基于单片机的数字温度计设计_毕业设计论文

基于单片机的数字温度计设计_毕业设计论文
基于单片机的数字温度计设计_毕业设计论文

基于单片机的数字温度计设计

摘要

在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度范围为-55~125℃,最高分辨率可达0.0625℃。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。本文介绍一种基于AT89C52单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃~+100℃,使用LCD模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C52单片机功能和应用。该电路设计新颖、功能强大、结构简单。

关键词:温度测量,AT89C52,DS18B20,系统仿真

Design of Digital Thermometer Based on SCM

ABSTRACT

In daily life and industrial production process, often used in the detection and control of temperature, temperature is the production process and scientific experiments in general and one of the important physical parameter. Traditional thermocouple and temperature components are the second resistor. The thermocouple and thermal resistance are generally measured voltage, and then replaced by the corresponding temperature, these methods are relatively complex, requiring a relatively large number of external hardware support. We use a relatively simple way to measure. We use the United States following DALLAS Semiconductor DS1820 improved after the introduction of a smart temperature sensor DS18B20 as the detection element, a temperature range of -55℃~125℃, up to a maximum resolution of 0.0625℃. DS18B20 can be directly read out the temperature on the north side, and three-wire system with single-chip connected to a decrease of the external hardware circuit, with low-cost and easy use. The introduction of a cost-based AT89C52 SCM a temperature measurement circuits, the circuits used DS18B20 high-precision temperature sensor, measuring scope 0℃~+100℃, can set the warning limitation, the use of seven segments LCD that can be display the current temperature. The paper focuses on providing a software and hardware system components circuit, introduced the theory of DS18B20, the functions and applications of AT89C52 .This circuit design innovative, powerful, can be expansionary strong.

KEY WORDS: Temperature measurement,AT89C52,DS18B20,System simulation

目录

前言 (1)

第1章绪论 (2)

1.1 设计背景 (2)

1.1.1 温度计的介绍 (2)

1.1.2 温度传感器的发展状况 (3)

1.2 选题的目的和意义 (4)

1.2.1 选题的目的 (4)

1.2.2 选题的意义 (4)

第2章系统概述 (5)

2.1 设计方案的选择 (5)

2.1.1 方案一 (5)

2.1.2 方案二 (6)

2.2 系统设计原理 (6)

第3章系统硬件的设计 (8)

3.1 AT89C52的介绍 (8)

3.2 DS18B20的介绍 (11)

3.2.1 DS18B20的引脚排列 (11)

3.2.2 DS18B20内部结构 (12)

3.2.3 DS18B20的测温原理 (16)

3.2.4 DS18B20使用的注意事项 (17)

3.3 数字温度计电路设计 (18)

3.3.1 数字温度计原理图 (18)

3.3.2 时钟电路的设计 (18)

3.3.3 复位电路的设计 (19)

3.3.4 接口电路的设计 (20)

3.3.5 显示电路的设计 (20)

3.3.6 报警电路的设计 (23)

第4章系统软件的设计 (24)

4.1软件Proteus与Keil (24)

4.1.1 Proteus软件 (24)

4.1.2 Keil软件 (27)

4.2 系统主程序 (29)

4.2.1 主程序 (29)

4.2.2 DS18B20初始化 (30)

4.2.3 温度转换命令子程序 (30)

4.2.4 温度数据的计算处理方法 (31)

4.3 源程序 (31)

第5章仿真 (32)

5.1 仿真结果 (32)

结论 (34)

谢辞 (35)

参考文献 (36)

附录 (37)

外文资料翻译 (1)

前言

随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工、农业生产过程中需要实时测量温度,因此研究温度的测量方法和装置具有重要的意义。

传统的温度传感器大多以热敏电阻作为温度传感器,但热敏电阻的可靠性差,准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理,而这需要比较多的外部的硬件的支持,硬件电路复杂(需要用到A/D转换电路,感温电路),软件调试也复杂,制作成本也非常高。

目前的数字温度传感器是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片机测温系统等高科技的方向迅速发展。

本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89C52单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示等优点。

第1章绪论

1.1 设计背景

1.1.1 温度计的介绍

随着科学技术的发展和现代工业技术的需要,测温技术也不断地改进和提高。由于测温范围越来越广,根据不同的要求,又制造出不同需要的测温仪器。下面介绍几种常用的温度计。

气体温度计:多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广。这种温度计精确度很高,多用于精密测量。

电阻温度计:分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。电阻温度计的测量范围为-260℃~600℃左右。

指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的。它是以双金属片作为感温元件,用来控制指针。双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右。由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温);反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温)。

压力式温度计:压力式温度计是利用封闭容器内的液体,气体受热后产生体积膨胀或压力变化作为测信号。它的基本结构是由温包、毛细管和指示表三部分组成。压力式温度计的优点是:结构简单,机械强度高,不怕震动。价格低廉,不需要外部能源。缺点是:测温范围有限制,一般在-80~400℃;热损失大响应时间较慢。

水银温度计:水银温度计是膨胀式温度计的一种,水银的凝固点是-38.87℃,沸点是356.7℃,用来测量0~150℃或500℃以内范围的温度,

它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。

1.1.2 温度传感器的发展状况

单片机在测控领域中具有十分广泛的应用,它既可以直接处理电信号,也可以间接处理温度、湿度、压力等非电信号。由于该特点,因而被广泛应用于工业控制领域[1]。

由于单片机的接口信号是数字信号,因此使用它来进行温度、湿度、压力等这类非电信号的信息处理,必须使用对应的传感器进行A/D或D/A 转换,最后再传输给单片机进行最终的数据处理和显示。在测温领域,人们通常使用温度传感器,将温度信息转换为电流或电压进行输出,进而完成数据的处理和显示[2]。

本文正是基于温度传感器和单片机而构建的电路,进而完成温度的测量和显示。

温度传感器的发展经历了三个发展阶段:

(1)传统的分立式温度传感器。

(2)模拟集成温度传感器。

(3)智能集成温度传感器。

目前使用最广的是智能温度传感器(亦称数字温度传感器),是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配于各种微控制器(MCU)[3]。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展[4]。本文将介绍温度传感器DS18B20的结构特征及控制方法,并以此传感器为测温元件,AT89C52单片机为控制核心,构成的数字温度测量装置,并对其工作原理及程序设计作详细的介绍。

1.2 选题的目的和意义

1.2.1 选题的目的

利用单片机AT89C52和温度传感器DS18B20设计一个设计温度计,能够测量-20~80℃之间的温度值,并且小于20℃和大于32℃时报警,用LCD液晶屏显示,测量精度为0.1℃。通过本次设计能够理解数字温度计的工作原理和熟悉单片机的发展和应用,巩固所学的知识[5]。

1.2.2 选题的意义

随着电子技术的发展,人们的生活日趋数字化,多功能的数字温度计可以给我们的生活带来很大的方便;支持“一线总线”接口的温度传感器简化了数字温度计的设计,降低了成本;以美国MAXIM/DALLAS半导体公司的单总线温度传感器DS18B20为核心,以ATMEL公司的AT89C52为控制器设计的DS18B20温度控制器结构简单、测温准确、具有一定控制功能的智能温度控制器[6]。

本课题研究的重要意义在于生产过程中随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数,就需要受制于现代信息基础的发展水平[7]。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是数字温度传感器技术,在我国各领域已经应用的非常广泛可以说是渗透到社会的每一个领域,与人民的生活和环境的温度息息相关[8]。

第2章系统概述

2.1 设计方案的选择

该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出两种在日常生活中和工农业生产中经常用到的实现方案。

2.1.1 方案一

采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成[9]。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据处理,通过显示电路,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D转换电路,感温电路比较麻烦。

系统主要包括对ADC0809的数据采集,温度的测量,此外还有复位电路,晶振电路,启动电路等。处理芯片为51芯片,执行机构有4位数码管、报警电路等。系统框图如图2-1所示。

图2-1热电偶温差电路测温系统框图

2.1.2 方案二

采用数字温度芯片DS18B20测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0~100℃时,最大线形偏差小于1℃。DS18B20的最大特点之一采用了单总线的数据传输,由温度传感器DS18B20和单片机AT89C52构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接[10]。这样,测温系统的结构就比较简单,体积也不大。采用51单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20控制工作,还可以与PC机通信上传数据,另外,AT89C52在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

该系统利用AT89C52芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片以获取时间数据,在数据处理同时显示时间,并可以利用AT89C52芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过芯片与计算机的接口进行串口通信,方便的采集和整理时间温度数据[11]。

从以上两种方案中,容易看出方案一的测温装置可测温度范围宽、体积小,但是线性误差较大。方案二的测温装置电路简单、精确度较高、实现方便、软件设计也比较简单,故本次设计采用了方案二。

2.2 系统设计原理

本课题以是AT89C52单片机为核心设计的一种数字温度控制系统,系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等组成[12]。利用温度传感器DS18B20可以直接读取被测温度值,进行转换的特性,模拟温度值经过DS18B20处理后转换为数字值,然后送到单片机中进行数据处理,并与设置的温度报警限比

较,超过限度后通过扬声器报警[13]。同时处理后的数据送到LCD中显示。系统框图如图2-2所示。

图2-2系统基本方框图

1. 主控制器

单片机AT89C52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

2. 温度传感器

温度传感器采用美国DALLAS半导体公司生产的DS18B20温度传感器。DS18B20输出信号全数字化。便于单片机处理及控制,在0~100℃,时,最大线形偏差小于1℃,采用单总线的数据传输,可直接与计算机连接。用单片机AT89C52芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。获得的数据可以通过芯片与计算机的接口进行串口通信,方便的采集和整理时间温度数据。

3. 显示电路

显示电路采用LCD液晶显示数码管,从P3口RXD,TXD串口输出段码[14]。显示电路是使用的串口显示,这种显示最大的优点就是使用资源比较少,只用P3口的RXD和TXD串口发送和接收,显示比较清晰。

第3章系统硬件的设计

3.1 AT89C52的介绍

1. AT89C52简介

AT89C52是一种带8K字节闪速可编程可擦除只读存储器(FPEROM —Flash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机[15]。AT89C52是一种带8KB的闪速可编程可擦除只读存储器的单片机,AT89C52是一种高效微控制器。AT89C52单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。AT89C52引脚排列如图3-1所示。

图3-1 AT89C52的管脚排列图

2. 主要特性:

(1)与MCS-51兼容。

(2) 4K字节可编程闪烁存储器。

(3) 寿命长:1000写/擦循环。

(4)数据保留时间:10年。

(5) 全静态工作:0Hz-24MHz。

(6) 三级程序存储器锁定。

(7) 128×8位内部RAM。

(8) 32可编程I/O线。

(9) 两个16位定时器/计数器。

(10) 5个中断源。

(11)可编程串行通道。

(12)低功耗的闲置和掉电模式。

(13)片内振荡器和时钟电路。

3. 管脚说明

V CC:供电电压。

GND:接地。

P0口:P0口为一个8位漏极开路双向I/O口,每个管脚可吸收8TTL 门电流。当P0口的管脚第一次写1时,被定义为高阻抗输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH 编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口用于外部程序存储器或16位地

址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是带8个内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口同时为闪烁编程和编程校验接收一些控制信号。

P3口也可作为AT89C52的一些特殊功能口,如下表3-1所示。

表3-1P3口的一些特殊功能口

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指令时,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/V PP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-0FFFH),不管是否有内部程序存储器。注意加密方式1时,/EA 将内部锁定为RESET;当/EA端保持高电平(接V CC端)时,CPU则执行内部程序存储器中的程序。在FLASH ROM编程期间,此引脚也用于施加12V编程电源(V PP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

3.2 DS18B20的介绍

Dallas半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为-55℃~+125℃,在-10~+85℃范围内,精度为±0.5℃。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在E2PROM中,掉电后依然保存。

3.2.1 DS18B20的引脚排列

如图3-2所示,DS18B20的外形如一只三极管,引脚名称及作用如下:GND:接地端。

DQ:数据输入/输出脚,与TTL电平兼容。

V DD:可接电源,也可接地。因为每只DS18B20都可以设置成两种供电方式,即数据总线供电方式和外部供电方式。采用数据总线供电方式时V DD接地。

图3-2 DS18B20引脚排列

3.2.2 DS18B20内部结构

DS18B20内部结构主要由四部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL及配置寄存器。DS18B20内部结构图如3-3图所示。

图3-3 DS18B20内部结构图

1. 64位ROM。64位ROM是由厂家使用激光刻录的一个64位二进制ROM代码,是该芯片的标识号,如表3-2所示。

表3-2 64位ROM标识

开始8位表示产品分类编号,接着48位是该DS18B20自身的序列号,最后8位为前56位的CRC循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

2. 温度传感器。温度传感器是DS18B20的核心部分,该功能部件可完成对温度的测量。通过软件编程可将-55~125℃范围内的温度值按9位、10位、11位、12位的分辨率进行量化,以上的分辨率都包括一个符号位,因此对应的温度量化值分别为0.5℃、0.25℃、0.125℃、0.0625℃,即最高分辨率为0.0625℃。芯片出厂时默认为12位的转换精度。当接收到温度转换命令后,开始转换,转换完成后的温度以16位带符号扩展的二进制补码形式表示,存储在高速缓存器RAM的第0,1字节中,二进制数的前5位是符号位。如果测得的温度大于0,这5位为0,只要将测得的数值乘上0.0625即可得到实际温度;如果温度小于0,这5位为1,测得的数值需要取反加1再乘上0.0625即可得到实际温度。温度数据格式如表3-3所示。

表3-3 温度数据格式

LS Byte MS Byte

其中“S”为符号位,对应的温度计算:当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表3-4是一部分温度值对应的二进制温度数据。

表3-4 一部分温度对应值

DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM,后者存放高温度和低温度触发器TH、TL 和结构寄存器。

高速暂存RAM包含了8个连续字节,前2个字节是测得的温度信息,第3和第4字节是TH和TL的易失性拷贝,第5个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。它的字节定义如表3-5所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式。

表3-5 DS18B20字节定义

DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,详见表3-6(DS18B20出厂时被设置为12位)。

表3-6 DS18B20分辨率设置

由表3-6可见,分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。

3. 温度报警触发器TH和TL

DS18B20依靠一个单线端口通讯。在单线端口条件下,必须先建立ROM 操作协议,才能进行存储器和控制操作。因此,控制器必须首先提供下面5个ROM 操作命令之一:

(1)读ROM。

(2)匹配ROM。

(3)搜索ROM。

(4)跳过ROM。

(5) 报警搜索。

成功执行完一条ROM 操作序列后,即可进行存储器和控制操作,控制器可以提供6条存储器和控制操作指令中的任一条。一条控制操作命令指示DS18B20完成一次温度测量。测量结果放在DS18B20的暂存器里,用一条读暂存器内容的存储器操作命令可以把暂存器中数据读出。温度报警触发器TH和TL各由一个E2PROM字节构成。可以用一条存储器操作命令对TH和TL 进行写入,对这些寄存器的读出需要通过暂存器。所有数据都是以最低有效位在前的方式进行读写。

4. 配置寄存器。配置寄存器的内容用于确定温度值的数字转换率。DS18B20工作是按此寄存器的分辨率将温度转换为相应精度的数值,它是高速缓存器的第5个字节。

3.2.3 DS18B20的测温原理

如图3-4所示,图中低温度系数振荡器的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数振荡器随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

图3-4 DS18B20测温原理图

图中还隐含着计数门,当计数门打开时,DS18B20就对低温系数振荡器产生的时钟脉冲进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1和温度寄存器中,减法计数器和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数振荡器产生的脉冲信号进行减法计数,当减法计数器1的预置减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,并重新开始对低温度系数振荡器产生的脉冲信号进行计数。如此循环,直到减法计数器2计数到0时,停止温度计数器值的累加,此时温度寄存器中的数值就是所测温度值。图中的斜率累加器用于补偿和修正测温过程的非线形性,直到温度寄存器达到被测温度值。

另外,DS18B20单线通信功能是分时完成的,有严格的时隙概念,因此读/写时序很重要。根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:

基于AT89C5单片机的数字温度计设计

基于AT89C5单片机的数字温度计设计

CHANGZHOU INSTITUTE OF TECHNOLOGY 科研实践 题目:基于单片机的数字温度计的设计

目录 目录 (2) 1.绪论 (3) 1.1课题研究背景及意义 (3) 1.2课题研究的内容 (3) 2.数字温度计的系统概论 (5) 2.1系统的功能 (5) 2.2温度计的分析 (5) 3.设计方案和要求 (6) 3.1设计任务和要求 (6) 3.2元器件的选取 (6) 3.3系统最终设计方案 (7) 4.硬件设计 (8) 4.1总体设计结构图 (8) 4.2硬件电路概述 (8) 4.2.1最小系统 (8) 4.2.2输入电路设计 (11) 4.2.3输出电路设计 (12) 5.硬件仿真 (15)

6.实物制作 (18) 6.1电路板焊接 (18) 6.2电路板调试 (19) 7.小结 (20) 附录 (21) 1.参考文献 (21) 2.原理图 (22) 3.元器件清单 (23) 4.软件程序 (24) 5.实物图 (30) 1.绪论 1.1课题研究背景及意义 单片机技术作为计算机技术的一个分支,广泛地应用于工业控制,智能仪器仪表,机电一体化产品,家用电器等各个领域。“单片机原理与应用”在工科院校各专业中已作为一门重要的技术基础课而普遍开设。学生在课程设计,毕业设计,科研项目中会广泛应用到单片机知识,而且,进入社会后也会广泛接触到单片机的工程项目。鉴于此,提高“单片机原理及应用”课的教学效果,让学生参与课程设计

实习甚为重要。单片机应用技术涉及的内容十分广泛,如何使学生在有限的时间内掌握单片机应用的基本原理及方法,是一个很有价值的教学项目。为此,我们进行了“单片机的学习与应用”方面的课程设计,锻炼学生的动脑动手以及协作能力。 单片机课程设计是针对模拟电子技术,数字逻辑电路,电路,单片机的原理及应用课程的要求,对我们进行综合性实践训练的实践学习环节,它包括选择课设任务、软件设计,硬件设计,调试和编写课设报告等实践内容。通过此次课程设计实现以下三个目标:第一,让学生初步掌握单片机课程的试验、设计方法,即学生根据设计要求和性能约束,查阅文献资料,收集、分析类似的相关题目,并通过元器件的组装调试等实践环节,使最终硬件电路达到题目要求的性能指标;第二,课程设计为后续的毕业设计打好基础,毕业设计是系统的工程设计实践,而课程设计的着眼点是让学生开始从理论学习的轨道上逐渐引向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解科学实验的程序和实施方法。第三,培养学生勤于思考乐于动手的习惯,同时通过设计并制作单片机类产品,使学生能够自己不断地学习接受新知识(如在本课设题目中存在智能测温器件DS18B20,就是课堂环节中不曾提及的“新器件”),通过多人的合作解决现实中存在的问题,从而不断地增强学生在该方面的自信心及兴趣,也提高了学生的动手能力,对学生以后步入社会参加工作打下一定良好的实践基础。 1.2课题研究的内容 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数 字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机喜爱的硬 件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也进 行一一介绍,该系统可以方便的是实现温度采集和显示,并可以根据需要任意 设定上下限报警温度,它使用起来方便,具有精度高、量程宽、灵敏度高、体 积小、功耗低等优点,适合我们日常生活和工农业生产中的温度测量,也可以 当做温度处理模块嵌入其他系统中,作为其他主系统的辅助扩展。DS18B20和AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合 与恶劣环境下进行现场温度测量,有广泛的应用前景。 本设计首先是确定目标,气候是各个功能模块的设计,再在Proteus软件上 进行仿真,修改,仿真。 本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范 围内时,可以报警。

单片机数字温度计课程设计报告

数字温度计课程设计报告 目录 1. 设计任务 .................................................................... ................ .. (1) 1.1设计目的 . .......................................... .............. (1) 1.2设计指标 . ............................... ...................... . (1) 1.3设计要求 (1) 2.设计思路与总体框图................................................ .. (1) 3.系统硬件电路的设计............................................... (2) 3.1主控电路 .................................................. (2) 3.2液晶显示电路 (3) 3.3按键电路 ........... ................................................... .. (3) 3.4报警电路 .......................................... . (4) 4.系统仿真设计 (4) 4.1仿真原理图 ............................................................... ...... (4) 4.2各功能元件的分析 (5) 5.系统软件设计 (10) 5.1主程序 (11) 5.2读出温度子程序 (11) 5.3温度转换命令子程序 (12) 5.4设计温度子程序 (12) 5.5 1602 的温度显示 (13) 6.总结与体会 ...................................................................................... .... . (13) 6 1总结 ............................................................ ....... . (13) 6. 2 体会 ............................................................ ....... . (14) 7.参考文献 ............................................................ ....... .. (15) 8.附录 (16) 1.设计任务 1

数字温度计的设计

数字温度计的设计 【摘要】 本文将介绍一种基于单片机控制的数字温度计,就是用单片机实现温度测量,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计用LCD数码管以串口传送数据,实现温度显示,能准确达到以上要求,可以用于温度等非电信号的测量,主要用于对测温比较准确的场所,或科研实验室使用,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。 【关键词】关键词1温度计;关键词2单片机;关键词3数字控制;关键词4DS1620 目录 第一章绪论 (2) 1.1 前言 (3) 1.2 数字温度计设计方案 (3) 1.3 总体设计框图 (3) 第二章硬件电路设计............................ 错误!未定义书签。 2.1 主要芯片介绍 (5) 2.1.1 AT89C51的介绍 (5) 2.1.2 AT89C51各引脚功能介绍 (5) 2.2 温度传感器 (7) 2.2.1 DS1620介绍 (7) 第三章软件设计................................ 错误!未定义书签。

3.1 主程序流程图 (11) 3.4 计算温度子程序流程图 (13) 3.5 显示数据刷新子程序流程图 (13) 第四章 Proteus仿真调试......................... 错误!未定义书签。 4.1 Proteus软件介绍 (15) 4.2 Proteus界面介绍 (16) 4.2.1 原理图编辑窗口 (18) 4.2.2 预览窗口 (23) 4.2.3 模型选择工具栏 (31) 4.2.4 元件列表 (35) 4.2.5 方向工具栏 (37) 4.2.6 仿真工具栏 (38) 4.3 本次设计仿真过程 (39) 4.3.1 创建原理图 (40) 设计总结 (50) 结论 (57) 参考文献 (59) 致谢 (62) 附录 (72)

LM35数字温度计(最新)

课程设计任务书 课程设计内容与要求: 以所学EDA课程内容为核心,结合LM35温度传感器,及A/D转换器等内容,设计所需的测温系统。 所设计的温度计的额定温度范围为-55℃—155℃,程序设计部分可利用所学二十四进制计数器进行改编。对于其他辅助设备,A/D转换器等内容等需查阅资料,对符合要求的型号进行筛选,选出符合条件且最经济适用的部分。确定其精度大小,适用范围及在整个系统中的连接设置。 将EDA技术应用于芯片设计和系统设计,可极大提高电路设计的效率和可靠性,且节约设计成本。在实验过程中锻炼了我们的动手能力。 目录 1.LM35温度传感器测温系统摘要………………………… 2.绪论——整个课程设计的思路…………………………… 3.Protel99绘图过程………………………………………… 4.LM35温度传感器介绍…………………………………… 5.主要芯片及程序…………………………………………… 6.技术总结…………………………………………………… 7.参考文献…………………………………………………… 8.致谢………………………………………………………… 摘要 现在EDA技术是电子设计的重要工具,其核心是利用计算机完成电路设计的全程自动化,将EDA技术应用于芯片设计和系统设计,可极大提高电路设计的效率和可靠性,节约设计成本,减少设计人员的劳动强度。 本次课程设计以EDA技术为主体,辅助学习传感器原理,A/D转换器原理,设计LM35温度传感器测温系统,运用LM35为温度传感器收集信号,因为用计算机来构建数据采集系统时看,利用温度传感器的敏感特性,去检测周围的温度,所经采集的温度信号时连续的信号,而计算机能处理不连续变化的信号,因此必须用A/D转换器将模拟信号转换为电信号后进行处理,所以再利用A/D转换器将收集到的模拟信号转换为电信号送入计算机进行处理,再利用显示电路把转换后的数字信号显示出来。 本次设计将介绍EP2C5Q208C8芯片,温度传感器LM35及AD521芯片的基本原理和特点,及利用protel99画图的简要过程。 绪论 本次课程设计主要对常规数字温度计设计。LM35温度传感器测温系统的主要功能是测量周围环境的温度,在各类民用控制,工业控制以及航空航天技术方面,温度测量得到了广泛的使用。小型、低功耗、可靠性高、低成本的LM35温度传感器便得以备受关注,利用LM35为温度传感器,去收集周围环境的温度信号即可。因为所采集的温度信号是连续变化的模拟量,而只要功能芯片EP2C5Q208C8能处理不连续的信号,因此,必须用A/D转换器将模拟信号转换成数字信号,再放大相应的倍数,才能送给主芯片进行处理,再利用显示电路把转换后的数字信号显示出来。 对于显示电路的连接必须注意只能与能满足其需要的特定I/O口连接看,否则可能会导致显示的数值出现异常。 一.Protel 99 SE 绘图过程 设置原理图设计环境,设计环境对画原理图人影响很大,在画原理图之前,应该把设计环境设置好,工作环境是使用DESIGN/OPTIONS和TOOL/PREFERENCE菜单进行的,画原理图环境的设置主要包括图纸大小,捕捉栅格,电气栅格,模板设置等。 A.放置元件。将电气和电子元件放置到图纸上,一般情况下元件的原理图符号在元件库中都可以找到,只需要将元件从元件 库中取出,放置在图上,但由于本次设计中有一些新元件,故还要自己画元件。 B.画元件图。1、首先选择菜单FILE/NEW,然后在出现的窗口选择SCHEMA TIC LIBRARY DOCUMEN T图标建立一个元件 库,该库的缺省名为SCHLIBL.LIB;在设计管理器窗口中双击该元件库,这就进入了画元件图窗口,在元件管理器窗口,可以看到已经给元件取了个缺省名COMPONENT_ 。2、进入编辑窗口后使用page up键将窗口放大,放大到能清楚地看到可视栅格。3、然后使用绘图工具箱中的工具依次绘出所需使用的元件,如LM35、芯片ADC0809、芯片EP2C5Q208C8、

基于单片机的数字温度计设计开题报告

****大学综合性设计实验 开题报告 ?实验题目:数字温度计的设计 ?学生专业10电气工程与自动化 ?同组人:———————— ?指导老师: 2013年4月

1.国内外现状及研究意义 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段: ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89S51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的AT89S51单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。 2.方案设计及内容 (一)、方案一 采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,

基于单片机控制的数字温度计毕业设计

单片机课程设计报告 数字温度计

1 设计要求 ■基本范围-50℃-110℃ ■精度误差小于0.5℃ ■LED数码直读显示 2 扩展功能 ■实现语音报数 ■可以任意设定温度的上下限报警功能

数字温度计 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 关键词:单片机,数字控制,温度计,DS18B20,A T89S51 1 引言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机A T89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。 2 总体设计方案 2.1数字温度计设计方案论证 2.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 2.1.2 方案二 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.2方案二的总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 图1总体设计方框图 2.2.1 主控制器

单片机课程设计 数字温度计课程设计

单片机原理及系统课程设计 专业:电气工程及其自动化 班级:电气1101 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2014 年 1 月 17 日

1设计题目 基于单片机的数字温度计设计。 2设计方案 2.1设计目的 单片机是单片微型计算机的简称,其具有体积小、可靠性高、功能强、灵活方便等优点,故可以广泛应用于各种领域。其中数字温度计就是一个典型的例子。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确等特点,其输出温度采用数字显示,主要用于对测温要求较高的场所,该设计主要使用的元件有单片机AT89C52,测温传感器使用DS18B20和LCD1602液晶显示器。 2.2性能指标 (1) 基本范围-50℃-110℃; (2) 精度为0.5℃; (3) 液晶LCD显示; (4) 可以设定温度的上下限以及报警功能。 3数字温度计系统的硬件设计 3.1数字温度计硬件框图 数字温度计系统硬件框图如图1所示。 图1 系统的硬件框图

3.2AT89C52单片机 AT89C52单片机引脚配置图,如图2所示。 图2 AT89C52引脚配置图 3.3外围电路 AT89C52的时序就是CPU在执行指令时所需控制信号的时间顺序。选择了内部时钟方式,即利用芯片内部的振荡器,然后在引脚XTAL1和XTAL两端跨接晶体或陶瓷谐振器,就构成了稳定的自激振荡器,其发出的脉冲直接送入内部时钟电路。外接晶振时,C1和C2值通常选择为30PF左右。C1和C2对频率有微调作用。晶体的频率范围可在1.2~12MHZ之间选择。 AT89C52的复位电路是按键电平复位电路,相当于按复位键后复位端通过电阻与Vcc电源接通。复位是单片机的初始化操作。单片机在启动运行时,都需要先复位,其作用是使CPU和系统中其他部件都处于一个确定的初始状态,并从这个状态开始工作。 显示电路采用LCD1602液晶显示器显示。 故障状态指示电路采用发光二级管以及蜂鸣器对运行方式进行指示,可清楚看到系统的故障状态。 测温传感器DS18B20可以直接读出被测温度值,采用三线制和单片机相连,少了外部的硬件电路,具有低成本和易使用的特点。

单片机数字温度计课程设计报告资料整理

目录 1.设计任务............... .. (1) 1.1 设计目的 (1) 1.2 设计指标 (1) 1.3 设计要求 (1) 2. 设计思路与总体框图 (1) 3. 系统硬件电路的设计 (2) 3.1主控电路........ .. (2) 3.2液晶显示电路3 3.3按键电路....... .... .. (3) 3.4报警电路............... (4) 4.系统仿真设计 (4) 4.1仿真原理图 (4) 4.2各功能元件的分析 (5) 5. 系统软件设计 (10) 5.1 主程序 (11) 5.2 读出温度子程序 (11) 5.3 温度转换命令子程序 (12) 5.4 设计温度子程序 (12) 5.5 1602的温度显示 (13) 6. 总结与体会................ .... . (13) 1

6 1 总结 (13) 6. 2体会 (14) 7. 参考文献 (15) 8. 附录 (16) 1. 设计任务 1.1 设计目的 1. 了解数数字温度计及工作原理。 2. 进一步掌握数字温度计设计方法。 3. 进一步掌握各芯片的逻辑功能及使用方法。 4. 进一步掌握keil和仿真软件的应用。 5. 进一步熟悉集成电路的引脚安排.。 1.2 设计指标 1. 显示温度。 2. 可以显示大于零度的温度也可以显示小于零度的温度。 3. 具有显示相应环境温度的功能,并且具有超出设定范围内温度时可以报警的功能,相应环境可以人为选择。 1.3 设计要求 1. 画出总体设计框图,以说明数字温度计由哪些相对独立的功能模块组成,标出各个模块之间互相联系。并以文字对原理作辅助说明。 2. 设计各个功能模块的电路图,加上原理说明。 3. 选择合适的元器件,在面包板上接线验证、调试各个功能模块的电路,在接线验证时设计、选择合适的输入信号和输出方式,

(完整版)数字温度计论文毕业设计论文

数字温度计的设计 摘要 温度是一种最基本的环境参数,人们生活与环境温度息息相关,在工业生产过程中需要实时测量温度,在工业生产中也离不开温度的测量,因此研究温度的测量方法和控制具有重要的意义。 本论文介绍了一种以单片机为主要控制器件,以DS18B20为温度传感器的新型数字温度计。主要包括硬件电路的设计和系统程序的设计。硬件电路主要包括主控制器,测温控制电路和显示电路等,主控制器采用单片机AT89C52,温度传感器采用美国DALLAS半导体公司生产的DS18B20,显示电路采用8

位共阴极LED数码管,ULN2803A为驱动的动态扫描直读显示。测温控制电路由温度传感器和预置温度值比较报警电路组成,当实际测量温度值大于预置温度值时,发出报警信号,即发光二极管亮。系统程序主要包括主程序,测温子程序和显示子程序等。DS18B20新型单总线数字温度传感器是DALLAS 公司生产的单线数字温度传感器, 集温度测量和 A D转换于一体,直接输出数字量,具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 由于采用了改进型智能温度传感器DS18B20作为检测元件,与传统的温度计相比,本数字温度计减少了外部的硬件电路,具有低成本和易使用的特点。DS18B20温度计还可以在高温报警、远距离多点测温控制等方面进行应用开发,具有很好的发展前景。此外,还介绍了系统的调试和性能分析。 关键词:显示电路,单片机,AT89C52,温度传感器,DS18B2 0 ,单总线

The Design of DS18B20 Digit Thermometer ABSTRACT Temperature is a basic parameters of the environment, people's lives and the environment are closely related to temperature. in the course of industrial production immediate need for temperature measurement in industrial production of the of the system program .The , the master controller used Micro Controller Unit AT89C52, the temperature sensor used DS18B20 which the American DALLAS semiconductor company produces, the display circuit used 8 altogether

数字式温度计的设计毕业设计

摘要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温X围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该高精度数字式温度计采用了由DALLAS公司生产的单线数字温度传感器DS18B20,它具有独特的单线总线接口方式。本毕业论文详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,该温度计具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 二、总体方案设计 1、数字温度计设计方案论证 2.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。 2.1.2 方案二 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.2方案二的总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 2、硬件设计 1.1 工作原理及硬件框图 基于DS18B20的温度测量装置电路图如图1所示,包括单片机最小系统、温度传感器、和显示电路。温度传感器DS18B20将被测环境温度转化成带符号的数字信号(以十六位补码形式,占两个字节),单片机对接收到的数字信号进行标度变换,转换成实际的温度值并送数码管显示。DS18B20传感器可置于离装置150米以内的任何地方。STC89C51是整个电路装置的控制核心,STC89C51内带4K字节的FlashROM,用户程序存放在此。 图2 系统硬件框图 3、系统分析: 本设计主要的任务是单片机软件的设计,而软件中的核心在于单片机与集成温度传感器DS18B20接口程序的设计,另外一点便是对数码管扫描显示的理解与运用。由于DS18B20集成了温度数据采集、模数转换

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计 一.课题选择 随着时代的发展,控制智能化,仪器小型化,功耗微量化得到广泛关注。单片机控制系统无疑在这方面起到了举足轻重的作用。单片机的应用系统设计业已成为新的技术热点,其中数字温度计就是一个典型的例子,它可广泛应用与生产生活的各个方面,具有巨大的市场前景。 二.设计目的 1.理解掌握51单片机的功能和实际应用。 2.掌握仿真开发软件的使用。 3.掌握数字式温度计电路的设计、组装与调试方法。 三.实验要求 1.以51系列单片机为核心器件,组成一个数字式温度计。 2.采用数字式温度传感器为检测器件,进行单点温度检测。 3.温度显示采用4位LED数码管显示,三位整数,一位小数。 四.设计思路 1.根据设计要求,选择STC89C51RC单片机为核心器件。 2.温度检测采用DS18B20数字式温度传感器。与单片机的接口为P 3.6引脚。 3.采用usb数据线连接充电宝供电,接电后由按钮开关控制电路供电。 硬件电路设计总体框图为图1: 五.系统的硬件构成及功能 1.主控制器 单片机STC89C51RC具有低电压供电和体积小等特点,有40个引脚,其仿真图像如下图所示:

2.显示电路 显示电路采用4位共阳LED数码管,从P3口RXD,TXD串口输出段码。LED数码管在仿真软件中如下图所示: 3.温度传感器 DS18B20是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: 1.独特的单线接口仅需一个端口引脚进行通讯。 2.简单的多点分布应用。 3.无需外部器件。 4.可通过数据线供电。 5.零待机功耗。 6.测温范围-55~+125摄氏度。 其电路图如下图所示:

最新最新毕业论文_基于单片机的数字温度计

基于单片机的数字温度计设计 摘要 随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。温度控制在生产过程中占有相当大的比例。温度测量是温度控制的基础,技术已经比较成熟。传统的测温元件有热电偶和二电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。我们用一种相对比较简单的方式来测量。 我们采用美国DALLAS半导体公司继DS18B20之后推出的一种改进型智能温度传感器DS18B20作为检测元件,温度范围为-55~125 oC,最高分辨率可达0.0625 oC。DS18B20可以直接读出北侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用LED模块显示,能设置温度报警上下限。正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用。该电路设计新颖、功能强大、结构简单。 关键词:温度测量;DS18B20;AT89C51 - I -

数字温度计课程设计报告

课程设计报告书 课程名称:电工电子课程设计 题目:数字温度计 学院:信息工程学院 系:电气工程及其自动化 专业班级:电力系统及其自动化113 学号:6100311096 学生姓名:李超红 起讫日期:6月19日——7月2日 指导教师:郑朝丹职称:讲师 学院审核(签名): 审核日期:

内容摘要: 目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。 单片机是一种特殊的计算机,它是在一块半导体的芯片上集成了CPU,存储器,RAM,ROM,及输入与输出接口电路,这种芯片称为:单片机。由于单片机的集成度高,功能强,通用性好,特别是它具有体积小,重量轻,能耗低,价格便宜,可靠性高,抗干扰能力强和使用方便的优点,使它迅速的得到了推广应用,目前已成为测量控制系统中的优选机种和新电子产品中的关键部件。单片机已不仅仅局限于小系统的概念,现已广泛应用于家用电器,机电产品,办公自动化用品,机器人,儿童玩具,航天器等领域。 本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。 本文介绍了一个基于STC89C52单片机和数字温度传感器DS18B20的测温 系统,并用LED数码管显示温度值,易于读数。系统电路简单、操作简便,能 任意设定报警温度并可查询最近的10个温度值,系统具有可靠性高、成本低、功耗小等优点。 关键词:单片机数字温度传感器数字温度计

数字温度计的设计Word版

2008 届毕业设计(说明书)题目:数字温度计的设计 班级:08高职机电二班 学号:012243552274 姓名: 1235 指导教师: 55464 2011年4月

数字温度计的设计 学生姓名: 4 学号:4 专业:机电一体化技术 班级:4 指导教师: 4 完成日期:4

摘要 在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A /D转换,最终送入单片机及其相应的外围电路,完成监控。但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。本文介绍单片机结合DS18B20温度控制系统设计,因此,本系统用一种新型的可编程温度传感器(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。 关键词:单片机,AT89S51,MAX232,传感器DS18B20

目录 摘要........................................................... I 第一章绪论.. (1) 1.1 单片机概述 (1) 1.2 选题背景及设计意义 (2) 1.3设计方案论证 (3) 第二章硬件设计 (5) 2.1硬件电路的设计 (5) 2.2各元器件介绍 (12) 第三章系统软件设计 (17) 3.1设计流程图 (17) 3.2汇编语言程序 (21) 第四章调试 (34) 4.1终合调试 (34) 致谢 (36) 参考文献 (37) 附录 (38)

单片机课程设计—数字温度计

第1章概述 1.1 数字温度计简介 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 此次课程设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。 1.2 设计内容及要求 本次单片机课程设计将以51系列单片机为核心,以开发板为平台;设计一个数字式温度计,要求使用温度传感器(可以采用DS18B20或采用AD590)测量温度,再经单片机处理后,由LED数码管显示测量的温度值。测温范围为0~100℃,精度误差在0.5℃以内。

第2章系统总体方案设计 2.1数字温度计设计的方案 在做数字温度计的单片机电路中,对信号的采集电路大多都是使用传感器,这是非常容易实现的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。采集之后,通过使用51系列的单片机,可以对数据进行相应的处理,再由LED显示电路对其数据进行显示。 2.2系统设计框图 温度计电路设计总体设计方框图如图 2.1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用6位LED数码管以串口传送数据实现温度显示。此外,还添加了报警系统,对温度实施监控。 图2.1 数字温度计框图

基于新型温度传感器的数字温度计设计

第25卷 第8期 电子测量与仪器学报 Vol. 25 No. 8 2011年8月 JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT · 741 · 本文于2011年7月收到。 DOI: 10.3724/SP.J.1187.2011.00741 基于新型温度传感器的数字温度计设计 胡鸿志 (桂林电子科技大学电子工程与自动化学院, 桂林 541004) 摘 要: 温度测量通常采用温度-电压转换的原理实现, 测量的分辨率和精度受到A/D 转换器精度和价格的极大限制。本文在低成本的前提下, 采用温度-频率转换的原理设计了新型的数字温度计。温度计采用NTC 热敏电阻与NE555构成多谐振荡器, 振荡器输出脉冲的频率随温度变化, 通过测量振荡频率间接测量温度值, 并利用高精度温度计对测量结果进行了非线性校正, 在0~100℃℃的温度范围内测量分辨率≤0.1℃, 测量误差≤0.2℃, 具有较好的实用价值。 关键词: 数字温度计;温度-频率转换;DS18B20;热敏电阻 中图分类号: TP216 文献标识码: A 国家标准学科分类代码: 460.4030 Design of digital thermometer based on novel temperature sensor Hu Hongzhi (Institute of Electronic Engineering and automation, Guilin University of Electronic Technology, Guilin 541004, China) Abstract: The theory of temperature-voltage conversion is used in temperature measurement usually, but the resolution and precision are limited by the precision and price of A/D converter. Therefore, a digital thermometer based on the theory of temperature-frequency conversion is designed in this paper, which making up of NTC thermosensitive resistance and NE555, the frequency of output pulse changes with the temperature which then can be measured indi-rectly by measuring the frequency. Furthermore, a high precision thermometer is utilized to achieve the non-linear cor-rection. The test result indicates that the resolution of the thermometer is equal or less than 0.1℃, while the measure-ment error is equal or less than 0.2℃ in the range of 0~100℃℃. Keywords: digital thermometer; temperature-frequency conversion; DS18B20; thermosensitive resistance 1 引 言 温度是表征物体冷热程度的物理量, 是工业生产和科学实验中一个非常重要的参数[1]。 温度是最难于准确测量的一个基本物理量, 它不能像长度、质量、时间等物理量那样可直接测量, 但物质的物理特性都与温度有密切关系, 如尺寸、体积、电导率、热电势、辐射功率等都随着温度的不同而改变, 所以可通过物质随温度变化的某些特性来间接测量温度。 目前国内外通常采用温度-电压转换的方法间接测量温度, 如果要提高测量分辨率和精度, 必须采用昂贵的高精度A/D 转换器。本文为了低成本的实现温度的高精度测量, 采用温度-频率转换的原理设计了数字温度计, 在0℃~100℃的温度范围内实现 了温度的精确测量, 具有较好的实用价值。 2 温度传感器工作原理 温度测量实质上都是根据温度与某个宏观物理量之间的对应关系, 对其进行定标, 这样就可以实现对温度的测量。常用的温度测量方法, 主要是采用热电偶、热敏电阻或铂电阻等温度传感器作为感温器件, 通过测量传感器两端的电势差, 间接测量温度值[1-7]。 电压和频率是2个容易测量的物理量, 电压的测量依赖于高精度的A/D 转换器; 而频率测量方法简单可靠, 目前可以实现的测量精度大大高于电压测量的精度。同时, A/D 的输入电压范围有限, 而频率测量范围相当宽, 因此通过测量频率间接测量温

相关文档
最新文档