第10章大学物理 袁艳红

第10章大学物理 袁艳红
第10章大学物理 袁艳红

习题10-3图

第10章 静电场中的导体和电介质

习 题

一 选择题

10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高

(C) 导体内部的电势比导体表面的电势高

(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D

解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ]

(A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A

解析:不带电的导体B 相对无穷远处为零电势。由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图10-3所示),则[ ]

(A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A

解析:带负电的带电体M 移到不带电的导体N 附近的近端感应正电荷;在远端

感应负电荷,不带电导体的电势将低于无穷远处,因此导体N 的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N ,或导体N 的负电荷入地。故正确答案为(A )。

10-4 如图10-4所示,将一个电荷量为q

电的导体球附近,点电荷距导体球球心为d 。设无穷远 处为零电势,则在导体球球心O 点有[ ] (A) 0E =,04πε=

q V d

(B) 2

04πε=

q

E d ,04πε=

q

V d

(C) 0E =,0V = (D) 2

04πε=q E d , 04πε=q

V R

答案:A

解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E =。导体球球心O 点的电势为点电荷q 及感应电荷所产生的电势叠加。感应电荷分布于导体球表面,至球心O 的距离皆为半径R ,并且感应电荷量代数和q ∑为0,因此

004q

V R

πε=

=∑感应电荷。由此在导体球球心O 点的电势等于点电荷q 在O 点处的电

势04πε=

q V d

10-5 如图10-5所示,两个同心球壳。内球壳半径为R 1,均匀带有电量Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的电场强度大小及电势分别为[ ]

(A) 0E =,01

4πε=

Q

V R

(B) 0E =,012

11

()4πε=

-Q V R R (C) 2

04πε=Q E r ,04πε=Q

V r (D) 2

04πε=Q E r , 01

4πε=Q

V R

答案:B

习题10-4图

习题10-5图

解析:根据静电场的高斯定理0d i

i

S

q

E S ε=

∑?

,同心球壳的电场强度大小分布为

111222

00,0,4r R E Q R r R E r πε<<=???

<<=

??

,则点P

的电场强度为0E =,电势

12

1

120

12

11d d (

)4R R R Q V E r E r R R πε=+=

-??。 10-6 极板间为真空的平行板电容器,充电后与电源断开,将两极板用绝缘工具拉开一些距离,则下列说法正确的是[ ]

(A) 电容器极板上电荷面密度增加 (B) 电容器极板间的电场强度增加 (C) 电容器的电容不变 (D) 电容器极板间的电势差增大 答案:D

解析:电容器极板上电荷面密度Q

S

σ=

,平板电荷量及面积没有变化,因此电容器极板上电荷面密度不变,并且极板间的电场强度0

E σ

ε=,电容器极板间的电场强度不变。平行极板电容0

S

C d

ε=,两极板间距离增加,则电容减小。电容器极板间的电势差U Ed =,电场强度E 不变,距离d 增大,则电势差增大。因而正确答案为(D )。

10-7 在静电场中,作闭合曲面S ,若有d 0S

?=?D S (式中D 为电位移矢量)

,则S 面内必定[ ]

(A) 既无自由电荷,也无束缚电荷 (B) 没有自由电荷 (C) 自由电荷和束缚电荷的代数和为零 (D) 自由电荷的代数和为零 答案:D

解析:根据有电介质时的高斯定理d i S

i

Q ?=∑? D S ,可知S 面内自由电荷的代数

和为零。

10-8 对于各向同性的均匀电介质,下列概念正确的是[ ]

(A) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1r 倍

(B) 电介质中的电场强度一定等于没有介质时该点电场强度的1r 倍 (C) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1r 倍

(D) 电介质中的电场强度一定等于没有介质时该点电场强度的r ε倍 答案:A

解析:各向同性介质中的电场强度为真空中电场强度的1r 倍。

10-9把一空气平行板电容器,充电后与电源保持连接。然后在两极板之间充满相对电容率为r ε的各向同性均匀电介质,则[ ]

(A) 极板间电场强度增加 (B) 极板间电场强度减小 (C) 极板间电势差增加 (D) 电容器静电能增加 答案:D

解析:平行板电容器充电后与电源保持连接,则极板间电势差保持不变,真空中电场强度U

E d

=

不变化,因而各向同性介质中的电场强度为真空中电场强度的1r 倍,也不变化。各向同性介质中的电容器静电能201

2

r W E V εε=,相对于真空

中电容器静电能有所增加。故正确答案为(D )。

10-10 1C 和2C 两空气电容器并联起来接上电源充电。然后将电源断开,再把一电介质板插入1C 中,如图10-10所示,则[ ]

(A) 1C 和2C 极板上电荷都不变

(B) 1C 极板上电荷增大,2C 极板上电荷不变 (C) 1C 极板上电荷增大,2C 极板上电荷减少 (D) 1C 极板上电荷减少,2C 极板上电荷增大

答案:C

解析:1C 和2C 为并联,则电容器两端电势差相等。1C 中插入一电介质,则1C 的电容增大(0r C C =ε),1C 极板上电荷增大(Q CU =)。由于电源断开,1C 和2C 两

习题10-10图

端总电荷量不变,因此2C 极板上电荷减少。故正确答案为(C )。

二 填空题

10-11任意形状的导体,其电荷面密度分布为σ(x ,y ,z ),则在导体表面外附近任意点处的电场强度的大小E (x ,y ,z )= ,其方向 。 答案:

(,,)

x y z σε;垂直导体表面 解析:处于静电平衡的导体表面附近的电场强度正比于电荷面密度,因而

(,,)

(,,)x y z E x y z σε=

,方向垂直于导体表面。 10-12 如图10-12所示,同心导体球壳A 和B ,半径分别为12R R 、,分别带电量q Q 、,则内球A 的电势A V =_____________;若把内球A 接地,则内球A 所带电量A q =____________。 答案:

01

02

44q Q R R πεπε+

;1

2

R Q R -

解析:根据静电场的高斯定理0

d i

i

S

q

E S ε=

∑?

同心球壳的电场强度大小分布为111222

023200,

0,4,

4r R E q

R r R E r q Q

r R E r πεπε??

<<=??<<=??

?+>=??,则内球A 的电势1

2

1

2

1230

12

d d d (

)4R R A R R Q q Q

V E r E r E r R R πε∞

=++=

+???。若把内球A 接地,则内球A 的电势0

12(

)04A A q Q Q V R R πε=

+=,解得12

A R

q Q R =-。 10-13 如图10-13所示,在真空中将半径为R 的金属球接地,在与球心O 相距为r ( r >R )处放置一点电荷 –q ,不计接地导线上电荷的影响,则金属球表面上的感应电荷总量为 ,金属球表面电势为 。

习题10-12图

答案:R

q r

;0

解析:金属球接地,则金属球的电势为0。金属球 球心电势为00044q Q q V V V r

R

πεπε--=+=

+=感应感应,

解得,感应电荷总量为R

Q q r

=感应。金属球表面是一个等势面,电势与地的电势相等,电势为0。

10-14 两带电导体球半径分别为R 和r (R >r ),它们相距很远,用一根导线连接起来,则两球表面的电荷面密度之比:σσR r = 。 答案:

r R

解析:导体表面的电荷面密度反比与曲率半径,因此::R r r R σσ=。

10-15 对下列问题选取“增大”、“减小”、“不变”作答。(1)平行板电容器保持板上电量不变(即充电后切断电源)。现在使两板的距离增大,则:两板间的电势差_______,电场强度__________,电容__________,电场能量__________。(2)如果保持两板间电压不变(即充电后与电源连接着)。则两板间距离增大时,两板间的电场强度__________,电容________,电场能量__________。 答案:(1)增大,不变,减小,增大;(2)减小,减小,减小

解析:(1)保持板上电量Q 不变,使两板的距离d 增大。电容器极板上电荷面密度Q

S

σ=

,平板电荷量及面积没有变化,因此电容器极板上电荷面密度不变,并且极板间的电场强度0

E σ

ε=

,电容器极板间的电场强度不变。电容器极板间的电势差U Ed =,电场强度E 不变,距离d 增大,则电势差增大。平行极板电容

0S

C d

ε=,两极板间距离增加,则电容减小。电场能量22e Q W C =,电荷量Q 不变,C 减小,则电场能量e W 增大。

(2)保持两板间电压U 不变,使两板的距离d 增大。则极板间的电场强度U

E d

=

习题10-13图

电容器极板间的电场强度减小。平行极板电容0

S

C d

ε=,两极板间距离增加,则电容减小。电场能量21

2

e W CU =,电压U 不变,C 减小,则电场能量e W 减小。

10-16一平行板电容器,两板间充满各向同性均匀电介质。已知相对电容率为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D = ,电场强度的大小E = ,电场的能量密度

e w = 。

答案:σ;0r

σ

εε;202r σεε

解析:根据电介质中的高斯定理d S

D S q =?

,得电位移矢量的大小D σ=。由于

0r D E εε=,因此电场强度的大小0r

E σ

εε=

。电场的能量密度2

2

2000222r

e r r

w E εεε

σσεεεε===()。

10-17 在电容为0C 的空气平行板电容器中,平行地插入一厚度为两极板距离一半的金属板,则电容器的电容C = 。 答案:02C

解析:插入金属板后,电容0C 成为两电容1C 和2C 串联,且120

0414

S

C C C d ε===。因此等效电容为012

1211C C C C =

=+。

10-18一平板电容器,两极板间是真空时,电容为0C ,充电到电压为0u 时,断开电源,然后将极板间充满相对电容率为r ε的均匀电介质则此时电容C =__________,电场能量 e W =___________。

答案:0r C ε;2

002r

C u ε

解析:电容器的电容仅与电容器的大小、形状及填充的电介质有关,将极板间充

满相对电容率为r ε的均匀电介质时,电容为0=r C C ε。断开电源后,两极板上的

电荷量不变化,因此电场能量22

200000()222e r r

C u C u Q W C C εε===。 10-19 一平行板电容器两极板间距离为d ,电荷面密度为0σ,将一块相对电容率为2r ε=,厚度为

2

d

均匀电介质插入到两极板间(见图10-19),则电容器的两极板间电压是插入前的_________倍,电容器的电容是插入前的__________倍,电容器储存的电能是插入前的__________倍。

答案:34;43;3

4

解析:电介质内部的电场强度0

02

r E E

E ε==,

插入电介质后两极板间电压003

224

d d U E

E E d =+=,插入前两极板间电压为0U E d =,因此电容器的两极板间电压是插入前的

34倍。电容器的电容Q

C U

=,电荷量Q 不变,电容与电压U 成反比,因此,电容器的电容是插入前的

4

3

倍。电容器储存的电能1

2e W QU =,与电压U 成正比,因此,电容器储存的电能是插

入前的3

4

倍。

三 计算题

10-20 两块大金属板A 和B ,面积均为S ,两块板平行地放置,间距为d ,d 远小于板的尺度。如图10-20所示,现使A 板带电Q A ,B 板带电Q B 。在忽略边缘效应的情况下,试求:

(1)A 、B 两板各个表面上的电量; (2)A 、B 两板的电势差;

(3)若B 板外侧接地,A 、B 两板各个表面上的电量又是如何分布?两板的电势差是多少?

2

d

习题10-19图

解:(1)两板处于静电平衡,则两板内部电场强度为0,则

()(){1234012340:/20:

/20

A B σσσσεσσσσε---=++-=

()(){

1234A B

S Q S Q σσσσ+=+=

1423()/2()/2A B A B Q Q S

Q Q S σσσσ==+=-=-

1423()/2

()/2

()/2A B A B B A Q Q Q Q Q Q Q Q Q Q ∴==+=-=-

(2)312412340000022222A B

Q Q E E E E E S

σσσσεεεεε-=+--=+--= 02A B

AB Q Q U E d d S

ε-=?=

(3)B 板外侧接地,则40σ=

()()1230123012/20/20()A

S Q σσσεσσσεσσ--=++=+=

14230

A

A Q Q Q Q Q Q ∴====-

20002A

A

AB Q Q E U E d d S

S

σεεε=

=∴=?=

10-21 如图10-21所示,半径为10.01 m R =的金属球,带电量101110 C Q -=?,球外套一内外半径分别22310 m R -=?和23410 m R -=?的同心金属球壳,壳上带电1021110 C Q -=?,求:(1)金属球和金属球壳的电势差;(2)若用导线把球和球壳连接在一起,这时球和球壳的电势各为多少? 解:根据高斯定理,电场强度分布为:

11212

01

2

322

0,4,

4Q R r R E r Q Q r R E r πεπε<<=

+>=

A

A B

习题10-20图

习题10-21图

(1) 2

2

1

1

11120

012111d d 6044R R AB R R Q Q U E r r V r R R πεπε??==

=-= ???

?

?

(2) 3

3

12

122220

03

1d d 27044B R R Q Q Q Q V E r r V r R πεπε∞

++==

==??

270A B V V V ==

10-22 半径为0R 的导体球带有电荷Q ,球外有一层均匀介质同心球壳,其内、外半径分别为1R 和2R ,相对电容率为r ε,如图10-22所示,求:(1)空间的电位移和电场强度分布;(2

解:(1)导体球处于静电平衡状态,电荷分布在球的表面,球内部没有电荷

根据有电介质的高斯定理i i

S

DdS Q =∑??

20140r R D r π

100r

D

E εε=

=

20124R r R D r Q π<

4Q

D r π∴=

2

22

00(1)4r r

D Q

E r εεεπε=

=

=

21234R r R D r Q π<

4Q

D r π∴=

2

32

004r

r D Q E r εεπεε=

=

2244r R D r Q π>?=时,, 42

4Q

D r π∴=

4

42

00(1)4r r

D Q

E r εεεπε=

=

=

因此,空间的电位移和电场强度分布为:

习题10-22图

0020

()()4r R D Q r R r π??, 0012012202200()()4()4()

4r

r R Q R r R r E Q R r R r Q

r R r πεπεεπε??

(2)介质内表面(1r R =)上的极化电荷与导体球上的电荷电性相反,因此,其面密度为:

103122

11

11(1)()44r r r r r Q Q E R R R εεσεεεπεπ---'=-=

=- 介质外表面(2r R =)上的极化电荷与导体球上的电荷电性相同,因此,其面密度为:

203222

22

11(1)()44r r r r r Q Q

E R R R εεσεεεπεπ--'=-==

10-23 地球和电离层可当作球形电容器,它们之间相距约为100 km ,求地球—电离层系统的电容。(设地球和电离层之间为真空) 解:已知6371km 100km +R d R R d ===地球地球电离 , ,

设地球-电离层分别带点±Q

则根据高斯定律,地球-电离层间的电场强度为:2

04Q E r πε=

20

111

d d 6044R R R R Q Q

U E r r V r R

R πεπε??

==

=-= ? ???

?

?

电离

电离

地球

地球

地球电离 204 4.5810F R R Q

C U R R πε-?===?-地球电离地球电离

10-24 如图10-24所示,两根平行无限长均匀带电直导线,相距为d ,导线半径都是R (d R <<)。导线上电荷线密度分别为+λ和-λ。试求(1)两导线间任一点P 的电场强度;(2)两导线间的电势差;(3)该导体组单位长度的电容。

解:(1)根据高斯定理,电荷线密度为+λ的导线在

+λ-λx

点P 处电场强度计算如下:

01

22xh E h

E x

λ

πλεπε+?=

∴=

方向沿x 轴正方向,02E i x

λπε+∴=

同理,电荷线密度为-λ的导线在点P 处电场强度为:02()

E i d x λ

πε-=

-

因此,两导线间任一点P 的电场强度为:

00()22()

E E E i x d x λλπεπε+-=+=+-

(2)根据电势差的定义,两导线间的电势差为:

000d ()d ln

22()d R R d R

U E r x x d x R

λλλπεπεπε--==+=-?? (3)该导体组单位长度的电容为:

001

ln ln Q C d R d R U R R

πελλπε?=

==

--

10-25 如图10-25所示, 一平板电容器充满两层厚度各为d 1和d 2的电介质,它们的相对电容率分别为1r ε和2r ε,极板的面积为S 。求:(1)电容器的电容;(2) 当极板上的自由电荷面密度为0σ

两层介质的电位移。

解:(1)设两板分别带Q ±的电荷

两板间没有电介质时的电场强度为:

0000/Q S Q E S

σεεε=

== 放入电介质后,相对电容率分别为的 电介质中电场强度为:0

11

01r r E Q

E S

εεε=

=

相对电容率分别为的电介质中电场强度为:0

2202r r E Q

E S

εεε=

=

习题10-25图

则两板间的电势差为:

12

1122012

()r r d d Q U E d E d S εεε=?+?=

+ 电容器的电容为:012

12

0122112

/()r r r r r r d d d Q Q C Q U S d d εεεεεεεε=

=+=+ (2)相对电容率分别为1r ε的电介质的界面上,极化电荷面密度为: 0110110

0011

(1)

(1)(1)r r r r r E σεσεεεεσεεε-'=-=-= 相对电容率分别为2r ε的电介质的界面上,极化电荷面密度为:

0220220

0022

(1)

(1)(1)r r r r r E σεσεεεεσεεε-'=-=-= (3)相对电容率分别为1r ε的电介质的电位移为:

101101

001

r r r D E σεεεεσεε=== 相对电容率分别为1r ε的电介质的电位移为: 0

202202

002

r r r D E σεεεεσεε===

10-26 如图10-26所示,在点A 和点B 之间有五个电容器,其连接如图10-26所示。(1)求A ,B 两点之间的等效电容;(2)若A ,B 之间的电势差为12 V ,

求AC U ,CD U 和DB U 。

解:(1)(48)μF 12μF AC C =+=

(62)μF 8μF CD C =+= 1111111μF μF

128244AB AC CD DB

C C C C =

++??

=++= ???

4μF AB C ∴=

(2)AC 、CD 、DB 两端的电荷量相等,则AB AB Q U C =?

8 μF

2 μF

24 μF

习题10-26图

124412124

68124

224

AC AC CD CD DB DB Q U V V C Q U V V C Q U V V C ?===?===?=

==

10-27 平行板电容器两极板间充满某种电介质,极板间距离d =2 mm ,电压为600 V ,若断开电源抽出电介质,则电压升高到1800 V 。求(1)电介质的相对电容率;(2)介质中的电场强度。 解:已知1600V U =,21800V U =,2mm d = (1)根据平行板电容器两极板间电势差的计算公式:

1200600V 1

(1)1800V 3

U E d E U E d E =?=??

=?=?=?

电介质中的电场强度为:0

(2)r

E E ε=

联立公式(1)、(2),可得电介质的相对电容率为:3r ε= (2)介质中的电场强度为:51600

V/m 310V/m 0.002

U E d =

==?

10-28 一平行板电容器,极板形状为圆形,其半径为8 cm ,极板间距为1.0 mm ,中间充满相对电容率为5.5的电介质,若电容器充电到100 V ,求两极板的带电量为多少?储存的电能是多少?

解:212

800.085.58.8542101009.78100.001

r S Q C U U C C d πεε--?=?==???

?=? ()2

82

610

9.7810J 4.910J 22 1.7810e Q W C ---?=

=

=???

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理课后习题答案第八章教学提纲

第八章 光的偏振 8.1 两偏振片组装成起偏和检偏器,当两偏振片的偏振化方向夹角成30o时观察一普通光源,夹角成60o时观察另一普通光源,两次观察所得的光强相等,求两光源光强之比. [解答]第一个普通光源的光强用I 1表示,通过第一个偏振片之后,光强为I 0 = I 1/2. 当偏振光通过第二个偏振片后,根据马吕斯定律,光强为I = I 0cos 2θ1 = I 1cos 2θ1/2. 同理,对于第二个普通光源可得光强为I = I 2cos 2θ2/2. 因此光源的光强之比I 2/I 1 = cos 2θ1/cos 2θ2 = cos 230o/cos 260o = 1/3. 8.2 一束线偏振光和自然光的混合光,当它通过一偏振片后,发现随偏振片的取向不同,透射光的强度可变化四倍,求入射光束中两种光的强度各占入射光强度的百分之几? [解答]设自然光强为I 1,线偏振光强为I 2,则总光强为I 0 = I 1 + I 2. 当光线通过偏振片时,最小光强为自然光强的一半,即I min = I 1/2; 最大光强是线偏振光强与自然光强的一半之和,即I max = I 2 + I 1/2. 由题意得I max /I min = 4,因此2I 2/I 1 + 1 = 4, 解得I 2 = 3I 1/2.此式代入总光强公式得 I 0 = I 1 + 3I 1/2. 因此入射光中自然光强的比例为I 1/I 0 = 2/5 = 40%. 由此可得线偏振光的光强的比例为I 2/I 0 = 3/5 = 60%. [讨论]如果I max /I min = n ,根据上面的步骤可得 I 1/I 0 = 2/(n + 1), I 2/I 0 = (n - 1)/(n + 1), 可见:n 的值越大,入射光中自然光强的比例越小,线偏振光的光强的比例越大. 8.3 水的折射率为1.33,玻璃的折射率为1.50,当光由水射向玻璃时,起偏角为多少?若光由玻璃射向水时,起偏角又是多少?这两个角度数值上的关系如何? [解答]当光由水射向玻璃时,水的折射率为n 1,玻璃的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 1.1278, 得起偏角为i 0 = 48.44o. 当光由玻璃射向水时,玻璃的折射率为n 1,水的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 0.8867, 得起偏角为i 0 = 41.56o. 可见:两个角度互为余角. 8.4 根据布儒斯特定律可测量不透明介质的折射率,今测得某釉质的起偏角为58o,则该釉质的折射率为多少? [解答]空气的折射率取为1,根据布儒斯特定律可得釉质的折射率为n = tan i 0 = 1.6003. 8.5 三个偏振片堆叠在一起,第一块与第三块偏振化方 向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所 示.设入射自然光的光强为I 0,试证明:此自然光通过这一系 统后出射光强度为I = I 0(1 – cos4ωt )/16. [证明]自然光通过偏振片P 1之后,形成偏振光,光强为 I 1 = I 0/2. 经过时间t ,P 3的偏振化方向转过的角度为θ = ωt , 根据马吕斯定律,通过P 3的光强为I 3 = I 1cos 2θ. 由于P 1与P 2的偏振化方向垂直,所以P 2与P 3的偏振化方向的夹角为φ = π/2 – θ, 再根据马吕斯定律,通过P 2的光强为 I = I 3cos 2φ = I 3sin 2θ= I 0(cos 2θsin 2θ)/2 = I 0(sin 22θ)/8= I 0(1 – cos4θ)/16, 1P 3 2图8.5

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理第八章习题及答案

V 第八章 热力学基础 8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热 8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为 ( ) (A) (B)

(C) (D) 8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B ) (A) 2 000 J (B) 1 000 J (C) 4 000 J (D) 500 J 8-6 根据热力学第二定律( A ) (A) 自然界中的一切自发过程都是不可逆的 (B) 不可逆过程就是不能向相反方向进行的过程 (C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D)任何过程总是沿着熵增加的方向进行 8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少? 解:由于外界对气体做功,所以:300J = W - 由于气体的内能减少,所以:J ?E = 300 - 根据热力学第一定律,得:J ? + =W = E Q 300- 600 300 = - -

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

《大学物理》 第二版 第八章课后习题答案解析

习题精解 8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 00ln 22b m a i il b ldx x a μμφππ==? 由法拉第电磁感应定律有 0ln cos 2m d il b t dt a φμωεωπ=- =- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 20m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-4 如图8.4所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率1 5.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

大学物理第八章练习题

10题图 第八章 磁场 填空题 (简单) 1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁 感应强度大小为 。 2、磁场的高斯定律表明磁场是 ,因为磁场发生变化而引起电磁感应,所 产生的场是不同于回路变化时产生的 。相同之处是 。 3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律表明,只要 发生变 化,就有 产生。 4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为 ,F 的方向 。 (综合) , 5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,I 则线圈上P 点将受到 , 力的作用,其方向为 ,线圈所受合力大小为 。(综合) 6、∑?==?n i i l I l d B 0 0μ 是 ,它所反映的物理意义是 。 7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 。 8、电荷在磁场中 (填一定或不一定)受磁场力的作用。 9、磁场最基本的性质是对 有力的作用。 10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面, B 与半球面轴线的夹角为α。求通过该半球面的磁通量为 。(综合) 11、当一未闭合电路中的磁通量发生变化时,电路中 产生感应电流;电路中 产生感应电动势(填“一定”或“不一定”) (综合) > 12、一电荷以速度v 运动,它既 电场,又 磁场。(填“产生”或“不产生”) 4题图 5题图

14题图 13、一电荷为+q ,质量为m ,初速度为0 的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 运动,其回旋半径R= ,回旋周期T= 。 14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为 _____________; 图b 圆心O 的磁感应强度为 15、在磁场中磁感应强度B 沿 任意闭合路径的线积分总等于 。这一重要结论称为磁场的环路定理,其数学表达式为 。 16、磁场的高斯定理表明磁场具有的性质 。 17、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。(填>0,<0,=0)(设顺时针方向的感应电动势为正) 18、在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的根数不同,但电流的代数和相同,则磁感应强度沿两闭合回路的线积分 ,两个回路的磁场分布 。(填“相同”或“不相同” ) ( 判断题 (简单) 1、安培环路定理说明电场是保守力场。 ( ) 2、安培环路定理说明磁场是无源场。 ( ) 3、磁场的高斯定理是通过任意闭合曲面的磁通量必等于零。 ( ) 4、电荷在磁场中一定受磁场力的作用。 ( ) 5、一电子以速率V 进入某区域,若该电子运动方向不改变,则该区域一定无磁场;( ) 6、在B=2特的无限大均匀磁场中,有一个长为L1=2.0米,宽L2=0.50米的矩形线圈,设线圈平 面的法线方向与磁场方向相同,则线圈的磁通量为1Wb 。 7、磁场力的大小正比于运动电荷的电量。如果电荷是负的,它所受力的方向与正电荷相反。 8、运动电荷在磁场中所受的磁力随电荷的运动方向与磁场方向之间的夹角的改变而变化。当电荷的运动方向与

大学物理第十章答案讲解

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s ) 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m ) 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s ) 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1) 易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率) 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同) 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数) 易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T ) 易:9、作谐振动的小球,速度的最大值为,振幅为 ,则 振动的周期为 ;加速度的最大值为 。( 3 4π ,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长 为 。(468.75m ) 易:11、已知平面简谐波的波动方程式为 则 时,在X=0处相位为 ,在 处相位为 。 (4.2s,4.199s) 易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅; 圆频率 ;初相 。(10m, 1.2 -s rad π ,0) 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 , 初相位?为 。(5Hz , 0.2s , 0.03m , 23 π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12 cos(05.0π ω- =t x ) 中:15、A 、B 是在同一介质中的两相干波源,它们的 位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

大学物理II_第十章

第十章 静电场 电荷守恒定律 电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律 库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸. 02 21041r r q q F πε= 21212010854187817.8---???=m N C ε, 真空电容率(真空介电常数) 电场强度 电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定. 0q F E =;02041r r q E πε= 点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强 度的矢量和 ∑∑==02041i i i i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分 ? ?==0 2 04r r dq E d E πε 高斯定理 真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数. ∑?= ?ins i S q S d E 0 1ε

大学物理第八章课后习题答案

大学物理第八章课后习 题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 2

3 分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ). 8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律 t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).

大学物理习题答案第八章

[习题解答] 8-2 在一个容器内盛有理想气体,而容器的两侧分别与沸水和冰相接触(热接触)。显然,当沸水和冰的温度都保持不变时,容器内理想气体的状态也不随时间变化。问这时容器内理想气体的状态是否是平衡态?为什么? 解不是平衡态,因为平衡态的条件有二:一是系统的宏观性质不随时间变化,二是没有外界的影响和作用。题目所说的情况不满足第二条。 8-3 氧气瓶的容积是32 dm3 ,压强为130 atm,规定瓶内氧气的压强降至10 atm时,应停止使用并必须充气,以免混入其他气体。今有一病房每天需用atm的氧气400 dm3 ,问一瓶氧气可用几天? 解当压强为、体积为时,瓶内氧气的质量M1为 ?. 当压强降至、体积仍为时,瓶内氧气的质量M2为 . 病房每天用压强为、体积为的氧气质量 m为 . 以瓶氧气可用n天: ?. 8-4在一个容积为10 dm3 的容器中贮有氢气,当温度为7℃时,压强为50 atm。由于容器漏

气,当温度升至17℃时,压强仍为50 atm,求漏掉氢气的质量。 解漏气前氢气的质量为M1 , 压强为, 体积为, 温度为 ,于是M1可以表示为 . 漏气后氢气的质量为M2, 压强为, 体积为, 温度为 , 于是M2可以表示为 . 所以漏掉氢气的质量为 ?. 计算中用到了氢气的摩尔质量。 8-5 气缸中盛有可视为理想气体的某种气体,当温度为T1 = 200 K时,压强和摩尔体积分别为p1 和V m1 。如果将气缸加热,使系统中气体的压强和体积同时增大,在此过程中,气体的压强p和摩尔体积V m满足关系p = ?V m,其中?为常量。 (1)求常量?; (2)当摩尔体积增大到2V m1 时,求系统的温度。 解 (1)? 1 mol理想气体的物态方程可以表示为 ,

大物B课后题10-第十章 波动学基础(1)

习题 10-5 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3 ,,,424 λλλλ。 设振源的振动方程为cos 2y A t πω?? =+ ?? ? ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2x x π ?π ?π πλ λ???== ?== 3432,222x x π?π?ππλλ ???==?== (2) 112233440,, 2 2 2 3 ,222 π π π ????ππ ??π??π = -?== -?=- =-?=-=-?=- (3) 1212343411 ,2422 3,242t T T t T T t T T t T T ??ππ??ππ ???= =?==???==?== 10-6 波源做谐振动,周期为0.01s ,振幅为2 1.010m -?,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1 400u m s -=?的速度沿x 轴的正方向传播,试写出波动方程。 解 根据题意可知,波源振动的相位为3 2 ?π= 2122200, 1.010,4000.01 A m u m s T ππωπ--====?=? 波动方程 2 31.010cos 2004002x y t m ππ-??? ?=?- + ???? ?? ? 10-7 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。 解 (1)比较系数法

大学物理第8章试卷答案

第8章电磁感应作业题答案 一、选择题 1. 圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上,当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C) 铜盘上有感应电流产生,铜盘中心处电势最高。 (D) 铜盘上有感应电流产生,铜盘边缘处电势最高。 答案(D) 2.在尺寸相同的铁环和铜环所包围的面积中穿过相同变化率的磁通量,则两环中A.感应电动势相同,感应电流相同; B.感应电动势不同,感应电流不同; C.感应电动势相同,感应电流不同; D.感应电动势不同,感应电流相同。 答案(C) 3.两根无限长的平行直导线有相等的电流,2. 但电流的流向相反如右图,而电流的变化 率均大于零,有一矩形线圈与两导 线共面,则 A.线圈中无感应电流; B.线圈中感应电流为逆时针方向; C.线圈中感应电流为顺时针方向; D.线圈中感应电流不确定。 答案: B (解:两直导线在矩形线圈处产生的磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。) ,棒与直导线垂直且共面。(a)、(b)、 4.如图所示,在长直载流导线下方有导体细棒 以速度向右滑动。设(a)、(b)、(c)、(d) (c)处有三个光滑细金属框。今使 四种情况下在细棒

A.?a =?b =?c ?d C.?a =?b =?c =?d D.?a >?b

大学物理第8章答案

第8章 磁场 8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。 分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。 解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为 20 2232 2()R nIdx dB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为 21 202232 2 ()x L x R nI dx B dB R x μ== +?? 021 2212 2212 21[ ]2 ()()nI x x R x R x μ= -++ 由图可知121222122212 12cos os ()() x x R x R x ββ= =++ c ,代入上式并整理可得 021(cos cos )2 nI B μββ= - 式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。 讨论: (1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有 nI B 0μ= 上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行; (2)若点O 位于半无限长载流螺线管一端,即

大学物理学第版修订版北京邮电大学出版社 下册 第十章 习题答案

习题10 选择题 (1) 对于安培环路定理的理解,正确的是: (A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流; (C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。 [答案:C] (2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比; (B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比; (D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。 [答案:B] (3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。 [答案:B] (4)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A );(B );(C );(D )14J 。 [答案:A] 填空题 (1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。 [答案: a I πμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。 [答案:能, 不能] (3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。 [答案:零,正或负或零] (4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。 [答案:相同,不相同] 在同一磁感应线上,各点B ? 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强 度B ? 的方向? 解: 在同一磁感应线上,各点B ? 的数值一般不相等.因为磁场作用于

大学物理-波动光学

第十章波动光学 第1课电磁波光的电磁本性 教学目标:1.了解电磁场和电磁波的一般概念 2.了解电磁波的性质及电磁波谱。 教学重点:光的电磁性 教学难点:物质发光的原理 教学资源:网络视频、图片、多媒体设备 教学方法:讲授法、演示法、练习法 课时:2 教学过程: 引入课题: 人们对光(这里主要指可见光)的规律和本性的认识经历了漫长的过程。最早也是最容易观察到达规律是光的直线传播。在机械观的基础上,人们认为光是一些微粒组成的,光线就是这些微粒的运动路径。但人们已觉察到许多光现象可能需要用波动来解释,如牛顿环。与牛顿同时代的惠更斯明确提出光是一种波动,直到进入19世纪,才由托马斯.杨和菲涅尔从实验和理论上建立起一套比较完整的光的波动理论。19世纪中叶光的电磁理论的建立使人们对光波的认识更深入了一步,19世纪末麦克耳孙的实验及爱因斯坦的相对论更完善了光的波动理论。本书关于光的波动规律基本上还是近200年前托马斯.杨和菲涅尔的理论。但许多应用实例是现代化的。正确的基本理论是不会过时的,而且它的应用将随时代的前进而不断翻新,现代的许多高新技术中的精密测量与控制就应用了光的干涉和衍射原理。激光的发明也是40年前的事情。人们对光的理论的认识也没有停止,20世纪初从理论和实验上证实了光具有粒子性,波动光学本身也在不断发展,光孤子就是一例。

本章主要光的波动理论及一些应用。 讲授新课: 一、电磁波的产生 1 无阻尼自由电磁振荡 在电路中,电荷和电流以及与之相伴的电场和磁场的振动,称为电磁振荡。 LC 电磁振荡电路就是一种无阻尼的电磁振荡。开关K 板向右边,使电源对电容器C 充电。 开关K 板向左边,使电容器C 和自感线圈L 相连接。 设某一时刻电路中的电流为i ,此时刻的自感电动势 由于 则 令 则有 其解为 无阻尼自由振荡中的电荷和电流随时间的变化 K A B L C n A B d d i q L V V t C == -22 d 1 d q q t LC =-d d q i t =22 2d d q q o t ω+=21 LC ω=0cos() q Q ω t ?=+00d sin()d π cos(2 q i Q t t I t ωω?ω?= =-+=++

相关文档
最新文档