用线性规划方法求解运输问题

用线性规划方法求解运输问题
用线性规划方法求解运输问题

用线性规划方法求解运输问题

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素.

运输问题的提出及其数学模型:现在人们生产活动中,不可避免的要进行物资调运工作,如某时期内将生产基地的蔬菜,粮食等各类物资,分别运到需要这些物资的地区。如何根据各地的生产量和需求量及各地之间的运输费用,如何制定一个运输方案,使总的运输量费用最小,这类的问题称

为运输问题。假设有m 个产地,记为A 1、A 2….A m ,生产某种物资,可供应的产量分别为a 1,a 2….a m ,有n 个销地,记为B 1、B 2…B n ,其需求量分别为b 1、b 2…b n ,假设在供需平衡的情况下,即∑=m i ai 1=∑=n

j bj 1

,从第i 个产地到j 个销地的单位物资的运费为c ij ,在满足各地需求的前提下,求运费最小的方案。

设x ij (i=1、2…m,j=1、2…n )为第i 个产地到第j 个销地的运量,则运输问题的数学模型为

Min Z = ∑=m i 1∑=n j cijxij 1

?????????>==∑∑==0

1

1

xij bj

xij ai

xij m

i n j i=1,2…m,j=1,2…n;

当目标是利益时,目标式改为最大值,在供需平衡条件下,有m+n 个等式约束,有mn 个变量,约束条件的系数矩阵A 有m+n 行mn 列,目标函数由运价矩阵Cm*n 与变量矩阵Xm*n 对应元素相乘求和构成。

用Lingo 求解:

某市有三个蔬菜收购站:A 1、A 2、A 3,蔬菜在集散地的收购量分别为200吨,170吨,160吨;另知有八家菜市场(s 1,s 2,s 3,s 5,s 6,s 7,s 8)需要从这三个菜市场进购蔬菜,他们的需求量分别是75吨,60吨,80吨,70吨,100吨,55吨,90吨,80吨。并且已知若菜市场缺一单位的蔬菜的损失为10元,8元,5元,10元,10元,8元,5元,8元,问题是如何利用现有库存资源满足这八家菜市场的需求,并使总运输成本和损失最低最低。从收购站向八个菜市场送货的运输成本价

(元/吨)如下表所示

该运输问题的目标就是总运费最小化。

令X ij表示从仓库A i到超市S j运送的商品吨数。从而有运输问题的数学模型:

目标函数:MIN=4* X11+8* X12+…+11* X33+10* X38 -10*(75- X11 - X21 - X31) -…. -8*(80- X18 - X28 - X38)

库存约束:ΣX1j<=200;ΣX2j<=170;

ΣX3j<=160;j=1,2,3,4, (8)

需求约束:ΣX il=75;ΣX i2=60;ΣX i3=80;ΣX i4=70;

ΣX i5=100;ΣX i6=55;ΣX i7=90;ΣX i8=80;i=l,2,3

非负约束:x ij>=0

模型的lingo语言描述如下

MODEL:

SETS:

jsd/1..3/:a;!三个集散地,收购量a(i);

csc/1..8/:b;!八个菜市场,每天需求量b(j);

dqss/1..8/:d;!各菜市场的单位短缺损失d(j);

j_c(jsd,csc):x,c,l;!i到j的距离矩阵为l(i,j),单位运费c(i,j),决策变量为x(i,j); ENDSETS

DATA:

a=200,170,160;

b=75,60,80,70,100,55,90,80;

d=10,8,5,10,10,8,5,8;

l=4,8,8,19,11,6,22,26,

14,7,7,16,12,16,23,17,

20,19,11,14,6,15,5,10;

c=1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1;

ENDDATA

@for(jsd(i):

[st1]@sum(csc(j):x(i,j))=a(i));!收购量限制;

@for(csc(j):

[st2]@sum(jsd(i):x(i,j))<=b(j));!需求量限制;

[obj]min=@sum(jsd(i):@sum(csc(j):c(i,j)*x(i,j)*l(i,j)))

+@sum(jsd(i):@sum(csc(j):d(j)*(b(j)-x(i,j))));

END

模型求解的结果如下

Global optimal solution found.

Objective value: 14330.00

Total solver iterations: 11

Variable Value Reduced Cost A( 1) 200.0000 0.000000 A( 2) 170.0000 0.000000 A( 3) 160.0000 0.000000 B( 1) 75.00000 0.000000 B( 2) 60.00000 0.000000 B( 3) 80.00000 0.000000 B( 4) 70.00000 0.000000 B( 5) 100.0000 0.000000 B( 6) 55.00000 0.000000 B( 7) 90.00000 0.000000 B( 8) 80.00000 0.000000 D( 1) 10.00000 0.000000 D( 2) 8.000000 0.000000 D( 3) 5.000000 0.000000 D( 4) 10.00000 0.000000

D( 6) 8.000000 0.000000 D( 7) 5.000000 0.000000 D( 8) 8.000000 0.000000 X( 1, 1) 75.00000 0.000000 X( 1, 2) 0.000000 0.000000 X( 1, 3) 0.000000 0.000000 X( 1, 4) 0.000000 2.000000 X( 1, 5) 70.00000 0.000000 X( 1, 6) 55.00000 0.000000 X( 1, 7) 0.000000 12.00000 X( 1, 8) 0.000000 11.00000 X( 2, 1) 0.000000 11.00000 X( 2, 2) 60.00000 0.000000 X( 2, 3) 80.00000 0.000000 X( 2, 4) 30.00000 0.000000 X( 2, 5) 0.000000 2.000000 X( 2, 6) 0.000000 11.00000 X( 2, 7) 0.000000 14.00000 X( 2, 8) 0.000000 3.000000 X( 3, 1) 0.000000 21.00000 X( 3, 2) 0.000000 16.00000 X( 3, 3) 0.000000 8.000000 X( 3, 4) 0.000000 2.000000 X( 3, 5) 30.00000 0.000000 X( 3, 6) 0.000000 14.00000 X( 3, 7) 90.00000 0.000000 X( 3, 8) 40.00000 0.000000 C( 1, 1) 1.000000 0.000000 C( 1, 2) 1.000000 0.000000 C( 1, 3) 1.000000 0.000000 C( 1, 4) 1.000000 0.000000 C( 1, 5) 1.000000 0.000000 C( 1, 6) 1.000000 0.000000 C( 1, 7) 1.000000 0.000000 C( 1, 8) 1.000000 0.000000 C( 2, 1) 1.000000 0.000000 C( 2, 2) 1.000000 0.000000 C( 2, 3) 1.000000 0.000000 C( 2, 4) 1.000000 0.000000 C( 2, 5) 1.000000 0.000000 C( 2, 6) 1.000000 0.000000 C( 2, 7) 1.000000 0.000000 C( 2, 8) 1.000000 0.000000

C( 3, 2) 1.000000 0.000000 C( 3, 3) 1.000000 0.000000 C( 3, 4) 1.000000 0.000000 C( 3, 5) 1.000000 0.000000 C( 3, 6) 1.000000 0.000000 C( 3, 7) 1.000000 0.000000 C( 3, 8) 1.000000 0.000000 L( 1, 1) 4.000000 0.000000 L( 1, 2) 8.000000 0.000000 L( 1, 3) 8.000000 0.000000 L( 1, 4) 19.00000 0.000000 L( 1, 5) 11.00000 0.000000 L( 1, 6) 6.000000 0.000000 L( 1, 7) 22.00000 0.000000 L( 1, 8) 26.00000 0.000000 L( 2, 1) 14.00000 0.000000 L( 2, 2) 7.000000 0.000000 L( 2, 3) 7.000000 0.000000 L( 2, 4) 16.00000 0.000000 L( 2, 5) 12.00000 0.000000 L( 2, 6) 16.00000 0.000000 L( 2, 7) 23.00000 0.000000 L( 2, 8) 17.00000 0.000000 L( 3, 1) 20.00000 0.000000 L( 3, 2) 19.00000 0.000000 L( 3, 3) 11.00000 0.000000 L( 3, 4) 14.00000 0.000000 L( 3, 5) 6.000000 0.000000 L( 3, 6) 15.00000 0.000000 L( 3, 7) 5.000000 0.000000 L( 3, 8) 10.00000 0.000000

Row Slack or Surplus Dual Price ST1( 1) 0.000000 -7.000000 ST1( 2) 0.000000 -6.000000 ST1( 3) 0.000000 -2.000000 ST2( 1) 0.000000 13.00000 ST2( 2) 0.000000 7.000000 ST2( 3) 0.000000 4.000000 ST2( 4) 40.00000 0.000000 ST2( 5) 0.000000 6.000000 ST2( 6) 0.000000 9.000000 ST2( 7) 0.000000 2.000000

OBJ 14330.00 -1.000000 该结果显示最低运费为14330元,

最优运输方案是:

收购站A1向菜市场S1供货75吨,

收购站A1向菜市场S5供货70吨,

收购站A1向菜市场S6供货55吨,

收购站A2向菜市场S2供货60吨,

收购站A2向菜市场S3供货80吨,

收购站A2向菜市场S4供货30吨,

收购站A3向菜市场S5供货30吨,

收购站A3向菜市场S7供货90吨,

收购站A3向菜市场S8供货40吨,

3、道路危险货物运输经营条件及材料

申请从事道路危险货物运输经营的,应当具备下列条件: (一)有符合下列要求的专用车辆及设备: 1.自有专用车辆5辆以上;2.专用车辆技术性能符合国家标准《营运车辆综合性能要求和检验方法》(GB18565)的要求,车辆外廓尺寸、轴荷和质量符合国家标准《道路车辆外廓尺寸、轴荷和质量限值》(GB1589)的要求,车辆技术等级达到行业标准《营运车辆技术等级划分和评定要求》(JT/T198)规定的一级技术等级;3.配备有效的通讯工具;4.有符合安全规定并与经营范围、规模相适应的停车场地。具有运输剧毒、爆炸和I类包装危险货物专用车辆的,还应当配备与其他设备、车辆、人员隔离的专用停车区域,并设立明显的警示标志;5.配备有与运输的危险货物性质相适应的安全防护、环境保护和消防设施设备;6.运输剧毒、爆炸、易燃、放射性危险货物的,应当具备罐式车辆或厢式车辆、专用容器,车辆应当安装行驶记录仪或定位系统;7.罐式专用车辆的罐体应当经质量检验部门检验合格。运输爆炸、强腐蚀性危险货物的罐式专用车辆的罐体容积不得超过20立方米,运输剧毒危险货物的罐式专用车辆的罐体容积不得超过10立方米,但罐式集装箱除外;8.运输剧毒、爆炸、强腐蚀性危险货物的非罐式专用车辆,核定载质量不得超过10吨。 (二)有符合下列要求的从业人员: 1.专用车辆的驾驶人员取得相应机动车驾驶证,年龄不超过60周岁;2.从事道路危险货物运输的驾驶人员、装卸管理人员、押运人员经所在地设区的市级人民政府交通主管部门考试合格,取得相应从业资格证。 (三)有健全的安全生产管理制度,包括安全生产操作规程、安全生产责任制、安全生产监督检查制度以及从业人员、车辆、设备安全管理制度。 符合下列条件的企事业单位,可以使用自备专用车辆从事为本单位服务的非经营性道路危险货物运输: (一)下列企事业单位之一: 1.省级以上安全生产监督管理部门批准设立的生产、使用、储存危险化学品的企业;2.有特殊需求的科研、军工、通用民航等企事业单位。 (二)具备第八条规定的条件,但自有专用车辆的数量可以少于5辆。 申请从事道路危险货物运输经营的企业应提交以下材料: (一)《道路危险货物运输经营申请表》(见附件1);(二)拟运输的危险货物类别、项别及运营方案;(三)企业章程文本;(四)投资人、负责人身份证明及其复印件,经办人的身份证明及其复印件和委托书;(五)拟投入车辆承诺书,内容包括专用车辆数量、类型、技术等级、通讯工具配备、总质量、核定载质量、车轴数以及车辆外廓长、宽、高等情况,罐式专用车辆的罐体容积,罐体容积与车辆载质量匹配情况,运输剧毒、爆炸、易燃、放射性危险货物的专用车辆配备行驶记录仪或者定位系统情况。若拟投入专用车辆为已购置或者现有的,应提供行驶证、车辆技术等级证书或者车辆技术检测合格证、罐式专用车辆的罐体检

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

线性规划在运输问题中的应用

线性规划在运输问题中的应用 【摘要】用运筹学的思想探讨运筹学课程的教学方法。运筹学中的指派问题、最短路问题,最小费用流问题可转化为运输问题或转运问题,从而可以统筹安排这些教学内容,为提高教学效果,减少教学时间找出更优的教学方法。 【关键词】运输问题;转运问题;运筹学;线性规划;教学方法 引言: 随着我国国民经济的不断发展,企业之间的交易活动更加频繁,同地区、不同地区、甚至跨国的交易活动也不断发生,运输则成为交易的活动重点了。交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。 1.线性规划简介 线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一。它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。 最近几年,我国物流产业快速发展,形成了物流热。在物流作业的管理活动中,有着大量的规划问题,物资的合理调运就是其中一个比较重要的问题。求物资调运的最优调运方案,就是要在满足各种资源限制的条件下,找到使运输总费用最小的调运方案。 2.线性规划在运输中的应用 在现实的生产经营、商品销售、经济建设和物资管理过程中,常常会遇到各类物资的分配和调运问题,即将各种生产资料或生活资料消耗品从供给基地调运到需求基地,这里就需要如何根据现有条件科学、合理的安排调运方案,提高运输经济效益。这就是属于线性规划中网络配送的以最小的成本完成货物的运输问题。运输问题就是讨论有关物资调运的问题,即将数量和单位运价都给定的某种物资从供应站运送到消费站,要求在供给和需求平衡的同时,制定出流量与流向,使总运输成本最低。运输问题是特殊的线性规划问题,根据问题的要求,建立数学模型,用表上作业法或线性规划软件求解,即可得出最佳的调运方案,取得了较好的经济效益。在运输问题中,确定的需求限制占据着重要的地位,即必须确定需求以及相应地确定需求的约束条件。 3.运输问题的特征 运输问题关心的是以最低的总配送成本把供应中心(出发地)的任何产品运送到每一个接收中心(目的地)。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。运输问题在供应量和需求量两方面都做出了如下的假设:需求假设。每一个出发地都有一个固定的供应量,所有的供应量都必须配送到目的地。与之类似,每一个目的地都有

危险货物运输安全操作规程

编号:SM-ZD-52702 危险货物运输安全操作规 程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

危险货物运输安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、危险特性 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。 与五氧化溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其他强氧化剂接触剧烈反应。 二、基本要求 1、汽车运输危险货物应符合JT617—2004的规定。 2、危险货物的装卸应在装卸管理人员的现场指挥下进行。 3、进入易燃、易爆危险货物装卸作业区应: (1)禁止随身携带火种。 (2)关闭随身携带的手机等通讯工具和电子设备。 (3)严禁吸烟。 (4)穿着不产生静电的工作服和不带铁钉的工作鞋。

4、雷电天气装卸时,应确认避雷电、防潮湿措施有效。 5、运输危险货物的车辆在一般道路上最高车速为60km/h,在高速公路上最高车速为80km/h,并应确认有足够的安全车间距离。如遇雨天、雪天、雾天等恶劣天气,最高车速为20km/h,并打开示警灯,警示后车,防止追尾。 6、运输过程中,应每隔2h检查一次。若发生货损(如:丢失、泄漏等),应及时联系当地有关部门予以处理。 7、驾驶人员一次连续驾驶4h应休息20min以上;24h 内实际驾驶车辆时间累计不得超过8h。 8、运输危险货物的车辆发生故障需修理时,应选择在安全地点和具有相关资质的汽车修理企业进行。 9、禁止在装卸作业区内维修运输危险货物的车辆。 10、对装有易燃易爆的和有易燃易爆残留物的运输车辆,不得动火修理。确需修理的车辆,应向当地公安部门报告,根据所装载的危险货物特性,采取可靠的安全防护措施,并在消防员监控下作业。 三、作业要求 1、驾驶人员应根据道路交通状况控制车速,禁止超速和

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

汽车运输危险货物规则JT617-2004汇总

汽车运输危险货物规则 JT617-2004 JT617-2004代替3130-1998 2004年12月30日发布2005年3月1日实施 1 范围 本标准规定了汽车运输危险货物的托运、承运、车辆和设备、从业人员、劳动防护等基本要求。 本标准适用于汽车运输危险货物的安全管理。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB150 钢制压力容器 GB190 危险货物包装标志 GB/T191 包装储运图示标志 GB6944 危险货物分类和品名编号 GB7258 机动车运行安全技术条件 GB11806 放射性物质安全运输规定 GB12268 危险货物品名表 GB12463 危险货物运输包装通用技术条件 GB13392 道路运输危险货物车辆标志 GB15258 化学品安全标签编写规定 GB/T 16563-1996 液体气体及加压干散货罐式集装箱技术要求和试验方法 GB18564 汽车运输液体危险货物常压容器(罐体)通用技术条件 JT/ 198 营运车辆技术等级划分和评定要求 JT 230 汽车导静电橡胶拖地带

3 术语和定义 下列术语和定义适用于本标准。 3.1危险货物 具有爆炸、易燃、毒害、腐蚀、放射性等性质,在运输、装卸和储存保管过程中,容易造成人身伤亡和财产损毁而需要特别防护的货物。 3.2危险废物 列入国家危险废物名录或者根据国家规定的危险废物鉴别标准和鉴别方法认定的具有危险特性的废物。 3.3医疗废物 医疗卫生机构在医疗、预防、保健以及其他相关活动中产生的具有直接或者间接感染性、毒性以及其他危害性的废物。 3.4不可移动罐体车 罐体永久性固定在车辆底盘上,与车辆不可分离的罐体运输车。 3.5拖挂罐体车 罐体永久性固定在挂车底盘上,与挂车不可分离,牵引车与挂车可分离的罐体运输车。 3.6罐式集装箱 由箱体框架和罐体两部分组成的集装箱,有单罐式和多罐式两种(GB/T 1992-1985,定义2.2.2.2) 4 分类和分项 危险货物的分类和分项应符合GB6944的规定。 5 包装、标志和标签 5.1包装 危险货物的包装应符合GB12463、GB11806和GB18564的规定。 5.2标志 危险货物的标志应符合GB190和GB/T191的规定。 5.3安全标签 危险货物的安全标签应符合GB15258的规定。

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题 [ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2. 了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一线性规划中的基本概念 知识点二线性规划问题 1.目标函数的最值 线性目标函数 z=ax+by (b≠0)对应的斜截式直线方程是 y=-a x+z,在 y 轴上的 截距是z, b b b 当 z 变化时,方程表示一组互相平行的直线. 当 b>0,截距最大时, z 取得最大值,截距最小时, z 取得最小值; 当 b<0,截距最大时, z 取得最小值,截距最小时, z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点 (或边界 )便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.

知识点三简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C 三种 材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤 (1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法. (2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解. (3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案. 题型一求线性目标函数的最值 y≤2, 例 1 已知变量 x,y 满足约束条件 x+y≥1,则 z=3x+y 的最大值为 ( ) x-y≤1, A . 12 B .11 C .3 D .- 1 答案 B 解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点 的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z 经 y=2,x= 3,

危险货物的运输方法

行业资料:________ 危险货物的运输方法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共5 页

危险货物的运输方法 危险货物的公路运输必须具备确保安全的运输设备和装卸设备,具有熟悉危险货物性能的营运管理人员和驾驶员,以保证危险货物运输安全。 机动车货箱应是木质底板,这样可以避免产生火花;若用铁质底板,就应采用相应的衬垫防护。机动车排气管必须有隔热和熄火花装置。根据所装危险货物的性质配备相应的消防器材和捆扎、防水、防散失等器具。 槽(罐)车的槽(罐)体材质必须与所装货物性质相适应,如:硝酸应用铝槽,废硝酸应用玻璃钢和不锈钢。根据需要配备双道闸门、防波板、遮阳物等安全装置。装运集装箱、大型气瓶和可移动槽(罐)的车辆,必须具备有效的坚固设备和相应的木塞。 装运放射性同位素的专用运输车辆和设备必须符合卫生防疫、公安等部门的有关规定。要对车辆、设备、搬运工具、防护用品进行放射性污染情况定期检查,污染放射强度超标时,必须清洗、消毒后才能继续使用。 使用的各种装卸机械要求有足够的安全系数,一般设计要求超过负荷能力的三分之一,如额定载荷5吨的吊车和行车,应能达到6吨~7吨的起吊能力。装运机械必须有消除火花产生的防爆装置。禁止使用易摩擦产生火花的工具,使用的工具上也不能粘有与所装货物相抵触的污染物。 在运输过程中,如果出现漏洒现象,应该采取如下措施: 1.爆炸品:迅速转移至安全场所修理或更换包装,对漏洒的物品及 第 2 页共 5 页

时用水湿润,洒些锯屑或棉絮等松软物,轻轻收集。 2.压缩气体或易挥发液体:打开车门、库门,并移到通风场所。液氨漏气可浸入水中,其他剧毒气体应浸入石灰水中。 3.自燃品或遇水燃烧品:黄磷洒落后要迅速浸入水中,金属钠、钾等必须浸入盛有煤油或无水液体石蜡的铁桶中。 4.易燃品:将渗漏部位朝上。对漏洒物用干燥的黄沙、干土覆盖后清理。 5.毒害品:迅速用沙土掩盖,疏散人员,请卫生防疫部门协助处理。 6.腐蚀品:用沙土覆盖,清扫后用清水冲洗干净。 7.放射品:迅速远离放射源,保护好现场,请卫生防疫部门指导处理。 危险货物装卸操作规程 根据《中华人民共和国道路运输条例》、《道路危险货物运输管理规定》、汽车运输危险货物规则和汽车运输装卸危险货物作业规程等各项法律法规的规定,制定本制度。 装卸作业规程: 一、装卸作业现场要远离热源,通风良好;电气设备应符合国家有关规定要求,严禁使用明火灯具照明,照明灯应具有防爆性能;易燃易爆货物的装卸场所要有防静电和避雷装置。 二、运输危险货物的车辆应按装卸作业的有关安全规定驶入装卸作 第 3 页共 5 页

线性规划在运输问题中的应用

线性规划在运输问题中的 应用 Newly compiled on November 23, 2020

线性规划在运输问题中的应用 【摘要】用运筹学的思想探讨运筹学课程的教学方法。运筹学中的指派问题、最短路问题,最小费用流问题可转化为运输问题或转运问题,从而可以统筹安排这些教学内容,为提高教学效果,减少教学时间找出更优的教学方法。 【关键词】运输问题;转运问题;运筹学;线性规划;教学方法 引言: 随着我国国民经济的不断发展,企业之间的交易活动更加频繁,同地区、不同地区、甚至跨国的交易活动也不断发生,运输则成为交易的活动重点了。交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。 1.线性规划简介 线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一。它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。 最近几年,我国物流产业快速发展,形成了物流热。在物流作业的管理活动中,有着大量的规划问题,物资的合理调运就是其中一个比较重要的问题。求物资调运的最优调运方案,就是要在满足各种资源限制的条件下,找到使运输总费用最小的调运方案。 2.线性规划在运输中的应用 在现实的生产经营、商品销售、经济建设和物资管理过程中,常常会遇到各类物资的分配和调运问题,即将各种生产资料或生活资料消耗品从供给基地调运到需求基地,这里就需要如何根据现有条件科学、合理的安排调运方案,提高运输经济效益。这就是属于线性规划中网络配送的以最小的成本完成货物的运输问题。运输问题就是讨论有关物资调运的问题,即将数量和单位运价都给定的某种物资从供应站运送到消费站,要求在供给和需求平衡的同时,制定出流量与流向,使总运输成本最低。运输问题是特殊的线性规划问题,根据问题的要求,建立数学模型,用表上作业法或线性规划软件求解,即可得出最佳的调运方案,取得了较好的经济效益。在运输问题中,确定的需求限制占据着重要的地位,即必须确定需求以及相应地确定需求的约束条件。 3.运输问题的特征 运输问题关心的是以最低的总配送成本把供应中心(出发地)的任何产品运送到每一个接收中心(目的地)。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。运输问题在供应量和需求量两方面都做出了如下的假设:需求假设。每一个出发地都有一个固定的供应量,所有的供应量都必须配送到目的地。与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须由出发地满足成本假设。从任何一个出发地到任何一个目的地的货物配送成本和所配送的数量成线性比例关系。因此,这个成本就等于配送的单位成本乘以所配送的数量。运输问题所需要的数据仅仅是供应量、需求量和单位成本,这些就是模型参数。如果一个问题可以完全描述成

危险货物的运输方法(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 危险货物的运输方法(新编版)

危险货物的运输方法(新编版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 危险货物的公路运输必须具备确保安全的运输设备和装卸设备,具有熟悉危险货物性能的营运管理人员和驾驶员,以保证危险货物运输安全。 机动车货箱应是木质底板,这样可以避免产生火花;若用铁质底板,就应采用相应的衬垫防护。机动车排气管必须有隔热和熄火花装置。根据所装危险货物的性质配备相应的消防器材和捆扎、防水、防散失等器具。 槽(罐)车的槽(罐)体材质必须与所装货物性质相适应,如:硝酸应用铝槽,废硝酸应用玻璃钢和不锈钢。根据需要配备双道闸门、防波板、遮阳物等安全装置。装运集装箱、大型气瓶和可移动槽(罐)的车辆,必须具备有效的坚固设备和相应的木塞。 装运放射性同位素的专用运输车辆和设备必须符合卫生防疫、公安等部门的有关规定。要对车辆、设备、搬运工具、防护用品进行放射性污染情况定期检查,污染放射强度超标时,必须清洗、消毒后才

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

危险货物运输规则30页word文档

危险货物运输规则 第一章总则 第1条在铁路运输中能发生爆炸、燃烧、腐蚀、毒害或射线危害而需要特别防护的货物,属于危险货物。 第2条危险货物按其主要危险特性和运输要求分为10类: 1.爆炸品; 2.氧化剂; 3.压缩气体和液化气体; 4.自燃物品; 5.遇水燃烧物品; 6.易燃液体; 7.易燃固体; 8.毒害品; 9.腐蚀物品; 10.放射性物品。 有些货物虽不属于化学危险货物,但容易引起燃烧,在铁路运输过程中须采取防火措施,属易燃货物。品名见易燃货物品名表(附件十)。 第3条危险货物办理站和装卸场所应设在安全地点,并相对集中。危险货物装卸场所应远离市区和人口稠密的居民点。铁路应商请地方各级人民政府确定合乎安全要求的危险货物专门办理站和装卸场所,并根据运量大小和实际需要设立危险货物、爆炸品、放射性物品专

门办理站,或在货运站内设危险货物作业区。铁路局必须在管内适当地点设货车洗刷所。 经常办理危险货物的车站应建有具备通风、洗刷、消防、避雷、报警等安全设施的专门仓库。危险货物专门仓库的耐火等级及防火要求应符合《建筑设计防火规范》的规定。爆炸品的专门办理站应设置具有防爆性能的仓库和停放爆炸品车辆的专用线路。放射性物品的专门办理站,应根据物品性质和实际需要设立能屏蔽射线辐射的库房。 现有的危险货物办理站和危险货物仓库如不合本条一、二款规定,除车站要采取措施,严格制度和加强管理防护外,铁路局应作出规划限期调整。 运量小的车站,可根据危险货物的性质在普通货物仓库内分隔单间或划出专用货位,采取措施,保持一定的安全距离,短期存放危险货物。车站采取的安全措施须报请分局或车务段批准。 第4条办理危险货物的车站应建立并严格执行安全、防护、检查、交接制度。经常办理危险货物的车站,应成立安全小组,组织义务消防队,定期进行灭火演习和开展安全检查,监督和加强危险货物运输的管理。 从事危险货物运输的货运、装卸人员要经过一定的专业知识训练,熟悉危险货物特性和有关规章,并保持人员相对稳定。 第5条办理危险货物的车站和货车洗刷所应配备必要的防护用品(包括处置意外事故需使用的供氧式呼吸防毒面具),并训练

《运筹学》习题线性规划部分练习题及答案.doc

《运筹学》线性规划部分练习题 一、思考题 1.什么是线性规划模型,在模型中各系数的经济意义是什么? 2 .线性规划问题的一般形式有何特征? 3. 建立一个实际问题的数学模型一般要几步? 4. 两个变量的线性规划问题的图解法的一般步骤是什么? 5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 7?试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 8?试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 10. 大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问 题呢? 11 ?什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续 第二阶段? 二、判断下列说法是否正确。 1 .线性规划问题的最优解一定在可行域的顶点达到。 2 .线性规划的可行解集是凸集。 3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。 4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的 范围一般将扩大。 5 .线性规划问题的每一个基本解对应可行域的一个顶点。 6. 如果一个线性规划问题有可行解,那么它必有最优解。 7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与j 0对应的变量都可以被 选作换入变量。 8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一 个基变量的值是负的。 9. 单纯形法计算中,选取最大正检验数k对应的变量x k作为换入变量,可使目 标函数值得到最快的减少。 10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形 表中删除,而不影响计算结果。 三、建立下面问题的数学模型 1 .某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到 第三年年初都可以投资。预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目n需要在第一年初投资,经过两年可收回本利150% , 又可以重新将所获本利纳入投资计划,但用于该项目的最大投资额不得超过20万元;项目川需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资额 不得超过15万元;项目"需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资额不得超过10万元。在这个计划期内,该公司第一年可供投资的资金有 30万元。问怎样的投资方案,才能使该公司在这个计划期获得最大利润? 2 .某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、 100克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单 价如下表2—1所示:

数学建模,线性规划,运输为问题

有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个 设:发点i向收点j的货物供应量为xij. 目标函数: MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31 +12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+ 21x54+10x55+32x56+6x64+11x65+13x66 供应限制:x11+x12+x13+x14+x15+x16=20 x21+x22+x23+x24+x25x+26=30 x31+x32+x33+x34+x35+x36=50 x41+x42+x43+x44+x45+x46=40 x52+x53+x54+x55+x56=30 x64+x65+x66=30 需求限制:x11+x21+x31+x41=30 x12+x22+x32+x42+x52=50 x13+x23+x33+x43+x53=40 x14+x24+x34+x44+x54+x64=30 x15+x25+x35+x45+x55+x65=30 x16+x26+x36+x46+x56+x66=20 LINGO代码: min=20*x11+15*x12+16*x13+5*x14+4*x15+7*x16+17*x21+15*x22+33*x23+12*x24+8*x25+ 6*x26+9*x31+12*x32+18*x33+16*x34+30*x35+13*x36+12*x41+8*x42+11*x43+27*x44+19* x45+14*x46+7*x52+10*x53+21*x54+10*x55+32*x56+6*x64+11*x65+13*x66; x11+x12+x13+x14+x15+x16=20; x21+x22+x23+x24+x25+x26=30; x31+x32+x33+x34+x35+x36=50; x41+x42+x43+x44+x45+x46=40; x52+x53+x54+x55+x56=30; x64+x65+x66=30; x11+x21+x31+x41=30;

危险货物的运输及防护措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 危险货物的运输及防护措 施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1911-56 危险货物的运输及防护措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 汽车运输的危险货物可分为:爆炸品、压缩气体和液化气体、易燃固体、自燃物品和遇湿易燃物品、氧化剂和有机过氧化物、毒害品和感染性物品、放射性物品和腐蚀品等八种。 危险货物的运输必须具备确保安全的运输设备和装卸设备,具有熟悉危险货物性能的营运管理人员和驾驶员,以保证危险货物运输安全。 从事危险货物运输的驾驶员必须是认真负责、技术熟练,懂得危险货物运输的相关知识专业驾驶员。非专业驾驶员不准运输危险货的。危险货物运输对车辆也有一定的要求。 对机动车的基本要求:1.货厢应是木质底板。这是考虑到危险货物绝大多数是易燃、易爆物品,木质底板可以避免产生火花,较为安全,同时要求周围栏

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将 l向右上方平移,过点A(2,0)时,有最小值 2,过点B(2,2)时,有最大值6,故选A 二、求可行域的面积

例2、不等式组 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个

解:|x|+|y|≤2等价于 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 ,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1

解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故 a=1,选D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13, D、 , 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为

用线性规划方法求解运输问题

用线性规划方法求解运输问题 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素. 运输问题的提出及其数学模型:现在人们生产活动中,不可避免的要进行物资调运工作,如某时期内将生产基地的蔬菜,粮食等各类物资,分别运到需要这些物资的地区。如何根据各地的生产量和需求量及各地之间的运输费用,如何制定一个运输方案,使总的运输量费用最小,这类的问题称

为运输问题。假设有m 个产地,记为A 1、A 2….A m ,生产某种物资,可供应的产量分别为a 1,a 2….a m ,有n 个销地,记为B 1、B 2…B n ,其需求量分别为b 1、b 2…b n ,假设在供需平衡的情况下,即∑=m i ai 1=∑=n j bj 1 ,从第i 个产地到j 个销地的单位物资的运费为c ij ,在满足各地需求的前提下,求运费最小的方案。 设x ij (i=1、2…m,j=1、2…n )为第i 个产地到第j 个销地的运量,则运输问题的数学模型为 Min Z = ∑=m i 1∑=n j cijxij 1

相关文档
最新文档