大学物理第十章

大学物理第十章
大学物理第十章

第十章稳恒磁场

知识点5:电流的磁效应、磁场 1、【】发现电流的磁效应的是:

A :法拉第

B :安培

C :库仑

D :奥斯特 2、【】提出分子电流假说的是:

A :法拉第

B :安培

C :麦克斯韦

D :奥斯特 3、【】下列说法错误的是:

A :磁场和电场一样对其中的电荷都有力的作用;

B :磁场只对其中的运动电荷有磁力的作用;

C :运动的电荷激发磁场;

D :磁场线永远是闭合的。

4、【】下列对象在磁场中不会受到磁场的作用的是: A :运动电荷 B :静止电荷 C :载流导体 D :小磁针

5、【】关于静电场和磁场的异同,下列表述错误的是: A :静电场是有源场,而磁场是无源场; B :静电场是无旋场,而磁场是涡旋场;

C :静电力是一种纵向力,而磁场力是一种横向力;

D :静电场和磁场对其中的任何电荷都有力的作用。

知识点6:磁感应强度概念

1、均匀圆电流I 的半径为R ,其圆心处的磁感应强度大小B=_________。

2、一条无限长载流导线折成如图示形状,导线上通有电流I=10 A .P 点在cd 的延长线上,它到折点的距离a = 2 cm ,则P 点的磁感强度B =______________.(μ0 = 4π×10-7 N ·A -2)

3、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y

正向.在原点O 处取一电流元l I

d ,则该电流元在(a ,0,0)(a 为正值),点处的磁感强度的大小为_______,方向为_____________.

4、真空中稳恒电流I 流过两个半径分别为R 1,R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流

入.

(1) 如果两个半圆共面 (图1),圆心O 点的磁感强度0B

的大小为__________________,方向为___________;

(2) 如果两个半圆面正交 (图2),则圆心

O 点的磁感强度0B

的大小为______________,0B

的方向与y 轴的夹角为_______________。

5、如图所示,AB 、CD 为长直导线,C B 为圆心

在O 点的一段圆弧形导线,其半径为R .若通以

电流I ,则O 点的磁感应强度为 ____________。

6、将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h (h <

O h

I

R 0

y

I

x

I I I

z O R 1 R 2 图1

图2

知识点7:磁通量磁场的高斯定理

1、 一磁场的磁感强度为k c j b i a B

++= (SI),则通过一半径为R ,开口向z 轴正方向的

半球壳表面的磁通量Φ=________Wb .

2、 如图,无限长直电流右侧与其共面的矩形中的磁通量

Φ=_________。

3、 磁场的高斯定理:???s d B

=________。

4、 磁场的高斯定理说明磁场是一种________场。

5、【】下列关于磁场高斯定理

???s d B

=0的理解,错误的是:

A :磁场是一种无源场;

B :磁力线永远是闭合的;

C :没有发现像电荷一样孤立的磁单极;

D :磁场是有散度的。

知识点8:磁力、磁力矩

1、【 】如图所示为4个带电粒子在O 点沿相同方向垂直于磁力线射入匀匀磁场后的偏转轨迹的图片,磁场方向垂直纸面向外,轨迹所对应的4个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的轨迹是

A :O a

B :O b

C :O c

D :O d

2、两平行直导线若通以同向电流,二者将相互__________(排斥或吸引)。

3、电子质量m ,电荷e ,以速度v 飞入磁感强度为B 的匀强磁场中,v 与B

的夹角为θ ,

电子作螺旋运动,半径R =_________。

4、【 】在磁感应强度为B 的匀强磁场中,面积为S 的矩形线圈通以稳恒电流I ,在磁力作用下从与磁力线平行转到与磁力线垂直,则磁力做的功为: A: BIS 21 B :BIS C:BIS 41 D:BIS 8

1

5、粒子速度选择器的电场强度为E ,磁场的磁感应强度为B ,则通过速度选择器的粒子

速度V=__________________。 知识点9:安培环路定理

1、【】一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺

线管 (r R 2=),两螺线管单位长度上的匝数相等.两螺线管中的磁感应强度大小R B 和r B 应满足:

r R B B A 2)(=;r R B B B =)(; r R B B C =2)(;r R B B D 4)(=;

2、如图所示,磁感强度B 沿闭合曲线L 的环流??=L

l B

d ___________。

3、半径为R 的均匀铜导线通以电流I ,则导线内任一点的磁感应强度B=________,导线外任一点的磁感应强度B=______。

4、同轴电缆内外导体的电流同为I ,且都均匀分布,则电缆外磁感应强度B=__________。

5、【 】一长直螺线管,由表面绝缘的导线密绕而成,每米绕n 匝.当导线中的电流为

I 时,管内的磁感应强度的大小B 为:(设管内磁介质的磁导率为μ) A :μnIB :μI C :2μID :4μn

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理公式汇总

大学物理公式汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 1. 质点的运动及其规律 (4) 1.1 质点运动的描述 (4) 1.2 圆周运动 (4) 1.4 牛顿定律 (4) 1.4.1 牛顿三定律 (4) 1.4.2 几种常见的力 (5) 2. 动量守恒定律和能量守恒定律 (5) 2.1 质点和质点系的动量定理动量守恒定律 (5) 2.2 动能定理保守力与非保守力能量守恒定律 (5) 3. 刚体与流体 (6) 3.1 刚体的定轴转动 (6) 3.1.2 刚体绕定轴转动的角速度和角加速度 (6) 3.1.3 力矩转动定律转动惯量 (6) 3.2 刚体定轴转动的角动量角动量定理角动量守恒定律 (7) 4. 机械振动与机械波 (7) 4.1 简谐运动旋转矢量简谐运动的能量 (7) 4.1.1 简谐运动 (7) 4.1.2 旋转矢量 (8) 4.1.3 弹簧振子的能量 (8) 4.2两个同向同频率简谐运动的合成 (8) 4.4 机械波 (9) 4.4.1 机械波的形成波长周期和波速 (9) 4.4.2 平面简谐波的波函数 (9) 4.5 惠更斯原理波的衍射和干涉 (9) 4.5.2 波的干涉 (9) 5. 气体动理论和热力学 (10) 5.1 平衡态理想气体物态方程热力学第零定律 (10) 5.1.1 气体的物态参量 (10) 5.1.3 理想气体物态方程 (10) 5.2 气体分子热运动及其统计规律 (10) 5.2.2 气体分子速率分布律 (10) 5.3 理想气体的压强公式平均平动动能与温度的关系 (11) 5.4 能量均分定理理性气体的内能 (11) 5.5 准静态过程热力学第一定律 (11) 5.6 理想气体的等值过程和绝热过程 (11) 5.6.1等体过程 (11) 5.6.2等压过程 (12) 5.6.3等温过程 (12) 5.6.4绝热过程 (12) 5.7 循环过程热力学第二定律 (12) 5.7.2 热机和制冷机 (12) 5.7.3 卡诺循环 (13)

大学物理学第三版第十章参考答案(北京邮电 赵近芳)

习题十 10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路 半径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ 感应电动势大小 40.0d d π2)π(d d d d 2==== t r r B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁 场B =80×10-3 T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等 的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向. 解: 取半圆形cba 法向为i , 题10-2图 则 αΦcos 2 π21B R m = 同理,半圆形adc 法向为j ,则 αΦcos 2 π22 B R m = ∵ B 与i 夹角和B 与j 夹角相等, ∴ ? =45α 则 αΦcos π2R B m = 221089.8d d cos πd d -?-=-=Φ- =t B R t m αεV 方向与cbadc 相反,即顺时针方向. 题10-3图 *10-3 如题10-3图所示,一根导线弯成抛物线形状y =2 ax ,放在均匀磁场中.B 与xOy 平

面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势. 解: 计算抛物线与CD 组成的面积内的磁通量 ? ?=-==a y m y B x x y B S B 0 23 2322d )(2d 2α αΦ ∴ v y B t y y B t m 2 1 212d d d d α αε-=-=Φ-= ∵ ay v 22= ∴ 21 2y a v = 则 α α εa By y a y B i 8222 12 1-=- = i ε实际方向沿ODC . 题10-4图 10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压 N M U U -. 解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ? +-<+-= =b a b a MN b a b a Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向, 大小为 b a b a Iv -+ln 20πμ M 点电势高于N 点电势,即 b a b a Iv U U N M -+= -ln 20πμ

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理第10章题库

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。 易:5、两个谐振动合成为一个简谐振动的条件是 。 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。 难:8、频率为100HZ 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的位相差为: 易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周 期为 ;加速度的最大值为 . 难:10、如图(20)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是 (填相长或相消)。 易:11、已知平面简谐波的波动方程式为 图(20)

则 时,在X=0处相位为 ,在 处相位为 。 易:12、若弹簧振子作简谐振动的 曲线如下图所示,则振幅;圆频率 ;初相 . 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位? 为 。 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为 10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ; 中:15、A 、B 是在同一介质中的两相干波源,它们的位相差 为π,振动频率都为100Hz ,产生的波以10.0m/s 的速度传播。波源A 的振动初位相为 3 π,介质中的P 点与A 、B 等距离,如图(15)所示。A 、B 两波源在P 点所引起的振动的振幅都为10.02 10m -?。则P 点的振动是 (填相长或相消)。 图(15)

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理上公式集(必备)

大学物理上公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中: k z j y i x r ++=;2 2 2 z y x r ++=角位置:θ 2. 速度:dt r d V =平均速度:t r V ??= 速率:dt ds V =(τ V V =)角速度:dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a =或22dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ (= rβ),r V n a 2=(=r 2 ω) 4. 力:F =ma (或F =dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:?=dt F I (=F Δt);功:? ?= r d F A (气 体对外做功:A=∫PdV )

7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不 同其形式不同,在 默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容 量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: ω n tS I S F P 3 2 =?== 11. 分子平均平动能:kT 2 3=ω;理想气体能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔的分子数所占比率) mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?420 πε(静电力) →r Qq 0 4πε

大学物理波动学公式集复习课程

大学物理波动学公式 集

大学物理波动学公式集 波动学 1. 定义和概念 简谐波方程: x 处t 时刻相位 振幅 ξ=Acos(ωt+φ-2π x/λ ) 简谐振动方程:ξ=Acos(ωt+φ) =Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数 圆频率ω=2πν 决定于波源如: 弹簧振子ω= m k / 周期T ——振动一次的时间 单摆ω=l g / 波速V ——波的相位传播速度或能量传播速度。决定于介质如: 绳V= μ/T 光速V=C/n 空气V=ρ /B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。

驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 2. 方法、定律和定理 ① 旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A 在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1 ② 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) ③ 菲涅尔原理:波面子波相干叠加确定其后任一点的振动。 ④ *马吕斯定律:I 2=I 1cos 2θ ⑤ *布儒斯特定律:

大学物理波动学公式集

大学物理波动学公式集 波动学 1.定义和概念 简谐波方程: x 处t 时刻相位 振幅 ξ ) 简谐振动方程:ξ=Acos( ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数 圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k / 周期T ——振动一次的时间 单摆ω=l g / 波速V ——波的相位传播速度或能量传播速度。决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A 在x方向的投影。 相干光合成振幅: A=φ?++cos 2212221A A A A

其中:Δφ=φ1-φ 2–λπ 2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1 ②惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一 点的振动。 ④*马吕斯定律:I 2=I 1cos 2 θ ⑤*布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的 完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 3. 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2 /2 E p =kx 2 /2= (t) *波动能量:222 1A ρωω= I=V A V 2 221ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度) 对光波ν νr r V C V C +-= '其中V r 指光源与观察者相对速度。 杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd 单缝衍射(夫琅禾费衍射): asin θ=kλ(暗纹) θ≈sin θ≈y/f 瑞利判据: θmin =1/R =λ/D (最小分辨角) 光栅: dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f d=1/n=L/N (光栅常数)

大学物理上下册常用公式

大学物理上下册常用公式 Prepared on 22 November 2020

大学物理第一学期公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置: θ 2. 速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a = 或2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2= (=r 2 ω) 4. 力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A= ∫PdV ) 7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用 力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容 量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?42 0πε(静电力) →r Qq 04πε

大学物理波动学公式集

大学物理波动学公式集波动学 1.定义和概念 简谐波方程:x处t时刻相位 振幅 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A——振动量最大值决定于初态x0=Acosφ 初相φ——x=0处t=0时相位(x0,V0)V0= –Aωsinφ 频率ν——每秒振动的次数 圆频率ω=2πν决定于波源如:弹簧振子ω=m k/ 周期T——振动一次的时间单摆ω=l g/ 波速V——波的相位传播速度或能量传播速度。决定于介质如:绳V=μ / T光速V=C/n 空气V=ρ / B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 方法、定律和定理 x 旋转矢量法:

如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ?在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1) 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) I **布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t) *波动能量:2221 A ρωω= I=V A V 222 1 ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度)

大物B课后题10-第十章 波动学基础(1)

习题 10-5 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3 ,,,424 λλλλ。 设振源的振动方程为cos 2y A t πω?? =+ ?? ? ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2x x π ?π ?π πλ λ???== ?== 3432,222x x π?π?ππλλ ???==?== (2) 112233440,, 2 2 2 3 ,222 π π π ????ππ ??π??π = -?== -?=- =-?=-=-?=- (3) 1212343411 ,2422 3,242t T T t T T t T T t T T ??ππ??ππ ???= =?==???==?== 10-6 波源做谐振动,周期为0.01s ,振幅为2 1.010m -?,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1 400u m s -=?的速度沿x 轴的正方向传播,试写出波动方程。 解 根据题意可知,波源振动的相位为3 2 ?π= 2122200, 1.010,4000.01 A m u m s T ππωπ--====?=? 波动方程 2 31.010cos 2004002x y t m ππ-??? ?=?- + ???? ?? ? 10-7 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。 解 (1)比较系数法

大学物理公式大全

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中: k z j y i x r ++=; 2 22z y x r ++=角位置:θ 2.速度: dt r d V =平均速度:t r V ??= 速率: dt ds V = ( τ V V =) 角速度:dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a = 或 22dt r d a = 平均加速度: t V a ??= 角加速度: dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ), r V n a 2 = (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺 旋法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvsin θ 方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:??=r d F A (气体对外做功:A= ∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?420πε(静电力) →r Qq 04πε

大学物理学第版修订版北京邮电大学出版社 下册 第十章 习题答案

习题10 选择题 (1) 对于安培环路定理的理解,正确的是: (A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流; (C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。 [答案:C] (2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比; (B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比; (D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。 [答案:B] (3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。 [答案:B] (4)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A );(B );(C );(D )14J 。 [答案:A] 填空题 (1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。 [答案: a I πμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。 [答案:能, 不能] (3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。 [答案:零,正或负或零] (4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。 [答案:相同,不相同] 在同一磁感应线上,各点B ? 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强 度B ? 的方向? 解: 在同一磁感应线上,各点B ? 的数值一般不相等.因为磁场作用于

大学物理公式及解题方法

时空与质点运动 内容纲要 位矢:k t z j t y i t x t r r )()()()( 位移:k z j y i x t r t t r r )()( 一般情况,r r 速度:k z j y i x k dt dz j dt dy i dt dx dt r d t r t ??? 0lim 加速度:k z j y i x k dt z d j dt y d i dt x d dt r d dt d t a t ?????? 222222220lim 圆周运动 角速度:? dt d 角加速度:? ? 22dt d dt d (或用 表示角加速度) 线加速度:t n a a a 法向加速度:22 R R a n 指向圆心 切向加速度: R dt d a t 沿切线方向 线速率: R 弧长: R s 伽利略速度变换:u (或者CB AC AB 参考矢量运算法则) 解题参考 大学物理是对中学物理的加深和拓展。本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。

对于本章习题的解答应注意对基本概念和数学方法的掌握。 矢量的引入使得对物理量的表述更科学和简洁。注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。 微积分的应用是难点,应掌握运用微积分解题。这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。 内容提要 牛顿运动定律: 第一定律 惯性和力的概念,常矢量 第二定律 dt p d F m p m 为常量时 a m dt d m F 第三定律 2112F F 质心:一个物体或物体系的质心就是可以看作所有的质量集中点和所有外力的作用点 的特殊点。 常见力: 重力 mg P 弹簧力 kx F 摩擦力 N f 滑动摩擦 N f s 静摩擦 惯性力:为使用牛顿定律而在非惯性系中引入的假想力,由参照系的加速运动

大学物理-波动光学

第十章波动光学 第1课电磁波光的电磁本性 教学目标:1.了解电磁场和电磁波的一般概念 2.了解电磁波的性质及电磁波谱。 教学重点:光的电磁性 教学难点:物质发光的原理 教学资源:网络视频、图片、多媒体设备 教学方法:讲授法、演示法、练习法 课时:2 教学过程: 引入课题: 人们对光(这里主要指可见光)的规律和本性的认识经历了漫长的过程。最早也是最容易观察到达规律是光的直线传播。在机械观的基础上,人们认为光是一些微粒组成的,光线就是这些微粒的运动路径。但人们已觉察到许多光现象可能需要用波动来解释,如牛顿环。与牛顿同时代的惠更斯明确提出光是一种波动,直到进入19世纪,才由托马斯.杨和菲涅尔从实验和理论上建立起一套比较完整的光的波动理论。19世纪中叶光的电磁理论的建立使人们对光波的认识更深入了一步,19世纪末麦克耳孙的实验及爱因斯坦的相对论更完善了光的波动理论。本书关于光的波动规律基本上还是近200年前托马斯.杨和菲涅尔的理论。但许多应用实例是现代化的。正确的基本理论是不会过时的,而且它的应用将随时代的前进而不断翻新,现代的许多高新技术中的精密测量与控制就应用了光的干涉和衍射原理。激光的发明也是40年前的事情。人们对光的理论的认识也没有停止,20世纪初从理论和实验上证实了光具有粒子性,波动光学本身也在不断发展,光孤子就是一例。

本章主要光的波动理论及一些应用。 讲授新课: 一、电磁波的产生 1 无阻尼自由电磁振荡 在电路中,电荷和电流以及与之相伴的电场和磁场的振动,称为电磁振荡。 LC 电磁振荡电路就是一种无阻尼的电磁振荡。开关K 板向右边,使电源对电容器C 充电。 开关K 板向左边,使电容器C 和自感线圈L 相连接。 设某一时刻电路中的电流为i ,此时刻的自感电动势 由于 则 令 则有 其解为 无阻尼自由振荡中的电荷和电流随时间的变化 K A B L C n A B d d i q L V V t C == -22 d 1 d q q t LC =-d d q i t =22 2d d q q o t ω+=21 LC ω=0cos() q Q ω t ?=+00d sin()d π cos(2 q i Q t t I t ωω?ω?= =-+=++

相关文档
最新文档