信号源基础知识

信号源基础知识
信号源基础知识

信号源基础知识

————————————————————————————————作者:————————————————————————————————日期:

4-20ma信号发生器电路

4-20ma信号发生器电路 制作要求:以精度0.5级为例,二线制4~20mA模拟恒环路信号发生器执行标准:GB/T13850-1998; (1)基准要稳,4mA是对应的输入零位基准,基准不稳,谈何精度线性度,冷开机3分锺内4mA的零位漂移变化不超过4.000mA0.5%以内;(即3.98-4.02mA),负载250Ω上的压降为0.995-1.005V,国外IC心片多用昂贵的能隙基准,温漂系数每度变化10ppm; (2)内电路总计消耗电流<4mA,加整定后等于4.000mA,而且有源整流滤波放大恒流电路不因原边输入变化而消耗电流也随之变化,国外IC心片采用恒流供电; (3)当工作电压24.000V时,满量程20.000mA时,满量程20.000mA的读数不会因负载0-700Ω变化而变化;变化不超过20.000mA0.5%以内; (4)当满量程20.000mA时,负载250Ω时,满量程20.000mA的读数不会因工作电压15.000V-30.000V变化而变化;变化不超过20.000mA0.5%以内;

(5)当原边过载时,输出电流不超过25.000mA+10%以内,否则PLC/DCS内供变送器用的24V工作电源和A/D输入箝位电路因功耗过大而损坏,另外变送器内的射随输出亦因功耗过大而损坏,无A/D输入箝位电路的更遭殃; (6)当工作电压24V接反时不得损坏变送器,必须有极性保护; (7)当两线之间因感应雷及感应浪涌电压超过24V时要箝位,不得损坏变送器;一般在两线之间并联1-2只TVS瞬态保护二极管 1.5KE可抑制每20秒间隔一次的20毫秒脉宽的正反脉冲的冲击,瞬态承受冲击功率1.5KW-3KW; (8)产品标示的线性度0.5%是绝对误差还是相对误差,可以按以下方法来辨别 方可一目了然:符合下述指标是真的线性度0.5%. 原边输入为零时输出4mA正负0.5%(3.98-4.02mA),负载250Ω上的压降为 0.995-1.005V 原边输入10%时输出5.6mA正负0.5%(5.572-5.628mA)负载250欧姆上的压降为1.393-1.407V 原边输入25%时输出8mA正负0.5%(7.96-8.04mA)负载250Ω上的压降为 1.990- 2.010V 原边输入50%时输出12mA正负0.5%(11.94-12.06mA)负载250Ω上的压降为2.985-3.015V 原边输入75%时输出16mA正负0.5%(15.92-16.08mA)负载250Ω上的压降为3.980-4.020V 原边输入100%时输出20mA正负0.5%(19.90-20.10mA)负载250Ω上的压降为4.975-5.025V (9)原边输入过载时必须限流:原边输入过载大于125%时输出过流限制25mA +10%(25.00-27.50mA)负载250Ω上的压降为6.250-6.875V; (10)感应浪涌电压超过24V时有无箝位的辨别:在两线输出端口并一个交流50V 指针式表头,用交流30-35V接两根线去瞬间碰一下两线输出端口,看有无箝位,箝位多少伏可一目了然啦; (11)有无极性保护的辨别:用指针式万用表Ω乘10K档正反测量两线输出端口,总有一次Ω阻值无限大,就有极性保护; (12)有无极输出电流长时间短路保护:原边输入100%时或过载大于125%-200%时,将负载250Ω短路,测量短路保护限制是否在25mA+10%; (13)工业级别和民用商用级别的辨别:工业级别工作温度范围是-25度到+70度,温漂系数是每度变化100ppm,即温度每度变化1度,精度变化为万分之一;

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

信号基础复习题.doc

1)根据电流极性的不同有两种稳定的工作状态,定位和反位; 2)即使电流消失,继电器仍能保持状态; 3)要改变继电器的状态需通入相反极性的电流。 有极继电器的磁路系统是由永磁磁路和电磁磁路组成。接点号码是百位数。 4、偏极继电器有什么特点?磁路由哪几部分组成?接点号码是几位数? 答:偏极继电器的特点: 1)只有通过规定的电流方向时吸起,而通以反方向电流时衔铁不动作;具有电流极性鉴别能力; 2)只有一种稳态,落下是稳定状态(断电时落下)。 6、设计电路:用一组24V电源和DBJ、FBJ的第8组接点,DBJ吸起时点绿灯L,FBJ吸起时点黄灯U;且D BJ 的第8组FBJ必须串联。 7、固定信号机按用途分为几种?有什么类型? 答:固定信号机按用途分为:9种,有:进站、出站、进路、通过、调车、驼峰、遮断、预告、复示等 8、信号机和信号表示器有什么区别? 答:信号机是表达固定信号显示所用的机具,用来防护站内进路,防护区间,防护危险地点,具有严格的 防护意义。 信号表示器是对行车人员传达行车或调车意图的,或对信号进行某些补充说明所用的器具,没有严格的防护意义。 9、进站信号机的显示意义?(三显示、四显示自动闭塞) 答:1、三显示自动闭塞 (1) 一个绿色灯光——准许列车按规定速度经正线通过车站,表示出站及进路信号机在开 放状态,进路上的道岔均开通直向位置 (2) 一个黄色灯光——准许列车经道岔直向位置,进入站内正线准备停车; (3) 两个黄色灯光——准许列车经道岔侧向位置,进入站内准备停车; (4) 一个黄色闪光和一个黄色灯光——准许列车经过18号及其以上道岔侧向位置,进入站内越过下一架已经开放的信号机,且该信号机所防护的进路,经道岔的直向位置或18号及其以上道岔的侧向位置 (5) 一个红色灯光——不准列车越过该信号机; (6) 一个绿色灯光和一个黄色灯光——准许列车经道岔直向位置,进入站内越过下一架已经开放的接车进路信号机准备停车。 (7)准许列车在该信号机前方不停车,以不超过20km/h 进站或通过接车进路,并须准备随时停车。 10.四显示自动闭塞区段进站色灯信号机 (1) 一个绿色灯光——准许列车按规定速度经道岔直向位置进入或通过车站,表示运行前方至少有三个闭塞分区空闲; (2) 一个黄色灯光——准许列车按限速要求越过该信号机,经道岔直向位置进入站内正线准备车; (3) 两个黄色灯光——准许列车按限速要求越过该信号机,经道岔侧向位置进入站内准备停车; (4) 一个黄色闪光和一个黄色灯光——准许列车经过18号及其以上道岔侧向位置,进入站内越过下一架已经开放的信号机,且该信号机所防护的进路,经道岔的直向位置或18号及其以上道岔的侧向位置; (5) 一个红色灯光——不准列车越过该信号机; (6) 一个绿色灯光和一个黄色灯光——准许列车按规定速度越过该信号机,经道岔直向位置进入站内,表示下一架信号机已经开放一个黄灯。 (7)准许列车在该信号机前方不停车,以不超过20km/h 进站或通过接车进路,并须准备随时停车。 11、电化区段的信号机外缘与接触网带电部分距离和回流线有什么要求? 答:电化区段的信号机的金属体外缘部分与接触网带电部分的距离不得小于2M,与回流线距离在1M以内时,应加绝缘防护,但不得小于0.7M。 12、背画微电子JXW25相敏轨道电路图(一送二受)。 第2 / 6页 15、何谓轨道电路?说明及工作原理? 答:轨道电路是以两根钢轨作为导体,两端加以机械绝缘(或电气绝缘)为导体,接受送电和受电设备构成的电路称为轨道电路。 轨道电路的原理:

(完整版)数字信号发生器的电路设计_(毕业课程设计)

1 引言 信号发生器又称信号源或者振荡器,它是根据用户对其波形的命令来产生信号的电子仪器,在生产实践和科技领域有着广泛的应用。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其他仪表测量感兴趣的参数。信号发生器在通信、广播、电视系统,在工业、农业、生物医学领域内,在实验室和设备检测中具有十分广泛的用途。 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。到70年代处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。随着现代电子、计算机和信号处理等技术的发展,极大地促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。

信号发生器作为电子领域不可缺少的测量工具,它必然将向更高性能,更高精确度,更高智能化方向发展,就象现在在数字化信号发生器的崛起一样。但作为一种仪器,我们必然要考虑其所用领域,也就是说要因地制宜,综合考虑性价比,用低成本制作的集成芯片信号发生器短期内还不会被完全取代,还会比较广泛的用于理论实验以及精确度要求不是太高的实验。因此完整的函数信号发生器的设计具有非常重要的实践意义和广阔的应用前景。 2 数字信号发生器的系统总述 2.1 系统简介 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。 本设计以AT89C52[1]单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统主要包括CPU模块、显示模块、键盘输入模块、数模转换模块、波形输出模块。系统电路原理图见附录A,PCB (印制电路板)图见附录B。其中CPU模块负责控制信号的产生、变化及频率的改变;模数转换模块采用DAC0832实现不同波形的输出;显示模块采用1602液晶显示,实现波型和频率显示;键盘输入模块实

信号发生器的原理及应用

实验一信号发生器的原理及应用 一、实验目的 (1)熟悉直接数字合成双路函数信号发生器的工作原理以及面板装置及功能; (2)会运用UTG2025A型数字信号合成信号发生器产生标准信号和调制信号。 二、实验设备 (1)UTG2025A型函数/任意波形信号发生器1台; (2)UTD2102C数字存储示波器各1台。 三、实验原理 函数信号发生器是能产生多种特定时间函数波形(如正弦波、方波、三角波 等)供测试用的信号发生器。典型函数信号发生器由输入单元、内/外转换电路、 波形产生电路、频段转换器、扫频电路、占空比和频率调节电路、微处理器、A/D 转换器、直流功率放大器和计数显示器等组成,其电路原理方框图如下所示: 图1典型函数信号发生器电路原理框图 其中波形产生电路、频率调整电路、占空比调整电路、内外扫频控制电路、测频 单元电路等具体电路原理与分析见教材《电子测量技术》P67-P71页内容。 四、实验内容及步骤 4.1 产生标准信号 4.1.1 产生正弦波信号

实验内容:产生一个20MHz、峰峰值100mV、直流偏置-150mV的正弦波信号。 1 实验步骤: (1)确保仪器正确连接后,打开开关,等仪器自检回到主菜 单;(2)按【menu】→【波形】→【正弦波】,如下图所示: (3)按【menu】→【波形】→【参数】 选择【频率】、【幅度】、【直流偏移】、【相位】不同功能按钮进行设 置:可以用三种方法来输入频率值:(其他数字量输入类似) ①通过按方向键来移动选择光标,再通过多功能按钮来增加、减少频率值; ②通过多功能按钮选中再逆时针、顺时针旋转来增加、减少频率值; ③通过数字键盘输入:进入频率设置状态后,当您按下数字键盘任意一个按键后,屏幕弹出输入窗口,如下图所示: 键入数字后再分别选择不同单位。

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

低频信号发生器电路图制作以及调试

低频信号发生器电路图制作以及调试 1 画原理图 本设计中要求用Protel软件完成原理图以及PCB板。我用的是Protel2004 版本。电路原理图的设计是印制电路板设计中的第一步,也是非常重要的一步。电路原理图设计得好坏将直接影响到后面的工作。首先,原理图的正确性是最基本的要求,因为在一个错误的基础上所进行的工作是没有意义的;其次,原理图应该布局合理,这样不仅可以尽量避免出错,也便于读图、便于查找和纠正错误;最后,在满足正确性和布局合理的前提下应力求原理图的美观。 电路原理图的设计过程可分为以下几个步骤: 1、设置电路图纸参数及相关信息根据电路图的复杂程度设置图纸的格式、尺寸、方向等参数以及与设计有关的信息,为以后的设计工作建立一个合适的工作平面。 2、装入所需要的元件库将所需的元件库装入设计系统中,以便从中查找和选定所需的元器件。 3、设置元件将选定的元件放置到已建立好的工作平面上,并对元件在工作平面上的位置进行调整,对元件的序号、封装形式、显示状态等进行定义和设置,以便为下一步的布线工作打好基础。 4、电路图布线利用Protel 2004所提供的各种工具、命令进行画图工作,将事先放置好的元器件用具有电气意义的导线、网络标号等连接起来,布线结束后,一张完整的电路原理图基本完成。 5、调整、检查和修改利用Prote2004所提供的各种工具对前面所绘制的原理图做进一步的调整和修改。 6、补充完善对原理图做一些相应的说明、标注和修饰,增加可读性和可观性。 2 硬件单元电路调试 对于本波形法发生器,其硬件电路的调试最重要的地方在于板子制作的前期一

定要保证其质量,尽量减少因虚焊等因不细心造成的故障。将元件焊接完毕后,为了方便调试,采用分块调试的方法。电路由多个模块组成,D/A 转换 电路、显示电路、电源电路、按键电路、复位电路。因为这次在焊点的时候比较细心,所以焊得很结实,检验的时候,未发现有虚焊的问题。 5.2.1 焊电路 设计好电路图,开始焊电路板,刚开始觉得线路很简单,所以电路排版没花心思,真正开始焊的时候才发现相当麻烦,导线用去很多,看起来有点乱。由于元气件的管脚图并不跟原理图中一样,所以必须先查阅资料弄明白各个器件的封装,像LED先用万用表检测是共阴还是共阳,每个管脚对应哪一段也可以检测。还有四脚的按键也要测出哪两脚是相通的等等。 5.2.2 硬件电路的总体检查 电路板焊完之后,应该首先认真细致地检查一遍,确认无误后方能通电。通电前检查,主要检查以下内容: 第一,根据硬件电气原理图和装配图仔细检查线路的正确性,并检查元器件安装是否正确。尤其注意的是芯片、二极管和开关管的极性、电容器的耐压和极性、电阻的阻值和功率是否与设计图纸相符,重点检查系统总线间或总线与其它信号线间是否存在短路;第二,检查焊接点是否牢固,特别要仔细检查有无漏焊和错焊;对于靠得很近的相邻焊点,要注意检查金属毛刺和是否短路,必要时可用欧姆表进行测量;第三,在不加电的情况下,插上所有元器件,为联机调试作准备。确保电源和地无故障之后,再通电,然后检查各电源+5V、+12V 和-12V电压数值的正确性。排除可能出现的故障后,再进行各单元电路调试。 5.2.3 单元电路调试 1 、单片机最小系统调试 按照前面设计的单片机最小系统和电源,焊接并插上相应的元器件,连好线,检查正确无误后,接上电源,用示波器测试单片机的时钟波形。时钟波形和频率正确,进行下一步检查。 切断电源,空出单片机AT89S51的位置,并在此位置上插入仿真器的40芯

深度解读信号源所涉及的相关基础知识

深度解读信号源所涉及的相关基础知识 信号源是四大通用电子测量仪器之一,其他三种是:网络分析仪,频谱分析仪和示波器。这篇介绍信号源所涉及的相关基础知识。信号源的最常用的功能是用来产生一个正弦波,所以先从介绍正弦波的特征开始本篇文章。 一、正弦波的信号特性通过正弦波信号的表达等式,可以反映其信号所包含的参数为:信号幅度;频率;初始相位。信号的频率和初始相位可以包含在信号的相位信息中。 对于理想的正弦波信号而言,其幅度和频率及初始相位应该为确定参数,所以正弦波信号是比较简单的信号。定义一个连续波信号只需要幅度和频率两方面指标。 图1 正弦波信号特性 信号源产生正弦波的典型幅度参数有如下几项: 图2 信号源输出正弦波的典型幅度参数 信号源要考虑幅度精度,以提高测试的可重复性,降低测试不确定度。 信号源的典型频率参数有如下几项: 图3 信号源输出正弦波的典型频率参数 信号源的频率精度与参考振荡器的年老化率及校准之后经历的时间有关。实际正弦波的信号特征比理想信号要复杂的多,需要考虑相位噪声,寄生调频,杂散,如图4所示。相位噪声在频域反映为噪声边带,在时域上反映为随机的相位抖动,可理解为有随机的噪声对理想正弦信号进行调相。 图4 实际正弦波的信号特征 正弦波或连续波信号质量好坏的评估主要在频域上进行,频域上的杂散包含连续和离散成份,它们都对应时域上的失真。连续的噪声边带称为相位噪声,离散的杂散根据其与基波的频率关系分为谐波和杂波。 相位噪声主要由振荡器内部噪声带来,而谐波杂波的形成与器件的非线性有关: vo(t)=a1vi(t)+ a2vi2(t)+ a3vi3(t)+ ... 若输入为理想正弦信号,通过非线性作用输出为:

函数信号发生器电路设计

题目:函数信号发生器 班级: 学号: 姓名: 指导: 时间: 景德镇陶瓷学院

电工电子技术课程设计任务书

目录 1、总体方案与原理说明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2、单元电路1——稳压电源电路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 3、单元电路2——AT89S52最小系统. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .6 4、单元电路3——1602液晶显示电路. . . . . . . . . . . . . . . . . . . . . . . . . . .8 5、单元电路4——矩阵键盘输入电路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 6、单元电路5——AD9850函数信号发生电路. . . .. . . . . . . . . . . . . . . . . . . . .10 7、总体电路原理说明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 8、总体电路原理图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 9、元件清单;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 10、参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 11、设计心得体会. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

函数信号发生器的设计电路

北华航天工业学院 《电子技术》 课程设计报告 报告题目:信号发生器设计电路作

内容摘要 本方案主要用集成运放LM324和UA741等元器件设计组成一个简易函 数信号发生器。该函数信号发生器主要由迟滞比较器、积分器电路、二阶RC有 源低通滤波器电路等三部份组成。 迟滞比较器电路形成方波,经积分器电路输出三角波,再经二阶RC有源低 通滤波器电路形成正弦波,通过电源实现1~12V可调,经过电位器实现频率调 节。由此构成了一个简易的函数信号发生器。 本实验主要通过使用Multisim、protel软件等完成电路的软件设计。 关键字:集成运放方波三角波正弦波 目录 一、概述 (1) 二、方案设计与论证 (2) 1.方案一 (2) 2.方案二 (2) 三、单元电路设计与分析 (2) 1.迟滞比较器 3 2.积分器 (3) 3.低通滤波器 (3) 四、总原理图及元器件清单 (4) 五、结论 (6) 六、心得体会 (6) 七、参考文献 (6) 一、概述 通过集成运放构成迟滞比较器、积分器和低通滤波电路,依次分别输出方波、 三角波、正弦波。通过调节电压源或滑动变阻器,可改变波形的幅值和频率。

二、方案设计与论证 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。 1.方案一 采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、二阶低通滤波电路、选择开关、电位器和一些电容、电阻组成。该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三级可以产生正弦波。 2.方案二 采用集成电路实现,主要部件有高速运算放大器LM318、单片函数发生器模块5G8038、选择开关、电位器和一些电容、电阻组成。该方案通过调节不同电位器可调节函数发生器输出振荡频率大小、占空比、正弦波信号的失真,可产生精度较高的方波、三角波、正弦波,且具有较高的温度稳定性和频率稳定性。 3.方案比较与选择 方案二采用芯片虽然精度较高,温度稳定性和频率稳定性比较好,而它们只能产生300kHz以下的中低频正弦波、矩形波和三角波,且频率与占空比不能单独调节,从而给使用带来很大不便,也无法满足高频精密信号源的要求。 uA741是美国仙童公司较为早期的产品,由于其性能完善,如差模电压范围和共模电压范围宽,增益高,不需外加补偿,功耗低,负载能力强,有输出保护等,因此具有较广泛的应用。uA741这类单片硅集成电路器件提供输出短路保护和闭锁自由运作,可以方便的输出精度较高的方波、三角波、正弦波。

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

轨道交通信号基础题库

一、填空题 1.城市轨道交通系统改变了传统的铁路以地面信号显示指挥列车的方式,实现了以车载信号为主体信号, 3.轨道电路的送电设备设在送电端,由轨道电源、变压器、限流电阻R等组成。 4.扼流变压器:对牵引电流的阻抗很小,而对信号电流的阻抗很大, 5.轨道电路中通以直流电流时,钢轨阻抗就是纯电阻,称为钢轨电阻 6. 继电器按工作可靠程度分为安全型继电器和非安全型继电器。 7.将处于禁止运行状态的故障,有利于行车安全,称为安全侧故障;处于允许运行状态的故障,可能危及行车安全,称为危险侧故障 8 .继电器平时所处的状态,我们称为定位状态 9. 列车迎着道岔尖轨运行时,该道岔就叫对向道岔, 10. 列车顺着道岔尖轨运行时,该道岔就叫顺向道岔;当按压一个道岔动作按钮(电动道岔的操纵元件),仅能使一组道岔转换,则称该道岔为单动道岔 11. 转辙机按动作能源和传动方式分:可分为电动转辙机、电液压转辙机、电空转辙机。按供电电源分:可分为直流转辙机和交流转辙机。按锁闭方式分可分为内锁闭转辙机和外锁闭转辙机。 12.电动转辙机由电动机提供动力,采用机械传动方式;电动液压转辙机由电动机提供动力,采用液压传动方式;电空转辙机由压缩空气作为动力,由电磁换向阀控制。 13.S700K 电动转辙机动力传动机构主要由三相电动机、摇把齿轮、摩擦连接器、滚珠丝杠、保持联接器、动作杆等六个部分组成。

14.道岔控制电路分为启动电路和表示电路两部分。 15.对每组单动道岔或双动道岔要分别设置两个道岔表示继电器。一个是道岔定位表示继电器,一个是道岔反位表示继电器。 16、一组道岔由一台转辙机牵引的称为单机牵引;一组道岔由两台转辙机牵引的称为双机牵引。 17、安装计轴器时发送磁头(Tx)应设置于钢轨的外侧,. 安装计轴器时接收磁头(Rx)应设置于钢轨的内侧。 18、应答器也称“信标”;分为无源和有源应答器。 19、自动闭塞按照行车组织方法,分为单向和双向自动闭塞。 20、按通过信号机的显示制度,可分为二显示、三显示和四显示自动闭塞。 21、在自动闭塞区段,一个站间区间内同方向可有两列或两列以上列车,以闭塞分区间隔运行,称为追踪运行 22、追踪运行列车之间的最小间隔时间,称为追踪列车间隔时间。 23 、信号、道岔、进路之间相互制约的关系叫做联锁。 24、进路与进路之间存在着两种不同性质的联锁关系:一是抵触进路,二是敌对进路。 25、进路与进路之间的联锁关系,可用进路与信号机之间的联锁关系来描述。 26、凡是两对象间存在着一个或几个条件才构成锁闭关系,就是条件锁闭。 27、列车接近时的进路锁闭,叫做接近锁闭,或称为完全锁闭

秒信号发生器电路图两个

秒信号发生器电路图两个 秒信号发生器: 下面介绍的秒信号发生器可用在LED数字钟中,为数字钟提供秒基准信号。字串7 附图1电路由14位二进制串行计数器/分频器和振荡器 CD4060、BCD同步加法计数器CD4518构成的秒信号发生器。 电路中利用CD4060组成两部分电路。一部分是14级分频器,其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 附图2是另一款秒信号发生器电路。它由双BCD同步加计数器CD4518、四输入端与非门CD4011和四2输入端或非门CD4001等构成。 电路中利用CD4060组成两部分电路。一部分是14级分频器,

其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 电路中,由CD4011门I构成晶体振荡电路产生的1MHz脉冲信号,经反相器门II送至由CD4518构成的多级计数分频器。其中第一级10分频后输出为100KHz,第二级输出为10KHz,第三级输出为1000Hz,第四级输出为100Hz、第6级输出为1Hz。 由CD4011的门III、IV构成R-S触发器和CD4001的一个门组成了秒信号控制门。单允许工作开关K3置“开”位置时,允许输出秒信号;置“关”位置时,禁止输出秒信号。走时、校准开关K2置“走时”位置时,输出秒信号;置“校准”位置时,输出校准信号。若秒信号与标准时间相差较大,把K1置“快校”位置,送出10KHz信号;若接近标准时间,则置“慢校”位置,送出100Hz信号。

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,[是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波]。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路:

1、频率(周期)不变,脉宽改变,其方法如下: [改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性],但其最主要的缺点是占空 比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion 的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提: 1. 扫频:一般分成线性(Lin)及对数(Log)扫频; 2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制; 上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上; 但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。而TTL INV 则只要加个NOT Gate即可;

相关文档
最新文档