话,其实就是贝叶斯公式+隐含马尔可夫链。估计大家不记得了,扯得有点远了接下来还是回归我们的正题,今天要讨论的聚类算法。) K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,结果稳定,聚类的效果也还不错, 相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个特征变量来刻画,就比如说我们举一个例证,就有一项比较神奇的技术叫面部识别技术,其实听起来很高大上,它是如何做到的,提取一个人的面部特征,比如说嘴巴的长度,鼻梁的高度,眼睛中心到鼻子的距离,鼻子到嘴巴的距离,这些指标对应得数值可以组成一个向量作为每一个个体的一个标度变量(),或者说叫做每一个人的一个特征向量。 如果对于一群有待分类的样本点需用p 个特征变量值描述,则每

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

聚类分析算法解析.doc

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象 <- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法 "median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

(完整版)聚类算法总结

1.聚类定义 “聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性”——wikipedia “聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。”——百度百科 说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N 个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。 2.聚类过程: 1) 数据准备:包括特征标准化和降维. 2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中. 3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.

4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组. 5) 聚类结果评估:是指对聚类结果进行评估.评估主要有3 种:外部有效性评估、内部有效性评估和相关性测试评估. 3聚类算法的类别 没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示 的4 个类别.

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告 1.方法背景 聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,在古老的分类学中,人们主要靠经验和专业知识,很少利用数学方法。随着生产技术和科学的发展,分类越来越细,以致有时仅凭经验和专业知识还不能进行确切分类,于是数学这个有用的工具逐渐被引进到分类学中,形成了数值分类学。近些年来,数理统计的多元分析方法有了迅速的发展,多元分析的技术自然被引用到分类学中,于是从数值分类学中逐渐的分离出聚类分析这个新的分支。结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。在经济领域中,主要是根据影响国家、地区及至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后很据分析结果进行综合评价,以便得出科学的结论。 2.基本要求 用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C均值和分级聚类方法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。 3.实验要求 (1)把FAMALE.TXT和MALE.TXT两个文件合并成一个,同时采用身高和体重数据作为特征,设类别数为2,利用C均值聚类方法对数据进行聚类,并将聚类结果表示在二维平面上。尝试不同初始值对此数据集是否会造成不同的结果。 (2)对1中的数据利用C均值聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目。 (3)对1中的数据利用分级聚类方法进行聚类,分析聚类结果,体会分级聚类方法。。(4)利用test2.txt数据或者把test2.txt的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会 4.实验步骤及流程图 根据以上实验要求,本次试验我们将分为两组:一、首先对FEMALE 与MALE中数据组成的样本按照上面要求用C均值法进行聚类分析,然后对FEMALE、MALE、test2中数据组成的样本集用C均值法进行聚类分析,比较二者结果。二、将上述两个样本用分即聚类方法进行聚类,观察聚类结果。并将两种聚类结果进行比较。 (1)、C均值算法思想

CLOPE-快速有效的聚类算法

CLOPE:针对交易的数据快速有效聚类算法 摘要 本文研究分类数据的聚类问题,特别针对多维和大型的交易数据。从增加聚簇直方图的高宽比的方法得到启发,我们开发了一种新的算法---CLOPE,这是一种非常快速、可伸缩,同时又非常有效的算法。我们展示了算法对两个现实数据集聚类的性能,并将CLOPE与现有的聚类算法进行了比较。 关键词 数据挖掘,聚类,分类数据,可伸缩性 1.简介 聚类是一种非常重要的数据挖掘技术,它的目的是将相似的交易[12, 14, 4, 1]分组在一起。最近,越来越多的注意力已经放到了分类数据[10,8,6,5,7,13]的聚类上,分类数据是由非数值项构成的数据。交易数据,例如购物篮数据和网络日志数据,可以被认为是一种特殊的拥有布尔型值的分类数据,它们将所有可能的项作为项。快速而精确地对交易数据进行聚类的技术在零售行业,电子商务智能化等方面有着很大的应用潜力。 但是,快速而有效聚类交易数据是非常困难的,因为这类的数据通常有着高维,稀疏和大容量的特征。基于距离的算法例如k-means[11]和CLARANS[12]都是对低维的数值型数据有效。但是对于高维分类数据的处理效果却通常不那么令人满意[7]。像ROCK这类的分层聚类算法在分类数据聚类中表现的非常有效,但是他们在处理大型数据库时表现出先天的无效。 LargeItem[13]算法通过迭代优化一个全局评估函数对分类数据进行聚类。这个评估函数是基于大项概念的,大项是在一个聚簇内出现概率比一个用户自定义的参数——最小支持度大的项。计算全局评估函数要远比计算局部评估函数快得多,局部评估函数是根据成对相似性定义的。这种全局方法使得LargeItem算法非常适合于聚类大型的分类数据库。 在这篇文章中,我们提出了一种新的全局评估函数,它试图通过增加聚簇直方图的高度与宽度之比来增加交易项在聚簇内的重叠性。此外,我们通过引用一个参数来控制聚簇紧密性的方法来泛化我们的想法,通过修改这个参数可以得到

机器学习聚类算法实现

《人工智能与机器学习》 实验报告 年级__ xxxx班____________ 专业___________xxxxx____ _____ 学号____________6315070301XX___________ 姓名_____________gllh________________ 日期___________2018-5-12 __

实验五聚类算法实现 一、实验目的 1、了解常用聚类算法及其优缺点 2、掌握k-means聚类算法对数据进行聚类分析的基本原理和划分方法 3、利用k-means聚类算法对已知数据集进行聚类分析 实验类型:验证性 计划课间:4学时 二、实验内容 1、利用python的sklearn库函数对给定的数据集进行聚类分析 2、分析k-means算法的实现流程 3、根据算法描述编程实现,调试运行 4、对所给数据集进行验证,得到分析结果 三、实验步骤 1、k-means算法原理 2、k-means算法流程 3、k-means算法实现 4、对已知数据集进行分析 四、实验结果分析 1.利用python的sklearn库函数对给定的数据集进行聚类分析: 其中数据集选取iris鸢尾花数据集 import numpy as np from sklearn.datasets import load_iris iris = load_iris() def dist(x,y):

return sum(x*y)/(sum(x**2)*sum(y**2))**0.5 def K_means(data=iris.data,k=3,ping=0,maxiter=100): n, m = data.shape centers = data[:k,:] while ping < maxiter: dis = np.zeros([n,k+1]) for i in range(n): for j in range(k): dis[i,j] = dist(data[i,:],centers[j,:]) dis[i,k] = dis[i,:k].argmax() centers_new = np.zeros([k,m]) for i in range(k): index = dis[:,k]==i centers_new[i,:] = np.mean(data[index,:],axis=0) if np.all(centers==centers_new): break centers = centers_new ping += 1 return dis if __name__ == '__main__': res = K_means() print(res) (1)、首先求出样本之间的余弦相似度: sum(x*y)/(sum(x**2)*sum(y**2))**0.5 (2)、设置k类别数为3,最大迭代次数为100 K_means(data=iris.data,k=3,ping=0,maxiter=100):

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

k均值聚类报告

K-均值聚类算法报告 摘要 K-均值是聚类方法中长用的一种划分方法,有很多优点,本文主要对K-均值是聚类方法的产生,工作原理,一般步骤,以及它的源码进行简单的介绍,了解K-均值是聚类!!! (一)课题名称:K-均值聚类(K-means clustering) (二)课题分析: J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配: ① 指定聚类,即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。 ② 修改聚类中心。 优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<

(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)循环(3)到(4)直到每个聚类不再发生变化为止; (3)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4)重新计算每个(有变化)聚类的均值(中心对象) k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 (三)总体检索思路: 利用goole,百度,搜狗等搜索引擎及校内的一些数据库进行相关内容的检索。主要检索内容为K-均值聚类算法的工作原理,一般步骤,源码。 (四)检索过程记录: 关键词:K-均值聚类算法 搜索引擎:百度 检索内容:①K-均值聚类算法工作原理 ②K-均值聚类算法的一般步骤 ③K-均值聚类算法的源码

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

自动确定聚类中心的势能聚类算法

自动确定聚类中心的势能聚类算法* 于晓飞1,葛洪伟1,2+ 1.江南大学物联网工程学院,江苏无锡214122 2.江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 Potential Clustering by Automatic Determination of Cluster Centers YU Xiaofei 1,GE Hongwei 1,2+ 1.School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China 2.Ministry of Education Key Laboratory of Advanced Process Control for Light Industry,Jiangnan University,Wuxi,Jiangsu 214122,China +Corresponding author:E-mail:ghw8601@https://www.360docs.net/doc/5613798971.html, YU Xiaofei,GE Hongwei.Potential clustering by automatic determination of cluster centers.Journal of Fron-tiers of Computer Science and Technology,2018,12(6):1004-1012. Abstract:Potential-based hierarchical agglomerative clustering (PHA)uses a new similarity metric to get clustering results more efficiently.However,it suffers from the problem how to determine the number of clusters automatically.And it assigns samples according to distance measure,which ignores the influence of potential.To overcome these shortcomings,this paper proposes a new algorithm that can determine the number of clusters automatically.Firstly,two variables are used to find the clustering centers automatically:the potential of each point and the distance from points to their parent nodes.Then,the distance and the potential are used to assign the remaining points.Finally,the experiments on artificial data sets and real data sets show that the new algorithm not only determines the number of clusters automatically,but also has better clustering results. Key words:clustering;potential-based hierarchical agglomerative clustering (PHA);potential clustering;automati-cally determining the number of clustering *The National Natural Science Foundation of China under Grant No.61305017(国家自然科学基金);the Research Innovation Pro-gram for College Graduates of Jiangsu Province under Grant No.KYLX15_1169(江苏省普通高校研究生科研创新计划项目).Received 2017-02,Accepted 2017-04. CNKI 网络出版:2017-04-13,https://www.360docs.net/doc/5613798971.html,/kcms/detail/11.5602.TP.20170413.1027.004.html ISSN 1673-9418CODEN JKYTA8 Journal of Frontiers of Computer Science and Technology 1673-9418/2018/12(06)-1004-09 doi:10.3778/j.issn.1673-9418.1702048E-mail:fcst@https://www.360docs.net/doc/5613798971.html, https://www.360docs.net/doc/5613798971.html, Tel:+86-10-89056056万方数据

聚类算法总结

聚类算法的种类:

--------------------------------------------------------- 几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

--------------------------------------------------------- 目前聚类分析研究的主要内容: 对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都 存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚 类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以 及人们在这些问题上所做的努力做一个简单的总结: 1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在 现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类 数目,得到较好的聚类结果。 2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各 种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不 规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是 其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者 提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类 算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个 问题。 3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这 就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降 低了计算成本。 4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规 模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就 会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据 量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、 维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对 高维数据进行聚类。 5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好 的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大, 因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。

一种基于密度的快速聚类算法

第37卷第11期 2000年11月计算机研究与发展JOU RNAL O F COM PU T ER R ESEA RCH &D EV ELO PM EN T V o l 137,N o 111N ov .2000 原稿收到日期:1999209220;修改稿收到日期:1999212209.本课题得到国家自然科学基金项目(项目编号69743001)和国家教委博士点教育基金的资助.周水庚,男,1966年生,博士研究生,高级工程师,主要从事数据库、数据仓库和数据挖掘以及信息检索等的研究.周傲英,男,1965年生,教授,博士生导师,主要从事数据库、数据挖掘和W eb 信息管理等研究.曹晶,女,1976年生,硕士研究生,主要从事数据库、数据挖掘等研究.胡运发,男,1940年生,教授,博士生导师,主要从事知识工程、数字图书馆、信息检索等研究. 一种基于密度的快速聚类算法 周水庚 周傲英 曹 晶 胡运发 (复旦大学计算机科学系 上海 200433) 摘 要 聚类是数据挖掘领域中的一个重要研究方向.聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用.迄今为止人们提出了许多用于大规模数据库的聚类算法.基于密度的聚类算法DBSCAN 就是一个典型代表.以DBSCAN 为基础,提出了一种基于密度的快速聚类算法.新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I O 开销,实现快速聚类.对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN 算法. 关键词 空间数据库,数据挖掘,聚类,密度,快速算法,代表对象 中图法分类号 T P 311.13;T P 391 A FAST D ENSIT Y -BASED CL USTER ING AL G OR ITH M ZHOU Shu i 2Geng ,ZHOU A o 2Y ing ,CAO J ing ,and HU Yun 2Fa (D ep a rt m en t of Co mp u ter S cience ,F ud an U n iversity ,S hang ha i 200433) Abstract C lu stering is a p rom ising app licati on area fo r m any fields including data m in ing ,statistical data analysis ,p attern recogn iti on ,i m age p rocessing ,etc .In th is paper ,a fast den sity 2based clu stering algo rithm is developed ,w h ich con siderab ly speeds up the o riginal DB SCAN algo rithm .U n like DB SCAN ,the new DB SCAN u ses on ly a s m all num ber of rep resen tative ob jects in a co re ob ject’s neighbo rhood as seeds to exp and the clu ster so that the execu ti on frequency of regi on query can be decreased ,and con sequen tly the I O co st is reduced .Experi m en tal resu lts show that the new algo rithm is effective and efficien t in clu stering large 2scale databases ,and it is faster than the o riginal DB SCAN by several ti m es . Key words spatial database ,data m in ing ,clu stering ,den sity ,fast algo rithm ,rep resen tative ob jects 1 概 述 近10多年来,数据挖掘逐渐成为数据库研究领域的一个热点[1].其中,聚类分析就是广为研究的问题之一.所谓聚类,就是将数据库中的数据进行分组,使得每一组内的数据尽可能相似而不同组内的数据尽可能不同.聚类技术在统计数据分析、模式识别、图像处理等领域都有广泛的应用前景.迄今为止,人们已经提出了许多聚类算法[2~7].所有这些算法都试图解决大规模数据的聚类问题.以基于密度的聚类算法DB SCAN [4]为基础,本文提出一种基于密度的快速聚类算法.通过选用核心对象附近区域包含的所有对象的代表对象作为种子对象来扩展类,快速算法减少了区域查询的次数,从而减低了聚类时间和I O 开销 .本文内容安排如下:首先在第2节中介绍基于密度的聚类算法DB SCAN 的基本思想,并分析它的局限

相关文档
最新文档