如何设置预拱度

如何设置预拱度
如何设置预拱度

桥博常见问题整理(小专题)

一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。

1、对全预应力和A类构件,计算挠度时,按照规范 6.5.2条P63,全截面的抗弯刚度

Bo=0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项位移,全截面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。

2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数,即可得到正确的

单项挠度效应。组合位移的值,用户可以采用报表来完成。

3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在使用阶段是允许开

裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度?

1、规范条文:

2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期

荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值

4、桥博报表解析

荷载短期效应组合长期竖向挠度(mm)

{1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[DS(iN,3,iS).V],iS= sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3>

永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人群最小剪力的位移

预加应力产生的长期挠度(mm)

{1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3>

消除结构自重后的挠度

{(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)}

汽车最小剪力下的位移+人群最小剪力的位移

125m钢桁梁顶推施工技术

125m钢桁梁顶推施工技术 摘要:新建铁路或公路桥梁跨越既有营业线铁路时,为最大限度减轻对营业线安全的影响,同时也减少铁路运营对施工的干扰,加快施工进度,采用顶推施工为近年来常用的施工技术,本文着重介绍了新建津山外绕铁路跨越大秦铁路双线的1-125m钢桁梁的顶推施工方案。 一、工程概况 新建津山外绕铁路(天津至秦皇岛)位于秦皇岛市海港区,该铁路汤河特大桥在28#-29#墩之间采用1-125m钢桁梁跨越大秦铁路双线,交角35.5°,设计最小净高为9.92m(梁底至轨面顶)。主桁构造为无竖杆三角桁,主桁全长126.6m,重2550t,计算跨度125m;桁高13.0m;桁梁纵向共有10个节间,节间长12.5m;主桁中心距10.6m;桥面采用正交异性板整体桥面结构。 二、总体施工方案 本钢桁梁采取工厂制作、现场拼装、要点顶推就位的施工方案,总顶程157.2m,顶推从大里程秦皇岛向小里程天津方向(即从29#墩向28#墩方向)进行。钢桁梁施工场地位于四线并行地段(依次为秦东铁路上行线-大秦铁路双线-秦东铁路下行线),由于小里程方向受秦东铁路上行线位置限制,因此只能利用大秦铁路下行线和秦东铁路下行线之间汤河特大桥29#-34#墩空间作为拼装场地,根据场地条件钢桁梁分二次拼装完毕,先在29#到34#墩之间拼装

钢梁8个节间共102.9m,第一次顶推50m后,再进行二次拼装钢桁梁剩余2节,最后要点继续顶推,顶推就位后落梁。详见“125m钢桁梁顶推施工示意图”。 三、施工方法和工艺 1、顶推场地布置及临时墩设置 本次顶推施工所需支撑墩由天津方向—秦皇岛方向,依次为:28#组合墩—a临时墩—b临时墩—c临时墩—d临时墩—29#~34#组合墩。 28#、29#~34#支撑墩采用永久墩与钢管柱通过横向连接连接形成整体组合墩型式;d支撑墩采用钢管柱型式,与29#永久墩通过纵向连接一同承受顶推时水平力;b临时墩采用钢筋混凝土14 m×1m 矩形截面结构,承受顶推水平力;a、c临时墩采用钢筋混凝土1.5 m×1.5m矩形截面结构,仅在顶推间隙承受竖向力,不承受顶推时水平力。全部支撑墩均采用钻孔桩和承台基础。 2、导梁设置 根据上述临时支撑墩布置,在顶推过程中梁体前端最大悬臂48m,为确保在整个顶推过程中钢桁梁的抗倾覆安全性,经检算必须设置前导梁。本次施工采用45m长钢桁架导梁,采用八七梁组拼,前导梁与主梁采用定做的钢构连接,主梁上下弦杆工厂加工时预留导梁连接的螺栓孔。考虑到导梁自身挠度以及在顶推最大悬臂时导梁前端挠度,在导梁拼装时导梁前端向上翘起4cm并在导梁前端下缘1

拱桥预拱度的计算与设置

附录B 拱桥预拱度的计算与设置 B.0.1 施工预拱度的计算 预拱度的大小应按无支架和有支架两种情况,并分别考虑下列因素进行估算。 1 无支架施工的拱桥 1)主拱圈及拱上建筑自重产生的拱顶弹性下沉δu1 3)混凝土主拱圈由混凝土收缩和徐变产生的拱顶下沉δu3 整体施工的主拱圈,可按温度降低15℃所产生的下沉值计算,分段施工的主拱圈,可按温度降低5—15℃所产生的下沉值计算,即在本条第(B.0.1—3)公式内,整体施工的主拱圈取(t l—t2)=—15℃,分段施工的主拱圈取(t l—t2)=—5~—15℃。 4)墩、台水平位移产生的拱顶下沉δu4

6)对于无支架施工的拱桥,本款内1)~4)项可估算为 ,当墩台可能有位移时取较大值,当无水平位移时取较小值。 2 满布式拱架施工的拱桥 满布式拱架受载后,主拱圈拱顶产生的弹性及非弹性下沉,本条第1款的1)—4)项仍然适用。满布式 拱架本身的下沉可按下列项目估算:

2)非弹性变形δs2 非弹性变形各类缝隙压密量可按下列估计:顺木纹相接,每条接缝变形取2mm;横木纹相接时取3mm;顺木纹与横木纹材料相接取2.5mm;木料与金属或木料与圬工相接取2mm。对于扣件式钢管拱架,扣件拉柱滑动或相对转动可引剧(架非弹睦变形,按经验估算断。 3)砂筒的非弹性压缩量δs3 可按经验估算:一般200kN压力砂筒取4mm,400kN压力砂筒取6mm,筒内未预先压实时取10mm。 4)支架基础在受载后的非弹性下沉δs4 支架基础非弹性下沉可按下列值估算:枕梁在砂类土上取5~10mm,枕梁在粘土上取10-20mm,打入 砂土的桩取5mm,打入粘土的桩取10mm。 拱顶处的预拱度,根据上述各种下沉量,按可能产生的各项数值相加后得到,施工时应根据以上计算值并结合实践经验进行调整。一般情况下,有支架施工的拱桥,当无可靠资料时,预拱度可按 l/600—l/800估算。 B.0.2 预拱度的设置 预拱度应根据上述各项因素产生的挠度曲线反向设置;可根据以往的实践经验按下述方法之一设置:1 按抛物线设置

我认识的钢桁梁桥

我认识的钢桁梁桥 摘要介绍钢桁梁桥的组成、构造、计算等内容,以及本人对钢桁梁桥的浅见 1 概述 钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。 1.1基本组成 钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。下图1.1-1为下承式钢桁梁桥的基本组成情况。 图1下承式钢桁梁桥的基本组成情况 1.主桁 主桁是钢桁梁桥的主要承重结构,最常采用的是平面桁架,在竖向荷载作用下其受力实质是格构式的梁。主桁由上弦杆、下弦杆和腹杆组成。 2.联结系 1)分类:纵向联结系和横向联结系 2)作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向 荷载 3)纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为 承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及 离心力。另外是横向支撑弦杆,减少其平面以外的自由长度。 4)横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。 适当调节两片主桁或两片纵联的受力不均。 3.桥面系

1)组成:由纵梁、横梁及纵梁之间的联结系 2)传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主 桁架节点。 4.制动联结系 制动联结系也称为制动撑架,设置在于桥面系相邻的平纵联的中部,通常由四根杆件组成。作用是将纵梁上的纵向水平制动力传至主桁,以减小制动力对横梁的不利影响。 5.桥面、支座及墩台与其它桥梁相似。 1.2 主桁架的图式及特点 1.主桁架的常用类型 2 2)节间长度 铁路钢桥:中、小跨径的桁架,上承式桁架的节间长度一般为3~6m,下承式桁架的节间长度一般为6~10m,跨径较大的下承式桁架节间可达12~15m。公路钢桥:节间长度可适当增大。

箱梁预压方案及预拱度设置

支架预压方案及预拱度设置 支架搭设完成,在砼箱梁施工前,对支架进行相当于1.2倍箱梁自重的荷载预压,以检查支架的承载能力,减少和消除支架体系的非弹性变形及地基的沉降。支架压重材料采用相应重量的砂袋(或钢材),并按箱梁结构形式合理布置砂袋数量(见压重布置图)。待消除支架非弹性变形量及压缩稳定后测出弹性变形量,即完成支架压重施工。撤除压重砂袋后,设置支架施工预留拱度,调整支架底模高程,并开始箱梁施工。 根据本工程桥跨数量多、线路长、支架情况及工期要求,我部拟仅对第四联右幅其中17#墩-18#墩跨和第六联右幅22#墩-23#墩跨进行压重施工的方案,即作业一队和二队各压重施工一跨,作业一队为贝雷梁支架施工,作业二队为钢管支架施工;其余各跨箱梁可据此二跨压重情况及理论计算相结合的形式,进行支架施工预留拱度的设置。具体考虑如下: ①如对每联进行压重,则压重材料需求大、箱梁施工周期长;仅第四联右幅就须压重2600T,且加载、卸载时间长,投入机具设备多。 ②支架压重情况分析 a、支架基座在承台和路面时,其承载力好,沉降量极小;其余支架砼基座设置在原状土(亚粘土)上,其承载力较好,沉降量较小,且可较准确计算出其沉降量,贝雷支架跨中基座沉陷经计算取1.5cm。且经一次压重后可测出沉陷经验值以方便设置支架预拱度。 b、贝雷梁支架和钢管脚手架均为使用较成熟的支架形式,其压缩及挠度值可通过计算得出,以27m跨靠梁高较高跨为例(支架图附后),贝雷梁最大挠度为2.0cm。 c、非弹性变形主要表现在底模抄垫上,但其高度设计较低,木楔及方木间接触面少,其变形值较小,且可通过经验公式推算和一次压重

情况进行确定。以标准跨计算,其非弹性变形为1.5cm d、此两种支架结构形式均比较简单,且我部在其它工程已有压重施工的经验。综上所述,在地基及支架结构形式一样的情况下,全桥上构每种支架采取一跨压重的方式应可以满足现浇箱梁施工需要。 ③预拱度设置: a、集美立交箱梁支架预拱度理论计算与设置 b、集美立交箱梁支架压重后预拱度设置

后张法现浇箱梁预拱度的设置

梁峁洛河大桥线形控制 一、几个相对位置的确定 1、支座中心线距相邻梁端部,水平距离110cm ; 2、48m 箱梁梁缝中心线距梁端部,水平距离8cm ; 可知,梁缝中心线距支座中心线,118cm 。在5号~8号墩孔跨不存在纵向偏心,故支各部位几何尺寸如下: 二、箱梁设计预挠度 根据工点设计图设计说明:梁体预挠度设置采用二次抛物线,跨中预设下挠度设计值为26mm ;施工时应根据桥面工程施工时间及检测的混凝土弹性模量等情况确定实际箱梁预设下挠度。 设计预拱度设置,按二次抛物线法分配(支座处预拱度为0): x 2 4x (L -x) = L δδ?? x δ——距左支座x 的预拱度值; x ——距左支座的距离; L ——跨长。 故有以下计算表:

5号~8号墩设计预拱度在膺架不同位置处的取值 另外,梁峁工点设计图中已明确:4号墩为32mT梁+48m箱梁不等跨墩,设有40cm的纵向预偏心,9号墩为32m箱梁+48m箱梁不等跨墩,设有20cm的纵向预偏心。 故,4号~5号墩、8号~9号墩梁部设计预拱度在膺架不同位置的取值如下表所示。

4号~5号墩设计预拱度在膺架不同位置处的取值

8号~9号墩设计预拱度在膺架不同位置处的取值

三、贝雷桁架的弯曲变形计算 1、基本参数 跨度最大13.25m,最小跨度12m(临时支墩处相邻两排仅距3m,故忽略不计);贝雷桁架面宽5m,16榀。桥面铺木板厚度tp=14mm;单榀普通贝雷梁长3.0m,高1.5m由上、下弦杆、竖杆及斜杆焊接而成(见附图),单层普通贝雷梁单榀允许最大弯矩:67t.m;最大剪力:22.1t;每片梁自重按110kg/m计算。挠度为负表示有预拱度。出于安全考虑,各跨径连续梁均按简支梁计算。 2、荷载计算 箱梁自重:q1砼=723060n/45m=16068kg/m; 桥面铺板q2=1*B*tp*γ= 1*12.6*0.014*900=158.76kg/m; 贝雷梁自重q3=12*qb=16*260=4160kg/m; 人员设备及其它荷载 q4=B*p5= 5*200=1000kg/m 均布荷载总计q=q1+q2+q3+q4 =21386.76kg/m 跨中挠度(l=13.25m)f=5*q*l^4/E/I/N/384 =5*21386.76*13.25^4/2.1E10/.0056925/12/384*100 =0.60cm 跨中挠度(l=12m)f=5*q*l^4/E/I/N/384+fa =5*21386.76*12^4/2.1E10/.0056925/12/384*100 =0.40cm 考虑测量误差及模板安装偏差,故箱梁施工时,由于上述荷载产生的挠度可忽略不计。

大跨度连续钢桁梁桥预拱度设置研究

大跨度连续钢桁梁桥预拱度设置研究 发表时间:2018-01-24T14:14:56.577Z 来源:《建筑学研究前沿》2017年第25期作者:刘志林 [导读] 本文首先详细阐述了预拱度的设置原则和预拱度设置方法进行了分析。以期能够对同行起到借鉴作用。中国水利水电第五工程局有限公司机电制造安装分局四川省成都市 610225 摘要:本文首先详细阐述了预拱度的设置原则和预拱度设置方法进行了分析。以期能够对同行起到借鉴作用。关键词:大跨度;钢桁梁桥;预拱度设置 在设计大跨度钢桁架拱桥的时候,预拱度的设置是其中一项非常重要的环节,尤其是采用整体节点技术以后,预拱度的设置好坏会对成桥线形以及拼装精度产生直接的影响,同时也会影响到节点设计以及杆件长度。如果预拱度设置得不好,不但会对桥梁的使用功能产生影响,对于超静定结构而言还会引起非常不利的附加反力以及杆件的附加应力。很多学者针对该问题进行了大量的研究,他们的研究内容主要集中推导理论预拱度曲线以及简支钢梁的预拱度设置方法,还有施工中对线形的监控等等,而对于大跨度连续钢桁架拱桥其预拱度设置的研究却很少。所以,为了能够得到更加理想的预拱度曲线,对杆件伸缩以及预拱度关系进行系统的研究具有重要的现实意义,本文的研究成果对于类似桥梁的预拱度设置具有重要的借鉴作用。 预拱度设置原则 根据《铁路桥涵设计基本规范》的规定,当恒载及静活载引起的竖向挠度等于或小于15 mm 或跨度的1 /1600 时,可不设预拱度;当大于上述数值时应设置预拱度,其曲线与恒载及1 /2 静活载所产生的挠度曲线基本相同,但方向相反。对于钢桁梁预拱度,由于考虑到预拱度的设置不影响桥面系,一般通过调整上弦杆长度来实现。但是对于变高度的连续钢桁梁,仅仅依靠调整上弦杆的长度很难得到合理的预拱度值,因而不仅要考虑上弦杆,还需要考虑下弦杆、腹杆等。 对于钢桁连续梁,设置预拱度的方法和原则为: (1)去掉支点附近交叉腹杆中的多余杆件,减少支点附近的超静定次数,去掉的支点附近交叉腹杆多余杆件的长度通过节点间杆件无应力安装确定。 (2)要求起拱后温度效应产生的支点反力尽量接近于0,即减少外部超静定对结构受力的影响。 (3)由于结构的内部超静定,杆件的伸长会导致应力的产生,且该应力为永久应力,而且经过分析和验证发现该应力有的有利,有的不利,所以在设置预拱度时,一方面要使预拱度尽量接近理论预拱度,另一方面要使应力尽量小。 预拱度设置方法 几何法为采用简单的几何关系,建立上弦杆调整值与下弦节点挠度之间的关系。如图1 所示,当节点中心两侧上弦杆的第一排螺栓孔的起线各增大Δ 时,则梁端将下降。若将下降值累积在节点中心的一侧,B 端不降低,则D 端下降值δ 可按照几何关系求出。 可以通过设置更多的约束方程以取得更好的结果,例如Δj为偶数;需调整杆件数尽可能少,且调整数值大小尽量统一;相邻杆件调整值的差值限定值;实际预拱度与理论预拱度差值限定值等。 此方法有如下优点:(1)与受力无关,仅是杆件的几何关系,与预拼装过程一致,偏差小;(2)建立影响矩阵方便,无需借助有限元计算,并且仅用建立上弦杆伸长量与下弦杆节点挠度的影响矩阵;(3)矩阵小,每跨可以单独计算,互不影响;并且每跨一般对称设置预拱度,因此其上弦杆伸长值也为对称设置,这样影响矩阵可减少一半,提高收敛和计算速度。 总结 为保证车辆过桥时桥上线路转角应尽可能小,提高行车舒适性,因此需要设置预拱度,对于大跨度钢桁梁桥,预拱度的设置尤其重要。也希望通过技术的不断优化,给出一种较为简单的预拱度设置方法,大大简化预拱度设置工作。 参考文献 [1]蔡禄荣,王荣辉,王钰.大跨度柏式钢桁梁桥厂制预拱度设置研究[J].铁道学报,2013,35(4):96~101. [2]蔡禄荣.大跨度钢桁架拱桥预拱度设置及拼装误差理论研究[D].华南理工大学,2012 [3]孙英杰,肖海珠,徐伟.郑州黄河公铁两用桥施工控制关键技术研究[J].桥梁建设,2011(2):5-8.

96m钢桁梁施工方案

第一节、说明及工程概况 1、编制说明 根据新xxxxxxxxxxx工程的实际情况,在仔细、认真、系统阅读合同文件、图纸、工程量清单等的基础上,结合我单位的施工实力、技术、资源和机具设备的配套能力等因素及现场勘察资料,编制本钢桁梁施工方案。 1.1、编制依据 1.1.1、新建xxxxxxxxxxx总承包招标招标文件和答疑和补遗、招标图纸及工程量清 单。 1.1.2、《铁路桥涵工程施工质量验收标准》(TB 10415-2003 J 286-2004); 1.1.3、《建筑施工扣件式钢管脚手架安全技术规范》(J 130-2011); 1.1.4、《铁路桥涵工程施工安全技术规程》(TB 10303-2009 J946- 2009)。 1.1.5、《客运专线铁路桥涵施工技术指南》。 1.1.6、《高速与客运专线铁路施工工艺手册》。 1.1.7、《桥梁工程》。 1.1.8、现场踏勘调查资料。 1.1.9、我单位现有的施工技术水平、装备能力,以及多年来积累的施工实践经验。 1.2、编制原则 1.2.1 严格遵守国家、铁道部施工技术规范、规程、验收等技术标准的原则 施工技术方案编制中严格遵守国家、铁道部、铁路有关施工技术规范、规程、验收等技术标准。 1.2.2 全面响应施工合同和设计图纸要求的原则 在充分领会合同文件要求和设计意图的前提下,结合现场调查情况,力求工期、

质量、安全和施工技术方案等满足施工合同文件和设计图纸要求,并制定出相应完善的保证体系和保证措施,确保各项目标的实现。 1.2.3 确保施工工期的原则 严格遵守新建xxxxxxxxxxx工程指导性施工组织设计的工程施工工期要求,施工进度安排注重各专业间的协调和配合,根据工程的特点,轻重缓急,充分考虑气候、季节对施工的影响,合理安排进度,实行网络控制,搞好工序衔接,实施进度监控,在整体工期安排上合理提前,确保实现工期目标。 1.2.4 坚持文明施工,确保环境保护和水土保持本着“三同时”的原则 严格执行GB/T24001-1996环境管理体系和GB/T28001-2001职业健康安全管理体系,充分考虑施工对周围环境的影响,制定完善的环保、水保措施,文明施工,确保工程所处环境不受污染和破坏,争创“文明施工标准化工地”。 1.2.5 力求施工方案的适用性、先进性相结合的原则 结合本工程特点,搞好劳力、材料、机械的合理配置,推广“四新”技术,采用成熟可靠、先进的施工方法和施工工艺,力求施工方案的适用性与先进性相结合,做到施工方案科学适用、技术先进,确保实现设计意图。 1.3、编制范围 新建xxxxxxxxxxx工程跨京山铁路特 大桥DK7+516.50~DK11+293.05标段跨xxxxxxxxxxx96m双线简支钢梁桁梁施工。 2、工程概述 2.1.1、项目介绍 xxxxxxxxxxx位于天津经济技术开发区十二大街北边绿化带,穿越生态保护渠,是新建xxxxxxxxxxx工程组成部分,本标段起点91#在xxxxxxxxxxx以西,里程DK7+516.50,终点205#台在生态保护渠,里程DK11+283.05,线路全长3776.55m,墩台115个。跨既有交通道路四处,其中跨xxxxxxxxxxx为96米下承式双线简支钢梁,跨xxxxxxxxxxx为48+80+48连续梁,跨南海路为48+80+48连续梁,跨xxxxxxxxxxx为

桥梁博士预拱度设置及计算

用桥博计算书模板提取预拱度 分享 首次分享者:千雪寻已被分享21次评论(0)复制链接分享转载举报 一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。 1、对全预应力和A类构件,计算挠度时,按照规范6.5.2条,全截面的抗 弯刚度Bo应取0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项 位移,全界面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。 2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数, 即可得到正确的单项挠度效应。组合位移的值,用户可以采用报表来完成。 3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在 使用阶段是允许开裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度? 1、规范条文: 2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值 4、桥博报表解析 荷载短期效应组合长期竖向挠度(mm) {1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[D S(iN,3,iS).V],iS=sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3> 永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人 群最小剪力的位移 预加应力产生的长期挠度(mm) {1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3> 消除结构自重后的挠度 {(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移 总结: 《桥规》 D62的 6.5.5条:受弯构件的预拱度可按下列规定设置: 1 钢筋混凝土受弯构件 1)当由荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度不超过计算跨径的1/1600时,可不设预拱度; 2)当不符合上述规定时应设预拱度,且其值应按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。 假设为C50,挠度长期增长系数ηθ=1.425。桥博位移的计算是按照不开裂换算截面刚度计算的,未做折减处理,刚度折减系数取为0.95, 1.425/0.95*1000=1500。sgjd=1-n(共n个施工阶段) 预拱度 ={1500*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+0.5*(0.7*([DU(iN,55).V])+[DU(iN ,67).V])} 结构自重计算的挠度=ZSUM<[DS(iN,2,iS).V],iS=sgjd> 汽车荷载频遇值计算的的挠度=0.7*[DU(iN,55).V] 人群荷载频遇值计算的的挠度=[DU(iN,67).V] 2 预应力混凝土受弯构件

预拱度设置

前言:在预应力混凝土梁悬臂施工控制中,线形控制是至为关键的一环。而在线形控制中,合理确定每一阶段的立模标高又是其中的重点。本文结合自己的一些心得体会,谈谈对线形控制的一些看法。 一座桥梁的建成,总要经历一个漫长而复杂的施工过程,结构体系也将随着施工阶段不同而不断发生变化。在具体的施工过程中,因为设计参数误差(如材料特性、截面特性、徐变系数等)、施工误差(如制造误差、安装误差等)、测量误差以及结构分析模型误差等种种原因,它还受温度、湿度、时间等因素的影响。从而导致实际施工中桥梁的线形与理想目标存在一定的偏差,如果不加以识别和调整,成桥之后的结构安全状态将难以保证。而且,已施工梁段上一旦出现线形误差时,误差将永远存在,并导致成桥状态偏离理想状态。 一、测量 线形控制最主要的任务,就是根据每个施工阶段的测量结果,分析测量数据,同时与模型预测值进行对比,从对比中找出差距,分析误差产生的原因,从而确定下一阶段的合理预拱度。每一阶段施工完毕,对结构模型实际的混凝土养护龄期、节段施工周期、混凝土实际的弹性模量、容重等参数进行修正,有关参数估计与修正的内容具体在以后的专题中讨论,这里从略。参数修正之后,对结构模型再次进行计算,将新的计算结果与实测结果进行比较。比较的主要内容包括浇筑混凝土前后的标高变化、张拉预应力钢筋前后的标高变化以及梁底、梁顶的标高值。通过比较的结果,可以对测量数据进行分析。由于测量数据本身包含着误差,因此对于测量数据的处理也显得比较关键。对于一些明显错误的测点,在分析时应予以剔除。由于施工过程中,温度的影响比较大,温度影响分为年温差与日照温差,其中年温差主要引起结构的纵向位移,通俗一点讲也就是热胀冷缩;而日照温差则主要引起梁体的竖向变形,这也是对线形控制影响较大的部分。这种影响作用在夏天表现得最为明显,因为夏天昼夜温差较大。如果前后测量的温度变化较大,那么测量的结果中就会包含温差的影响,但是实际分析这种温差效应比较麻烦,一般要求测量人员在进行测量时,保持前后测量时间的温度接近。在很多线控测量要求中,都要求关键施工阶段测量工作在0时至日出前进行,这样测量数据的精度更高,能够基本上消除日照温差的影响。但是实际中能够这样做的估计很少。 二、预拱度设置 实际考虑到的荷载包含了结构恒载(包含梁体自重及二期恒载、预应力、混凝土的收缩徐变等)、1/2静活载效应、挂篮变形等因素。那么预拱度一般按照绝对预拱度方法进行设置,也即以最后一个施工阶段,一般为长期徐变阶段对应的结构变形为依据,将节点对应的变形反向,即得到计算预拱度。考虑了计算预拱度之后,结合1/2静活载效应,以及挂篮变形,我们就可以确定最终的预拱度。具体公式为:预拱度=计算预拱度+(-1/2静活载效应)+(-挂篮变形),其中,1/2静活载效应与挂篮变形均以向下为负。求出预拱度之后,根据梁体设计标高,我们就可以确定最终的立模标高。立模标高=设计标高+预拱度。 中文词条名:预拱度 英文词条名: 为抵消梁、拱、桁架等结构在荷载作用下产生的挠度,而在施工或制造时所预留的与位移方向相反的校正量。 上部结构和支架的各变形值之和,即为应设置的预拱度。支架受载后将产生弹性和非弹性变形,桥梁上部结构在自重作用下会产生挠度,为了保证桥梁竣后尺寸的准确性,在施工时支架须设置一定数量的预拱度。

如何设置预拱度

桥博常见问题整理(小专题) 一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。 1、对全预应力和A类构件,计算挠度时,按照规范 6.5.2条P63,全截面的抗弯刚度 Bo=0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项位移,全截面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。 2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数,即可得到正确的 单项挠度效应。组合位移的值,用户可以采用报表来完成。 3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在使用阶段是允许开 裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度? 1、规范条文: 2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期 荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值 4、桥博报表解析 荷载短期效应组合长期竖向挠度(mm) {1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[DS(iN,3,iS).V],iS= sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3> 永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人群最小剪力的位移 预加应力产生的长期挠度(mm) {1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3> 消除结构自重后的挠度 {(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移

连续梁成桥预拱度计算过程

5.5.1 成桥预拱度计算方法 目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。 根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。

1.活载挠度计算 1) 荷载等级:公路—Ⅰ; 2) 车道系数:三车道,车道折减系数0.78; 3) 中跨活载最大挠度: d 2=0.029m; A 曲线:1cos()290y = -???? (090x ≤≤) B 曲线:21cos()261fc x y π??= -???? (22.553x ≤≤) C 曲线:21cos()245fc x y π??=-???? (022.5x ≤≤) 5.5.2 施工预拱度的计算方法 不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工

预拱度设置方法

lep 实习生 精华0 积分16 帖子25 水位52 技术分0 状态离线 预拱度怎么设置 是不是把各种内力产生的位移加起来就可以了?#1 sfj1977实习生 精华0 积分19 帖子30 水位62 技术分0 状态离线 恒载+活载挠度的 这是规范中的做法。 感觉有时再增加一点没有坏处, 避免混凝土收缩徐变等长期效应计算不准确带来的误差。 梁略微拱起一点比较美观, 但下挠一点就会让人不舒服。 #2 11103实习生确实如此,在一般的公路和城市道路上可以,但在高速公路上是不行的,有明显颠簸现象。

#3 lmx 助理工程师 精华 0 积分 20 帖子 33 水位 67 技术分 0 状态 离线 那具体该怎么增加呢?#4 ywmj63311826 助理工程师 精华 0 积分 21 帖子 32 水位 70 技术分 0 状态 离线 连续梁的施工控制中的预拱度(或称为抛高值)有两种解释。其一,就是现在普遍用的:预拱度变形影响度)终极),由收缩徐变产生得挠度,这是由设计单位确定得;预抛高指得是从建桥开始到竣工,梁体挠度得总和。然是对施工每个阶段的立摸前端点来说的了。下,使大桥主梁线形平顺,符合设计要求,成桥线形宁高勿低,一般与控制目标最大误差不超过

#5 hgq1188 助理工程师 精华 0 积分 21 帖子 34 水位 70 技术分 0 状态 离线 我也有同样得疑惑,想请教楼上本阶段施工和以后各阶段挠度如何求?是不是一般软件计算过后的成桥阶段的在恒载作用下的挠度?也就是说你所说的第一种情况的预抛高这样计算: 某一梁段预抛高=成桥阶段此梁段在恒载(一期收缩徐变在此梁段挠度施工到此阶段)引起的挠度1/2 另外你所说的第二种情况是不是就是把上面说所徐变的时间改为他不变?也请大家解释,谢谢!#6 superwheat 助理工程师 精华 0 积分 25 帖子 40 水位 82 技术分 0 状态 离线 箱梁浇筑时各节段立模标高由几部分组成:Hi=H0+fi+fiy+fl+fx 式中:标高;梁段纵向预应力束张拉后对该点挠度影响值;度影响值;车静活载等对该点挠度影响值。大值,以两桥墩支点为零点,其余各点按二次抛物线分配。#7

预拱度

预拱度的设置 一、基本原理 1、预拱度的设置只针对桥面系,考虑的是行车时线路的平顺性。 2、预拱度的设置只考虑恒载与活载,不考虑温度及支座沉降。其中, 恒载:结构自重、预应力、二期恒载、收缩徐变(对混凝土梁)。由于收缩徐变跟时间有关,预拱度分成桥及成桥3年后两种,一般以成桥3年后 为准。 活载:按静活载考虑。 3、针对简支结构 预拱度值= —(恒载挠度+0.5*静活载最大挠度) 即保证不行车时结构上拱0.5*静活载最大挠度,行车最大时结构下挠0.5*静活载最大挠度。 4、针对连续结构 预拱度值有两种设法,不同之处在于对活载的处理,目前没有统一。 预拱度值1 = —[恒载挠度+0.5*静活载(最大挠度+最小挠度)] 预拱度值2 = —[恒载挠度+0.5*静活载最大挠度] 方法1理由如下:火车过桥时,结构各点位移可上可下,直接取下值会使得预拱度过大,取两者平均值切合实际。由于简支结构最小挠度为0,该方法针对简支结构也能说通。 方法2理由如下:火车过桥时,某处发生最小挠度时表明火车还没有到达该处,此时的挠度对火车走行没有影响,而火车到达该处时一般挠度达到最大值,因此该值才具备实际意义。 实际上火车是由一节节车厢组成,而不是一个移动的集中荷载,因此两种做法不好判别,目前公司说做的连续结构均按第一种办法。 二、施工方案对预拱度的影响 针对常规的混凝土结构和钢结构,计算程序及预拱度设置均遵循小变形假定,均即结构形状的微小改变不影响结构受力及位移,程序各阶段处理结构内力及变位时均按直线计算,但是结构的总变形是各阶段的累计(计入位移及转角)。 预拱度= - [最后恒载挠度(成桥3年)+1/2静活载挠度] 立模标高= 线路标高+预拱度

钢桁梁施工工艺

4.4.2.4 钢桁梁施工方法及工艺 根据南运河特大桥只有一孔64m钢桁梁,且钢桁梁桥位处南运河河水较少、地质较好的实际情况,采用六四式军用梁和六五式军用墩(钢塔架)搭设墩梁式膺架,在膺架上进行拼装架设钢桁梁的施工。 4.4.2.4.1 杆件存放场地布置:杆件存放场根据杆件大小、数量、存放时间、装卸机具等综合考虑确定,并进行必要的整平、压实、硬化,然后按存放杆件布置图安放支垫,将杆件按编号分别存放。场地内合理布置预拼装、喷砂场、油漆房、材料库等设置。 4.4.2.4.2 杆件进场堆放:杆件的吊卸制定合理的方案,杆件存放分别种类及拼装顺序按存放图位置堆放整齐,杆件放置于稳固的枕木上,与地面保持10-25cm距离。杆件的支承点合理布置,堆放层数不超出规定的要求,节点板和小部件应分类堆放整齐,便于选用;易锈部件按规格存入库房内;每堆杆件之间留有适当宽度,便于吊装操作和查对;场地四周设排水沟,防止基底被水浸泡下沉;较长杆件稍留纵向坡度,以防止雨水积存在杆件上。 4.4.2.4.3 杆件的检查和矫形:按照设计文件和《铁路钢桥制造规则》的标准,对工厂提供的有关技术资料和实物进行检查。项目包括:钢梁试装记录的检查、焊缝重大修补记录的复查;主要杆件外形容许误差的复查、杆件外观检查等。 对杆件装卸运输等产生的局部变形或缺陷进行矫形修正,按规定正确选用冷矫或热矫方法。 4.4.2.4.4 杆件预拼:将部分杆件预先在地面上拼成一个吊装单元,然后送往拼装场地组拼,以减少桥上的拼装工作量,加快拼装速度、保证拼装质量,减少高空作业和提高施工安全度。 钢梁杆件预拼时按预拼设计图进行。预拼设计图主要包括:钢梁拼装顺序图,上、下弦杆全部节点预拼图,各种类型的纵梁、横梁预拼图,各种平面联结系、横向联结系预拼图,各种临时联结图等,预拼图要详示各预拼单元所有杆部件的相互关系。预拼设计图上还应标注各种螺栓的使用位置、连接板层数及厚度、螺栓的规格和数量,用不同符号表示螺栓的拧紧程序。计算出各预拼单元的重量和重心位置,并标注在预拼图上。在预拼图中,要附有预拼杆件数量表和螺栓数量表,以便作拼装准备工作和拼装过程中检查,预拼单元应力求组合合理,并不能

钢桁梁施工方案

钢桁梁施工方法及工艺 改京沪三线跨金星路大桥设计一孔1-96m简支钢桁梁,跨越金星路,采用顶推法施工,现场拼装。顶推推进时,道路两侧需要封锁,改路。 1.杆件存放场地布置:杆件存放场地根据杆件大小、数量、存放时间、装卸机具等综合考虑确定,并进行必要的整平、压实、硬化,然后按存放杆件布置图安放支垫,将杆件按编号分别存放。场地内合理布置预拼装、喷砂场、油漆房、材料库等设置。 2.杆件进场堆放:杆件的吊卸制定合理的方案,杆件存放分别种类及拼装顺序按存放图位置堆放整齐,杆件放置于稳固的枕木上,与地面保持10-25cm。杆件的支撑点合理布置,堆放层数不超出规定的要求,节点板和小部件应分类堆放整齐,便于选用;易锈部件按规格存入库房内;每堆杆件之间留出适当宽度,便于吊装操作和查对;场地四周设排水沟,防止基底被水浸泡下沉;较长杆件稍留纵向坡度,以防止雨水积存在杆件上。 3.杆件的检查和矫形:按照设计文件和《铁路钢桥制造规则》的标准,对工厂提供的有关技术资料和实物进行检查。项目包括:钢梁试装记录的检查、焊缝重大修补记录的复查;主要杆件外形容许误差的复查、杆件外观检查等。对杆件装卸运输等产生的局部变形或缺陷进行矫形修正,按规定正确选用冷矫或热矫方法。 4.杆件预拼:将部分杆件预先在地面上拼成一个吊装单元,然后送往拼装场地组拼,以减少桥上的拼装工程量,加快拼装速度、保证

拼装质量,减少高空作业和提高施工安全度。钢梁杆件预拼装时按预拼装设计图进行。预拼装设计图主要包括:钢梁拼装顺序图,上下弦杆全部节点预拼装图,各种类型的纵梁、横梁预拼图,各种平面联结系、横向联结系预拼图,各种临时联结图等,预拼装图要详示各单元所有杆部件的相互关系。拼装设计图上还应标注各种螺栓的使用位置、连接板层数及厚度、螺栓的规格和数量,用不同符号表示螺栓的拧紧程序。计算出各种预拼单元的重量和重心位置,并标注在预拼图上。在预拼图中,要附有预拼杆件数量表和螺栓数量表,以便拼装准备工作和拼装过程中检查,预拼单元应力求组合合理,不能超过起吊机械的额定起重量。 单元组件预拼装完成后,要进行一次全面质量检查,并经技术人员签字后方可发送。检查要达到以下要求:杆件对,配件齐,疑问清,接头净,量测准,标志明,绳梯牢,方向对。 5.搭设膺架:采用六四式军用梁和六五式军用搭设墩梁式膺架,根据需要的荷载量对于墩梁式膺架进行检查和计算,采用适量的军用梁片数和军用墩层数,并对临时墩基础按承载力进行设计。墩梁式膺架法拼梁钢桁梁见图5.1 6.钢梁的拼装:钢梁的拼装在膺架梁上进,拼装的步骤如下:在膺架梁上准确定出钢梁中心线、两侧板中心线、端横梁各节点间横梁的中心线;根据计算求得的膺架梁挠度值和预拱度进行检查,如有偏差及时调整。确认合格后按规定将高强螺栓全部终拧。 7.落梁就位:顶落梁采用油压千斤顶进行,需计算千斤顶的顶力

预拱度经验值

简支梁起拱度经验值: 10m:一般为8-10mm;13m:一般为10-15mm;16m:一般为10-15mm; 20m:一般为15-20mm;25m:一般为20-25mm;30m:一般为20-30mm;也有设置反拱度为36mm。 简支梁起拱度一般为梁长的1/1000;钢桁架一般为梁长的3-4/1000 简支梁预应力上拱度计算:x=2*(Mpe*L*L)/(8*0.95*EC*In) Mpe——永存应力的弯矩;L——垮径; EC——混泥土弹性模量;In——截面抗弯惯性距。 起拱度没有达到预算的原因: 正常来说,张拉完成后,底板当然应该是平的, ,有可能是以下几种原因: 1.预应力张拉值不够,未达到设计值. 2.设计计算不够准确,张拉力本身偏小. 3.箱梁浇注过程中,自身出的问题.如:梁配筋位置偏差,砼浇注厚度偏差,直接影响了张 拉后起拱度. 4.预应力筋波纹管定位不准确,位置的变化也是影响起拱最关键的一个环节. 后张法预应力箱梁预拱度控制: 由中铁大桥局股份有限公司承建的广深沿江高速公路机场特大桥上部结构采用先简支后连续的预应力混凝土组合箱梁,每半幅桥由两片边梁和三片中梁组成。施工要求箱梁成桥阶段桥面基本水平,无论起拱度值偏小或偏大均会导致桥面纵桥向形成波浪线形,影响行车的舒适;同时要求同一孔的5片箱梁的预拱度基本一致,否则会导致箱梁架设后存在桥面错台,影响横桥向桥面的平整度。箱梁预拱度设置是预制箱梁施工过程中重点控制项目,现在结合现场实际施工对预拱度设置及其控制做简单的陈述与分析。 1 反拱度值计算 预制箱梁反拱度值主要根据以下方面计算:1)梁体结构自重;2)预应力钢筋总张拉力;3)混凝土设计强度、弹模及其使用环境温度(影响混凝土收缩徐变);4)桥面二期恒载值;5)反拱度计算龄期(混凝土收缩徐变时间)。设计图纸中计算的30m预制组合箱梁跨中最大反拱度值为:边梁20mm,中梁15mm。 2 反拱度值设置原则 反拱度值设置原则为:其值大小以水泥混凝土铺装前梁的上拱度(向上)不大于2cm,同时满足成桥后的预拱度(即边梁20mm,中梁15mm)要求控制。 根据桥梁施工计算手册以及以往施工经验,反拱度设置按二次抛物线(二次抛物线方程可以根据两粱端和跨中梁底坐标求得)设置能满足施工精度要求。 3 反拱度设置 施工过程反拱度设置一般通过制梁台座调整底模标高来控制,制梁台座设计时考虑留有154cm高的操作空间(即底模距地面高度)。反拱度值采用二次抛物线设置,每60cm 设置一控制截面。现仅取30m预制组合箱梁中梁对预拱度设置流程作简单介绍:1)根据设计图纸提供的预拱度值求出预拱度方程y=200×2/3;则每控制截面的底模控制标高计算如表1所示: 2)根据上面计算标高埋设底模预埋件; 3)浇筑台座混凝土,混凝土顶面标高不宜高于预埋件顶面标高; 4)安装底模,并利用水准仪进行调整至上表计算值,然后加固。 4 影响实际施工起拱值的因素 本项目预制简支箱梁预应力束设置在底腹板上,混凝土上拱值主要是由于底腹板混凝土在预应力钢筋和混凝土自身收缩徐变的作用下收缩而产生,而且上拱值的大小与底腹板混凝土压缩量成正比。

桥博预拱度

桥博预拱度计算 连续刚构预拱度分为施工预拱度和成桥预拱度,设置施工预拱度主要为了消除施工过程中各种荷载对成桥线形的影响,设置成桥预拱度主要为了消除后期运营过程中后期收缩、徐变、后期预应力损失及汽车荷载对桥面线形的影响。 采用挂篮悬臂浇筑的连续刚构桥在设置施工预拱度时应考虑下表所列因素的影响: 表连续刚构桥施工预拱度的主要影响因素 采用挂篮悬臂浇筑连续刚构桥,其成桥预拱度应考虑下表所列因素的影响: 注:“+”表示向上设置预拱度,“-”表示向下设置预拱度。 我监控单位设置的预拱度为:成桥预拱度+施工预拱度。

1.1 成桥预拱度计算 目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L :中孔跨径),边孔最大挠度一般发生在3/4L 处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠,中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L 处设置fc/4预拱度(fc :中孔跨中成桥预拱度)。 连续刚构桥成桥预拱度计算方法:中跨预拱度在设计预拱度的基础上,再按L/1000 (L 为中跨跨径,d 2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L 处。其余各点按余弦曲线分配。在中孔跨中fc 确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L 处成桥预拱度取中孔跨中成桥预拱度fc 的1/4,边孔其余各点按余弦曲线分配。最终成桥预拱度等于收缩徐变预拱度加上1/2活载值。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。 (1) 活载挠度计算 中跨活载最大挠度:d 2=0.032m ; (2) 中跨最大预拱度的确定 1000 L fc =0.17m ; (3) 余弦曲线

相关文档
最新文档