微分方程在几类实际问题中的应用

微分方程在几类实际问题中的应用
微分方程在几类实际问题中的应用

毕业设计(论文)

题目名称:微分方程在几类实际问题中的应用院系名称:理学院

班级:数学102

学号:201000134223

学生姓名:陈博先

指导教师:宋长明

2014年 6 月

论文编号:201000134223

微分方程在几类实际问题中的应用Application of Differential Equation in Several Practical Problems

院系名称:理学院

班级:数学102

学号:201000134223

学生姓名:陈博先

指导教师:宋长明

2014年6 月

摘要

在数学上,物质运动和其变化规律是用函数关系进行描述的,但是实际问题中常常不能直接写出反应相应规律的函数,却比较容易建立起这些变量与它们的导数之间的关系式,即微分方程.只有一个自变量的微分方程即为常微分方程,简称为微分方程.

本文讨论的是微分方程在实际问题中的应用.微分方程在各个学科领域都可以发挥出其数学优势,将微分方程理论和实际问题结合起来,便可建立实际问题的模型.本文在介绍微分方程应用背景的基础上,结合微分方程的概念性质,利用归纳总结的方法探讨了常微分方程在物理问题、生物问题、军事问题、经济问题和医学问题等“现实生活”中问题的应用,同时结合相应实例进行分析.从这些应用问题中,我们可以看出:微分方程,它确实是数学联系实际的一个活跃分支.

关键词:微分方程;实际问题;应用;数学模型

Abstract

In mathematics, the motion of matter and its change rule are described by the relationship of function. But for practical problems , compared with writing the reaction of the corresponding rules directly, establishing the relationship between these variables and their derivatives named differential equation becomes relatively easy. Only a variable of differential equation is called ordinary differential equation, for short differential equation.

In this paper, we discuss the application about differential equations in the actual problems. Differential equation can perform its mathematical advantage in various https://www.360docs.net/doc/5614245712.html,bining differential equation theory and practical problems, we can establish the model of the actual problems.Based on the application background of differential equation and combined with the concept and nature of differential equation,this paper discussed the application of ordinary differential equation in the field of physics,biology,military,economic and medicine,and so on,with the method of summarizing. From these applications,we can see that differential equation is really a active branch of connetting math and practical problems.

Keywords: differential equations;the actual problem;application;mathematical model

目录

1引言 (1)

2 微分方程简介 (2)

2.1 微分方程的概念 (2)

2.1.1微分方程 (2)

2.1.2微分方程的阶 (2)

2.2高阶微分方程解法 (2)

2.2.1可降价高阶微分方程的解法 (3)

2.2.2线性微分方程解的结构 (3)

2.2.3二阶常系数齐次线性方程解法 (4)

2.2.4二阶常系数非其次线性微分方程解法 (4)

2.3微分方程建立模型的主要方法 (5)

2.3.1定理规律法 (5)

2.3.2模拟近似法 (5)

2.3.3微元分析法 (5)

2.4微分方程解决问题的基本步骤 (5)

2.4.1基本步骤 (5)

2.4.2案例分析 (5)

3 微分方程在实际问题中的应用 (7)

3.1 微分方程在物理问题中的应用 (7)

3.2 微分方程在生物问题中的应用 (9)

3.3 微分方程在军事问题中的应用 (10)

3.4微分方程在经济问题中的应用 (12)

3.4.1新产品推广模型 (12)

3.4.2价格调整模型 (13)

3.5 微分方程在医学问题中的应用 (15)

3.5.1模型Ⅰ (15)

3.5.2模型Ⅱ (16)

3.5.3模型Ⅲ (17)

3.5.4模型Ⅳ (19)

结论 (21)

参考文献 (22)

致谢 (23)

1引言

客观世界的一切事物的运动和变化在数学上的反映,便有变数(或变量)概念.事物的运动和变化又是相互依赖、相互制约的,反映在数学上,就是变量之间的关系,从而又形成了函数的概念.由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程.通过求解这种方程,同样可以找到指定未知变量直接的函数关系.因此,微分方程是数学联系实际,并应用于实际的重要途径和桥梁,是各个学科进行科学研究的强有力的工具.因而,研究微分方程具有很重要的应用价值和实际意义.

本文研究的主要是常微分方程在实际问题中的应用,在生物、物理、化学等学科中都有微分方程的应用.微分方程是数学理论联系实际的重要渠道,它是研究许多自然科学、工程技术以及生物医学技术等实际问题的有力工具.本论文内容由两部分组成:第一部分,通过查阅教材和相关资料收集总结微分方程的定义性质,通过阅读前人文献以及向老师同学请教总结利用微分方程建立模型解决实际问题的方法和基本步骤;第二部分,这一部分总共选择了五个学科领域,通过举例建立模型分析了微分方程分别在物理、生物、军事、经济和医学方面的应用,这一部分选择了与我们生活更加相关联的经济问题和医学问题作为重点,分别从不同方面建立相关的微分方程模型并求解分析其实际意义,这一部分介绍了微分方程解决实际问题的能力及其便利性.

2 微分方程简介

在17-18世纪社会生产力发展的需求与科学数学化进程的影响下,微积分本身进一步深入发展并在力学、物理学、声学和几何学等方面广泛应用,刺激和推动了一系列应用分支的形成,微分方程理论正是在这一时代背景下应时而兴的.本章简单的介绍了微分方程的相关概念以及微分方程解决问题的步骤和方法.

2.1 微分方程的概念

2.1.1微分方程

许多客观的变化过程包含一定的函数关系,但是这个函数关系一般无法获得.然而,可以根据实际背景和各种有用信息建立起一个包涵未知函数的导数方程.一般的,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,例如下面的方程:

20,sin y y y a y x x

'''+=+= 在许多问题中,不能够直接求出所需要的函数关系.但是能够根据实际问题的背景与各种客观规律建立起关于未知函数的一个微分方程.研究微分方程就可以求出这个函数,从而获得相关问题的各方面的有用信息.

2.1.2微分方程的阶

微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶.例如,方程2dy x dx

=的阶数为1;方程220.4d s dt =-的阶数为2.阶数为一的微分方程为一阶微分方程,阶数为二及其以上的微分方程为高阶微分方程,本文主要讨论二阶微分方程.例如'2y xy x +=的微分方程称为一阶微分方程;3223x y x y x '''''+=为三阶微分方程.

2.2高阶微分方程解法

对于高阶微分方程的求解,一般的高阶微分方程没有普遍的解法,通常是通过变代换把高阶方程的求解问题转化为较低阶方程来求解,因为一般来说求解低阶方

程比求解高阶方程方便些.因为本论文主要用到二阶常微分方程,故本节主要介绍常见的二阶常微分方程的相应的解法.

2.2.1可降价高阶微分方程的解法

①()()n y f x =型

解法:接连积分n 次,即得通解.

②(),y f x y '''=型

特点:不显含未知函数y

解法:令(),y P x y P ''''==,

代入原方程,得()(),P f x P x '=.

③(),y f y y '''=型

特点:不显含自变量x.

解法:令(),dP y P x y P

dy '''==, 代入原方程,得(),dP P f y p dy

=. 2.2.2线性微分方程解的结构

①二阶齐次方程解的结构:

形如()()0y P x y Q x y '''++=方程的解为:

若12,y y 是解,则1122y c y c y =+也是解;若12,y y 是两无关解,则1122y c y c y =+是通解.

②二阶非齐次线性方程解的结构:

形如()()()y P x y Q x y f x '''++=方程的解为:

非齐次方程的任两解之差是相应齐次方程的解,则有:非齐次通解=齐次通解+非齐次特解.

若()()()12f x f x f x =+,则12y y y =+.若12y y jy =+是()()()12f x f x jf x =+的特解,则12,y y 分别是()()12,f x f x 的特解.

2.2.3二阶常系数齐次线性方程解法

形如0y py qy '''++=的方程即为二阶常系数齐次线性方程,又此类方程的特征方程的根确定其通解的方法称为特征方程法.

如特征方程为20r pr q ++=,则其通解如下:

表2-1 通解表格

2.2.4二阶常系数非其次线性微分方程解法

形如()y py qy f x '''++=的方程即为二阶常系数非齐次线性微分方程,此类方程的解法称为待定系数法.

①()()x m f x e P x λ=型 可设()k x m y x e Q x λ=,01

2k λλλ??=???不是根是单根,是重根

②()()()cos sin x l n f x e P x x P x x λωω=+????型 可设()()()()12[cos sin ]k x m m y x e R x x R x x λωω=+,其中()()1m R x ,()()2m R x 是m 次多项

式,{}max ,m l n =.

01j k j λωλω±?=?±?不是特征方程的根时;是特征方程的单根时.

2.3微分方程建立模型的主要方法

2.3.1定理规律法

在数学、物理、化学等学科领域有许多定理和规律,它们或以文字存在、或以方程存在.比如数学里面的斜率公式、弧长公式,物理里面的牛顿定律、万有引力定律、虎克定律等.这些都有其相应的方程,在解决相关问题的时候,可以以相应的规律方程建立模型求解.

2.3.2模拟近似法

在生物、经济、医学等学科领域中,微分方程也能够发挥其便利性和可行性.然而在这些实际问题中,往往给出的数据都是个我们生活息息相关的不确定词,而且大部分又无规律可循.故而此时,我们往往需要对相关数据和变量进行假设模拟,建立相应的微分方程模型求解.

2.3.3微元分析法

微元分析法就是利用已知的定理与规律寻找微元直接的关系式,与定理规律法不同的是对微元而不是直接对函数及其导数应用规律.

2.4微分方程解决问题的基本步骤

2.4.1基本步骤

①理解题意选择建立模型的方法;

②根据题意建立常微分方程模型;

③判断微分方程类型

④解出模型精确解或近似解或者研究解的性态;

⑤解的实际意义.

2.4.2案例分析

本小节选择几何里面的一道例题进行分析,题意如下:

例 1 曲线簇是由微分方程2220xy y x '-+=所确定的,求出另一簇曲线,它和前

一簇曲线在相交点处均互相垂直,即于交点处切线相互正交.

分析 本题是求与已知曲线交点垂直的曲线,故可通过曲线率来求出曲线方程.本题按照定了规律法建立微分方程模型进行求解.

解 由题中方程2220xy y x '-+=可解出,此簇曲线在(,)x y 点处的切线斜率为:

()222x y y xy

-'=-

又,所求的曲线簇与之正交,故,此曲线斜率为:

()

222xy y x y '=- 整理得:

2220x y xy y y ''--=

这便是所求的曲线簇的微分方程.

模型建立完成,此微分方程是一阶微分方程.下面,我们来解此方程.

方程变形为:

22()20x y dy xydx --= 即20x d y y ??--= ???

解得:2

2x y c y

+=,即222x y cy += 这是一簇通过原点,且圆心在()0,c 上的圆.

本题是利用微分方程解答几何问题,在几何上的应用主要是用曲线的法线斜率、切线斜率、曲率、曲边梯形面积等来描述一些所求的曲线或者图形的几何特征.

3 微分方程在实际问题中的应用

常微分方程在很多学科领域内有着重要的作用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等等,这些问题都可以通过建立数学模型化为求微分方程的解,或者化为研究解的性质的问题.本章选取了物理、生物、军事、经济和医学五个方面,通过上一章的微分方程解决实际问题的总结,从而举例并研究了微分方程在实际问题的应用.

3.1 微分方程在物理问题中的应用

物理学中有很多常用的物理规律,如牛顿运动定律、万有引力定律等.在解物理应用题的时候,我们可以结合微分方程理论与这些物理定律列出相应的微分方程模型,然后求出解并对之分析.我们可以通过以下例题进行相应解析:

例2 一子弹以速度0200/v m s =垂直地射进一块厚度为10cm 的板,穿透后以速度180/v m s =飞出,假设板对子弹运动的阻力与运动速度的平方成正比,问子弹在板子里经过了多少时间?

分析 本题是讨论物体运动规律的物理问题,由此便想到利用定理规律法.由题意可以知道,子弹在木板中只受到一个力,即木板的阻力2F kv =-,0k >为比例系数

[8].

解 设在时刻t 子弹穿入板的厚度为()x t ,由牛顿第二定律知()x t 应满足的微分方程是

()2

2220d x dx m F kv k k dt dt ??==-=-> ???

, 即()2220d x dx m k k dt dt ??=-> ???

这便是本题的微分方程模型,可以看出此模型二阶其次微分方程,相应求解为: 其初始条件为: 00,t x ==3110

810/,t dx v cm s dt ===? 令dx p dt

=,

则22d x dp dt dt

=. 于是有

2dp m kp dt

=-, 1

1p k

t C m =+. 由初始条件00t dx p v dt ===,定出10

1

C v =,故

1

,

1dx

p k dt t m v ==+

(3.1.1) 积分得

201ln m

k

x t C k m v ??

=++ ???

,

由()00x =定出20ln m

C v k =,故

0ln 1,m k x v t k m ??

=+ ???

(3.1.2) 注意到式(3.1.1),当10x =时有10

1

1

v k t m v =+, 即10

11

,k

t m v v =-

代入式(3.1.2)得

011

10ln(11)ln ,

v v m

m k v k v =-+=

01

10

ln ln m

k v v =-

从而得到,子弹在板内经过的时间为

3101135410ln 2

m t s k v v ??=-= ????? 本题是牛顿运动学相关的问题,本题采用的是定理规律法利用牛顿第二定律建立的微分方程模型.从本题的结果可知,子弹在木板内经过的时间及其的小,从这些数据我们可以感受物理的奥妙以及微观世界里面强大的力量.

3.2 微分方程在生物问题中的应用

生物学不像数学、物理那样有许多规律可用,生物问题是我们生活中典型的实际问题.对于此类问题的分析,数学模型的建立没有那么多的工具可用,故一般需要利用模拟近似法进行求解,我们可以通过下面例题感受微分方程在解决生物问题方面的能力.

例3 用微分方程分析生物总数问题.

分析 对于生物方面的问题,我们可以采用模拟近似法.本来生物总数只取离散的整数值,绝非时间t 的可微函数,因此似乎不能用微分方程来描述其变化,但若事先能肯定这个总算很大,且在短时间内只有少量的增减,则可近似地认为这个总数是t 的连续函数,甚至是可微函数,于是可用微分方程来描述.

解 设()P t 为在时刻t 的生物总数,(),r t p 为出生率与死亡率之差.若这种生物是孤立系统,即既无迁出才,有无迁入,则总数的时间变化率为:

(),dp r t p p dt

= (3.2.1) 这即是描述生物总数变化情况的模型一阶常微分方程.

在最简单的模型中,设r a =为常数,得线性方程

dp ap dt

= (3.2.2) 若在某个计算起始时刻0t t =统计出总数为0P ,即得初值条件

00()p t P = (3.2.3)

模型(3.2.2)与实际情况的偏离较大,通常设r a bp =-,而采用模型

2dp ap bP dt

=- (3.2.4) 常数a 、b 为生物总数的生命系数.一般说,b a ≤,它们可按统计结果算出.

方程(3.2.4)是Bemoulli 方程当2n =的情况.当在a 和b 为常数时,这个方程

可用分离变量法求解

2

dp dt ap bP =- 设在时刻0t 的生物总数是()00p t P =,将

211/b a ap bP p a ap ??=+ ?--??代入上式积分得: 0011t p t p b dt dp a p a bp ??=+ ?-??

?? ()()

0001ln p a bp t t a p a bp --=- 或 ()()000()a t t p a bp e

p a bp --=- 由此可解出()p t :

()()()00

00a t t ap p t bp a bp e --=+- (3.2.5)

由式(3.2.5)可看出,当t →∞时,有()a p t b →

,且当00a p b <<时,()p t 是单增函数.此外,因()()2222d p dp dp a bp a bp a bp p dt dt dt

=-=-- 此时设()0a bp ->,必有()0a bp ->,则有220d p dt >,故dp dt 是单增的.而当()2a p t b

>时,dp dt

是单减的. 上式讨论表明:在生物总数达到其极限值a b

的一半以前的期间,是加速生长时期,过这一时刻以后,生长的速度逐渐减少,而为减速生长时期.

指出:当考虑人口总数时,情况比较复杂,因为工业技术的发展,环境污染状况以及社会制度等,都对生命系数a 和b 有重大影响.

3.3 微分方程在军事问题中的应用

例4 如果交战双方在t 时刻的兵员数量分别为()x x t =,()y y t =,双方的伤亡率

(即兵员变化率

dx dt ,dy dt

)均与双方兵员数量成正比,在不考虑士气的情况下,研究交战规律[16]. 分析 军事问题也是一个实际问题,在军事交战时,交战双方的胜负要综合很多因素,现代化的军事交战则更为严重,所以此问题不考虑现代武器在内.把交战时双方的兵力、伤亡等进行模拟近视化,然后建立相应的微分方程模型,从而研究交战规律.

解 设交战的A 方t 时刻的兵员数量为x ,B 方兵员数为y ,则t 时刻各方的伤亡率分别为:

,t dx dy by ax d dt

=-=- (3.3.1) 其中比例系数0,0a b >>,分别为A ,B 各方的战斗威力.表现为装备及技术水平越高,系数a ,b 越大,因而给对方的杀伤越大.

将方程(3.3.1)化成对称形式,得:

dx dy dt by ax

==-- 讨论前两项,构成方程:dx dy by ax

=--,积分后,可得: 22ax by c -= (3.3.2)

如果交战双方投入的人数各位0x 及0y ,即满足初始条件:

()()00

00x x y y =???=?? (3.3.3)

将初始条件(3.3.3)代入方程(3.3.2)中得:

2200c ax by =-

即: ()()222200a x x b y y -=-

特别是,当交战双方形成了均势,最后出现0x y ∞∞==的情况时,必有0c =.此时初始条件00,x y 和威力系数间存在下面关系:

22000ax by -=

即:

00x y =(3.3.4) 由式(3.3.4)可知:交战的双方如果B 方的威力系数b 大于A 的威力系数a ,当威

力大的B 投入兵力为0y 时,则威力小的A 方,

只要投入

0y 的兵力就能形成均势的交战. 说明:如果一方的威力为另一方的2倍,为了维持均势的交战,威力小的一方

只要投入对方兵力的倍即可.因此在交战中,兵力数量是主要的,其他则较为次要.

3.4微分方程在经济问题中的应用

一个新产品的上市,要考虑到很多因素,产品营销的成功与否直接决定了一个企业的存亡.当今,越来越多的企业需求数学建模方面的人才,在产品的推出前后都需要建立数学模型进行分析.本论文列出了这一过程中的新产品推广模型和价格调整模型,同时分析了微分方程在经济模型的建立过程中发挥的作用.

3.4.1新产品推广模型

例5 现有某种新产品要推向市场,其t 时刻的销量为()x t .由于性能良好,每一个产品都是宣传品.试分析该产品的推广.

分析 利用模拟近似法,可以设在t 时刻产品的销量增长率为

dx dt ,则它与()x t 成正比;同时设该产品的市场容量为N ,由统计可知增长率

dx dt

与尚未购买此产品的潜在顾客数量()N x t -成正比.

解 由分析得

()dx kx N x dt =- 其中,k 为综合比例系数,且0k >.

这便是本题的数学模型,且其符合Logistic 方程,故可知其通解为:

()1kNt

N x t ce -=+, ()

22,1kNt

kNt dx cN ke dt ce --=+

()()

2322211kNt kNt kNt ck N e ce d x dt ce ----=+ 当()x t N *

<时,有0dx dt >,产品销量单调增加,当()2N x t *=时,220d x dt =.当()2N x t *

>时,220d x dt <.当()2N x t *<时,220d x dt >.即当销量达到最大需求量N 的一半时,产品最畅销;当销量不足一半时,销量迅速不断增大;当销量超过一半时,销量速度逐渐减少.

研究调查表明:许多产品的销售曲线和Logistic 曲线十分接近,很多分析家认为,新产品刚推广的时候,宜采用小批量生产,加强广告宣传,在产品用户达到20%和80%之间时,产品要大批量生产,产品用户超过80%时,应转变.

3.4.2价格调整模型

例6 某商品在时刻t 的售价为P ,社会对该商品的需求量和供给量分别是P 的函数()Q P 和()S P ,试分析该商品的价格调整策略.

分析 本题拟用模拟近似法进行求解,故可以假设商品的需求量()Q P 和供给量()S P 都已经把竞争对手和季节等因素考虑在内.在经济学中,在时刻t 的价格()P t 对于时间t 的变化率可以认为与该商品在同一时刻的超额需求量()()Q P S P -成正比.

解 因为dP dt

与()()Q P S P -成正比,即有微分方程: ()()dP k Q P S P dt

=-???? ()0k > 这便是本题的数学模型,在()Q P 和()S P 确定时,可以得到价格()P t 和时间t 的函数关系,这便是商品的价格调整模型.

商品的价格变化主要是服从于市场供求关系,通常,商品供给量S 是价格P 的单调递增函数,商品需求量Q 是价格P 的单调递减函数,为了简单起见,该商品的供给函数和需求函数分别为:

()(),S P a bP Q P P αβ=+=- (3.4.1)

其中,,,a b αβ均为常数,并且0,0b β>>.

当供给量与需求量相等时,由式(3.4.1)可得到供求平衡时的价格:

e a P b

αβ-=+ 并称e P 为均衡价格.

一般情况下,当某种商品供不应求即S Q <时,该商品价格提升;当供大于求即S Q >时,该商品价格下降.因此,假定t 时刻的价格()P t 的变化率与超额需求量Q S -成正比,则有方程:

()()dP k Q P S P dt

=-???? 其中0k <,这便是用来反映价格的调整速度.

将式(3.4.1)代入方程可得:

()e dP P P dt

λ=- (3.4.2) 其中常数()0b k λβ=+>,此方程是一阶微分方程,

故方程(3.4.2)的通解为:

()t e

P t P ce λ-=+ 假设初始价格()00P P =,代入上式得0e C P

P =-,于是上述价格的调整模型的解为:

()()0t e e P t P P P e

λ-=+- 由于0λ>知道,t →+∞时,()e P t P →.由此表明,随着时间的不断推延,实际价格()P t 将逐渐趋近均衡价格e P .

本题求出的结果可以知道,随着时间的推移,该商品的市场渐渐成熟,而商品的实时价格也会渐渐逼近均衡价格.这些结果和经济学中的相关理论吻合,从这些可以看出微分方程在经济学中发挥的作用可见一斑.

3.5 微分方程在医学问题中的应用

随着整个科学技术的数学化,现代医学也加快了向数学化发展的速度.普遍有效地应用数学方法解决医学科研中的问题,提示其中的数量规律性,已成为现代医学发展的潮流.这种提示医学问题中各变量之间关系的解析式,成为数学模型.而微分方程则是建立这种数学模型的最为广泛、有力的工具之一.本节,我们列举传染病模型的例子分析微分方程在医学问题中的应用.

例7 随着卫生设施的改善,医疗水平的提高及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到了有效的控制.但是一些新的、不断变异着的传染病毒却悄悄地向人类袭来,20世纪80年代十分险恶的艾滋病毒开始肆虐全球,至今仍在蔓延;2003年春来历不明的SARS 病毒突袭人间,给人们的生命财产带来了极大的危害.长期以来,建立传染病的数学模型来描述传染病的传播过程、分析受感染人数的变化规律、探索制止传染病蔓延的手段等,一直是有关专家关注的一个热点问题.

分析 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识.我们在这里不可能从医学角度一一分析各种传染病的传播特点,而只能是按照一般的传播机理来建立数学模型.所以,对于此类问题,我们只能采用模拟近似法建立微分方程模型进行解析.

3.5.1模型Ⅰ

这是一个最简单的传染病模型.设时刻t 的病人人数()x t 是连续、可微函数,并且每个病人每天有效接触(足以使人致病的接触)的平均人数是常数λ.考察t 到t t +?这段时间内病人人数的增加,于是就有 ()()()()()()x t t x t x t t x t t x t x t t λλ+?-=???+?-?=???

, 再设0t =时,有0x 个病人.并对上式取0t ?→时的极限,

得微分方程: 0,(0)dx x x x dt

λ== (3.5.1.1) 方程(3.5.1.1)的解为

0()t x t x e λ= (3.5.1.2)

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

微分方程应用问题案例

第四章微分方程 一、微分方程的概念 案例1 [曲线方程]已知曲线过点(1.2).且曲线上任一点处切线的斜率是该点横坐标的倒数. 求此曲线方程. 解:设曲线方程为 .于是曲线在点处切线的斜率为.根据题意有 (4.1.1) 又曲线过点(1.2).故有 (4.1.2) 对式(4.1.1)两边积分.得 将式(4.1.2)代入上式.得.即. 故所求曲线方程为. 案例2 [自由落体运动] 一质量为的质点,在重力作用下自由下落, 求其运动方程. 解:

建立坐标系如图(1)所示.坐标原点取在质点开始下落点, 轴铅直向下.设在时刻 质点的位 置为 , 由于质点只受重力 作用,且力的方向与 轴正向相同.故由牛顿第二定律.得质点满足的方程 为 . 即 . 方程两边同时积分.得 上式两边再同时积分.得 其中 是两个独立变化的任意常数. 案例3[列车制动] 列车在直线轨道上以20米/秒的速度行驶.制动列车获得负加速度 -0.4 2 米秒.问开始制动后要 经过多少他长时间才能把列车刹住?在这段时间内列车行驶了多少路程? 解: 记列车制动的时刻为t=0.设制动后t 秒列车行驶了s 米.由题意知.制动后列车行驶的加速度 220.4d s dt =-. (4.1.3) 初始条件为当0t =时.0s =. 20ds v dt = =. 将方程(4.1.3)两端同时对t 积分.得 1()0.4ds v t t C dt = =-+. (4.1.4)

式(4.1.4)两端对t 再积分一次.得 212 0.2C C s t t =-++ . (4.1.5) 其中1C .2C 都是任意常数.把条件当t=0时. 20ds dt =代入(4.1.4)式.得1C 20=, 把t=0时.s=0代入式(4.1.5).得2C =0.于是.列车制动后的运动方程为 20.220s t t =-+ . (4.1.6) 速度方程为 0.420ds v t dt = =-+ . (4.1.7) 因为列车刹住时速度为零.在式(4.1.7)中.令 0ds v dt = =,得0=-0.4t+20.解 出得列车从 开始制动到完全刹住的时间为 20 50()0.4t s = = 再把t=50代入式(4.1.6).得列车在制动后所行驶的路程为 2 0.22050500() 50s m =-?+?= 二、可分离变量的微分方程 案例1 [国民生产总值] 1999年我国的国民生产总值(GDP )为80,423亿元.如果我国能保持 每年8%的相对增长率. 问到2010年我国的GDP 是多少? 解: (1)建立微分方程 记0t =代表1999年.并设第t 年我国的GDP 为()P t .由题意知. 从1999年起.()P t 的相对增长率为8%. 即 () 8% ()dP t dt P t =.

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

微分方程在物理中的应用

微分方程在大学物理中的应用 一.质点运动学和牛顿运定律中的运用 1.质点运动:a=dV/dt “dV/dt”是“速度随时间的变化率”-----就是加速度。(微分、又称“速度V的导数”) 写成表达式:a=dV/dt---------(1) X表示位移,“dX/dt”就是“位移随时间的变化率”-----就是速度。 写成表达式:V=dX/dt---------(2) 把(1)代入(2)得:a=(d^2 X)/(dt^2)-------这就是“位移对时间”的“二阶导数”。 实际上,(d^2 v)/(dt^2)就是“dv/dt (加速度)”对时间再次“求导”的结果。 d(dV/dt)/dt 就是把“dV/dt”再次对时间求导。-------也可以说成是“速度V对时间t的二阶导数”。 典型运用:圆周运动向心加速度公式推导(微分思想) 2.牛顿第二定律:F=d p/dt=d(m v)/dt=md v/dt=ma 动量为p的物体,在合外力F的作用下,其动量随时间的变化率应当等于物体的合外力。 典型运用:自由落体运动公式的推导 f=d(mv)/dt,得mg=mdv/dt,得g=dv/dt=ds^2/d^2t,求s t关系用右边的,把下面的分母乘过去,积分两次,就得到0.5gt^2=s; 例题:一物体悬挂在弹簧上做竖直振动,其加速度a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标。假设振动的物体在坐标y0处的速度为v0,试求速度v与坐标y的函数关系式。 3.简谐运动(单摆复摆问题):弹簧振子的运动为例,

回复力:F= -kx 加速度:a=F/m=-kx/m 对于给定的弹簧振子有w^2=k/m 则有a=dv/dt=d^2 v/dt^2= -w^2x 其解为x=Acos(wt+h) 然后v=dx/dt,a=dv/dt推导出相应公式。(物理书上原文) 下面我们求一下a=dv/dt=d^2 v/dt^2= -w^2x的解。 还有在动量守恒定律、能量守恒定律以及刚体转动中等各个反面的运用。

常微分方程的应用

常微分方程的应用

17 《常微分方程应用》结课作业 学院:轻工与纺织学院 班级:服装设计与工程13-1班 学号:201321805024 姓名:周志彬

常微分方程经济应用 微分方程在不仅在物理学、力学上有广泛的应用,在经济学和管理科学等实际问题中也比比皆是,本次我们将集中讨论微分方程的经济应用。读者可从中感受到应用数学建模的理论和方法解决经济管理实际问题的魅力. 随着社会经济的迅速发展,数学在我们的生活中可以说无处不在,尤其是在经济管理中的应用越来越广泛.经济学必须进行定量研究.而常微分方程是对经济管理问题进行定量研究的最重要、最基本的数学工具之一,为了研究经济变量之间的联系及其内在规律,常常需要建立某一经济函数及其导数所满足的关系式,并由此确定所研究函数的形式,从而根据一些已知条件来确定该函数的表达式.从数学上讲,就是建立微分方程并求解微分方程.用微分方程解决问题,下面就是几个例子:

一、公司资产函数 例。某公司t 年净资产有)(t W (百万元), 并且资产本身以每年5%的速度连续增长, 同时该公司每年要以300百万元的数额连续支付职工工资. (1) 给出描述净资产)(t W 的微分方程; (2) 求解方程, 这时假设初始净资产为;0 W (3) 讨论在700,600,5000=W 三种情况下, )(t W 变化 特点. 解 (1) 利用平衡法,即由净资产增长速度=资产本身增长速度-职工工资支付速度 得到所求微分方程 .3005.0-=W dt dW (2) 分离变量,得 .05.0600 dt W dW =- 两边积分,得 11(ln 05.0|600|ln C C t W +=-为正常数),于是 , |600|05.01t e C W =- 或 ).(600105.0C C Ce W t ±==- 将0)0(W W =代入,得方程通解: .)600(60005.00 t e W W -+= 上式推导过程中,600≠W 当600=W 时,0=dt dW 知

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型 我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线y=上某点的切线斜率即函数) y y=在该点的导数;力学中的牛顿第二运 (x ) (x y 动定律:ma F=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻 209

〈常微分方程》应用题及答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 ; 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f = ,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01 x x x ??。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 ' 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

经济数学 偏微分方程在金融中的运用

偏微分方程概述 如果一个微分方程中出现多元函数的偏导数,或是说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数, 则这类方程称为偏微分方程,该类方程反映有关的未知变量关于时 间的导数和关于空间变量的导数之间制约关系的等式.偏微分方程这 门学科开创于 1946 年,19 世纪随着数学物理问题研究的繁荣,偏 微分方程得到了迅速发展,以物理、力学等各门科学中的实际问题为背景的偏微分方程已经成为应用数学的一个核心内容很多重要的物理、力学等学科的基本方程本身就是偏微分方程,而其他很多学科领域中在建立数学模型时都可以用偏微分方程来描述,或者用偏微分方法来研究.在科技和经济发展中,很多重要的实际课题都需要 求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方 面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出 比较准确的预计。随着电子计算机的出现及计算技术的发展,电子 计算机成为解决这些实际课题的重要工具。但是有效地利用电子计 算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程 模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的 求解方法。编制高效率的程序或建立相应的应用软件,利用电子计 算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用 的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得 结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解 决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动 力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了 重大的贡献。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

微分方程在几类实际问题中的应用

毕业设计(论文) 题目名称:微分方程在几类实际问题中的应用院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年 6 月

论文编号:201000134223 微分方程在几类实际问题中的应用Application of Differential Equation in Several Practical Problems 院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年6 月

摘要 在数学上,物质运动和其变化规律是用函数关系进行描述的,但是实际问题中常常不能直接写出反应相应规律的函数,却比较容易建立起这些变量与它们的导数之间的关系式,即微分方程.只有一个自变量的微分方程即为常微分方程,简称为微分方程. 本文讨论的是微分方程在实际问题中的应用.微分方程在各个学科领域都可以发挥出其数学优势,将微分方程理论和实际问题结合起来,便可建立实际问题的模型.本文在介绍微分方程应用背景的基础上,结合微分方程的概念性质,利用归纳总结的方法探讨了常微分方程在物理问题、生物问题、军事问题、经济问题和医学问题等“现实生活”中问题的应用,同时结合相应实例进行分析.从这些应用问题中,我们可以看出:微分方程,它确实是数学联系实际的一个活跃分支. 关键词:微分方程;实际问题;应用;数学模型

Abstract In mathematics, the motion of matter and its change rule are described by the relationship of function. But for practical problems , compared with writing the reaction of the corresponding rules directly, establishing the relationship between these variables and their derivatives named differential equation becomes relatively easy. Only a variable of differential equation is called ordinary differential equation, for short differential equation. In this paper, we discuss the application about differential equations in the actual problems. Differential equation can perform its mathematical advantage in various https://www.360docs.net/doc/5614245712.html,bining differential equation theory and practical problems, we can establish the model of the actual problems.Based on the application background of differential equation and combined with the concept and nature of differential equation,this paper discussed the application of ordinary differential equation in the field of physics,biology,military,economic and medicine,and so on,with the method of summarizing. From these applications,we can see that differential equation is really a active branch of connetting math and practical problems. Keywords: differential equations;the actual problem;application;mathematical model

相关文档
最新文档