计算方法各章习题及答案

计算方法各章习题及答案
计算方法各章习题及答案

第二章 数值分析

2.1 已知多项式432()1p x x x x x =-+-+通过下列点:

试构造一多项式()q x 通过下列点:

答案:54313

()()()3122

q x p x r x x x x x =-=-

++-+. 2.2 观测得到二次多项式2()p x 的值:

表中2()p x 的某一个函数值有错误,试找出并校正它.

答案:函数值表中2(1)p -错误,应有2(1)0p -=.

2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++.

2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x

e 时,使用多少个节点能够保证误差不超过

61

102

-?. 答案:需要143个插值节点.

2.5 设被插值函数4()[,]f x C a b ∈,()

3()h H x 是()f x 关于等距节点

01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a

h n

-=

.试估计()

3||()()||h f x H x ∞-.

答案:()

4

43||()()||384

h M f x H x h ∞-≤.

第三章 函数逼近

3.1 求()sin ,[0,0.1]f x x x =∈在空间2

{1,,}span x x Φ=上最佳平方逼近多项式,并给

出平方误差.

答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-,

二次最佳平方逼近的平方误差为

0.1

22-1220

(sin )())0.989 310 710x p x dx δ=-=??.

3.2 确定参数,a b c 和,使得积分

2

1

2

1

(,,)[I a b c ax bx c -=++-?取最小值.

答案:810, 0, 33a b c ππ

=-

== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式

()p x .

答案:()f x 的最佳一致逼近多项式为3

2

3

()74

p x x x =++

. 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.

答案:

236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤

3.5 求() (11)x

f x e x =-≤≤上的关于权函数

()x ρ=

的三次最佳平方逼近

多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.

答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,

32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.

第四章 数值积分与数值微分

4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1

(1,2,3,4)n x dx n =?

,并与

精确值比较.

答案:计算结果如下表所示

4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()h

h f x dx A f h A f A f h --≈-++?

(2)

1

121

1

()[(1)2()3()]3

f x dx f f x f x -≈-++? (3)2

0()[(0)()][(0)()]2

h h f x dx f f h h f f h α''≈++-?

答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.

4.3 设10h x x =-,确定求积公式

1

2300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++?

中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.

答案:3711,,,20203020A B C D ====-,(4)6

()[]1440

f R f h η=,其中01(,)x x η∈.

4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分

30()h

I f x dx =?

的数值积分公式h I ,并用台劳展开法证明:453

(0)()8

h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4

h h I p x dx h f f h ==+?.

4.5 给定积分1

0sin x

I dx x =

?

(1)运用复化梯形公式计算上述积分值,使其截断误差不超过

31

102

-?. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?

(3)要求的截断误差不超过6

10-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈

(2)4(4)46111

|[]||()|()0.271102880288045

n b a R f h f η--=-≤=? (3)取7个节点处的函数值.

4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分1

0sin x

I dx x =?.要

求用事后误差估计法时,截断误不超过

31102-?和61

102

-?. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,

40.946 083I s ≈=满足精度要求.

4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式

2

()()[()()][()()][]212b

a b a b a f x dx f a f b f b f a R f --''=+--+?,

其中余项为 5(4)

()[](), (,)4!30

b a R f f a b ηη-=

∈. (2)利用上述公式推导带修正项的复化梯形求积公式

02

0()[()()]12N

x N N x h f x dx T f x f x ''≈--?,

其中 0121[()2()2()2()()]2

N N N h

T f x f x f x f x f x -=+++++,

而 00, (0,1,2,,), i N x x ih i N Nh x x =+==-.

4.8 用龙贝格方法计算椭圆2

214

x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.

4.9

确定高斯型求积公式

0011()()()x dx A f x A f x ≈+?

的节点0x ,1x 及系数0A ,

1A .

答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.

4.10 验证高斯型求积公式

00110

()()()x e f x dx A f x A f x +∞

-≈+?

的系数及节点分别为

0001 2 2A A x x =

=

=-=+

第五章 解线性方程组的直接法

5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中11121

0110A -?? ?

= ? ?-??

. 答案: 11103312

03321133A -?? ? ?

?=- ? ?

?-- ??

?

5.2 用矩阵的直接三角分解法解方程组

1234102050101312431701037x x x x ??????

? ? ?

? ? ?

= ? ? ? ? ? ? ? ? ??

???

?? 答案: 42x =,32x =,21x =,11x =.

5.3 用平方根法(Cholesky 分解法)求解方程组

12341161 4.25 2.750.51 2.75 3.5 1.25x x x -?????? ??? ?-=- ??? ? ??? ???????

答案: 12x =,21x =,31x =-.

5.4 用追赶法求解三对角方程组

123421113121112210x x x x ?????? ? ? ? ? ? ?= ? ? ? ? ? ? ? ? ?????

?? 答案:42x =,31x =-,21x =,10x =.

第六章 解线性代数方程组的迭代法

6.1 对方程12121

23879897

x x x x x x x -+=??

-+=??--=?作简单调整,使得用高斯-赛得尔迭代法求解时对任

意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,用该方法求近似解(1)

k x

+,使

(1)()3||||10

k k x x +-∞-≤. 答案:近似解为(4)[1.0000 1.0000 1.0000]T

x =.

6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组

121232

343163420412

x x x x x x x +=??

+-=??-+=-? 的收敛性.若收敛,则取(0)

[0 0 0]T x

=迭代求解,使(1)()41

||||102

k k x x +-∞-<

?. 答案:方程组的近似解为*

1 1.50001x =,*2

3.33333x =,*3 2.16667x =-.

6.3 给定线性方程组Ax b =,其中

11122111221112

2A ?? ? ?

?= ? ? ? ???

,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.

6.4 设有方程组112233302021212x b x b x b -?????? ??? ?

= ??? ? ??? ?-??????

,讨论用雅可比方法和高斯-赛得尔方

法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.

答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.

6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.

6.6 设()ij n n

A a ?=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a =.求证:高斯

-赛得尔方法求解方程组112

2

D AD x b -

-

=时对任意初始向量都收敛.

第七章 非线性方程求根

例7.4 对方程230x

x e -=确定迭代函数()x ?及区间[,]a b ,使对0[,]x a b ?∈,迭

代过程1(), 0,1,2,k x x k ?+==均收敛,并求解.要求51||10k k x x -+-<.

答案:

若取2

()x x ?=,则在[1,0]-中满足收敛性条件,因此迭代法

12

1, 0,1,2,

k x k x k +==在(1,0)-中有惟一解.取00.5x =-,

*70.458960903x x ≈=-.

2

()x x ?=

,在[0,1上

满足收敛性条件,迭代序

列12

1, 0,1,2,

k x k x k +=

=在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=-

在[3,4]上,将原方程改写为2

3x

e x =,取对数得2

ln(3)()x x x ?==.

满足收敛性条件,则迭代序列2

1ln(3), 0,1,2,

k k x x k +==在[3,4]中有惟一解.取

0 3.5x =, *16 3.733067511x x ≈=.

例7.6 对于迭代函数2

()(3)x x c x ?=+-,试讨论:

(1)当c 为何值时,1()k k x x ?+=产生的序列{}k x

(2)c 取何值时收敛最快?

(3)取1,2

c =-()x ?

51||10k k x x -+-<.

答案:

(1)(c ∈时迭代收敛.

(2)c =时收敛最快.

(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示

表7.7

例7.13 设不动点迭代1()k x x ?+=的迭代函数()x ?具有二阶连续导数,*

x 是()x ?的不

动点,且*()1x ?'≠,证明Steffensen 迭代式21(), (), 0,1,2,

()2k k k k k k k k k k k y x z x k y x x x z y x

??+==??

=-?=-?-+?

二阶

收敛于*

x .

例7.15 设2

()()()()()x x p x f x q x f x ?=--,试确定函数()p x 和()q x ,使求解

()0f x =且以()x ?为迭代函数的迭代法至少三阶收敛.

答案:1()()p x f x =

',3

1()

()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*

(,)x a b ∈是()0f x =的(2)m m ≥重根,且

牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111

lim

2k k

k k k k x x m x x x -→∞-+-=-+.

第八章 矩阵特征值

8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知

5500 5.51031A -?? ?

=- ? ?-??

,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.

答案:15λ≈,对应的特征向量为[5,0,0]T

-;25λ≈-,对应的特征向量为

[5,10,5]

T --. 8.2 用反幂法求矩阵110242012A -??

?=-- ? ?-??

的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.

答案:(1) A 的按模最小的特征值为30.2384428λ≈

(2) 1 5.1248854λ≈,对应的特征向量为

(8)[0.242 4310, 1 ,0.320 011 7]T U =--.

8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥>,为求1λ而

作原点平移,试证:当平移量21

()2

n p λλ=

+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ?? ? ?= ? ? ???

的最小特征值,使它至少具有2位有效数字.

答案:取5 2.234375λ≈-即有2位有效数字.

8.5 用平面旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]T

e =平行的向量.

答案:20

3/2/00001010/0T ??

?

- ?

=

?

--?

0.324 442 8400.486 664 262

00.811 107 1040.486 664 2620.812 176 04800.298 039 9220010

0.811 107 1040.298 039 92200.530 266 798H --??

?

--

?

= ? ?

?--??

8.6 若532644445A -??

?=- ? ?-??

,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.

第九章 微分方程初值问题的数值解法

9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题

0, 0<0.2(0)1

y y x y '+=≤??

=?,要求取步长0.1h =,每步迭代误差不超过5

10-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==

9.2 用二阶中点格式和二阶休恩格式求初值问题2

, 0<0.4

(0)1

dy x y x dx y ?=+≤???=?的数值解(取

步长0.2h =,运算过程中保留五位小数).

答案:用二阶中点格式,取初值01y =计算得

0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈

用二阶休恩格式,取初值01y =计算得

0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈

9.3 用如下四步四阶阿达姆斯显格式

1123(5559379)/24n n n n n n y y h f f f f +---=+-+-

求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留

8位.

答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22

n n n n n n h h

y y hf x y f x y +=++

+,求解初值问题 , (0)y y y a

λλ'=-??

=?为实常数

绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2

h λ

≤.

9.5 用如下反复迭代的欧拉预估-校正格式

(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,

n

n n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++?=+??=++??

?==?,

求解初值问题sin(), 01

(0)1

x y e xy x y '?=<≤?=?时,如何选择步长h ,使上述格式关于k 的迭

代收敛. 答案:2

h e

<

时上述格式关于k 的迭代是收敛的.

9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法

221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.

答案:系数为14

2,,33

a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .

9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dy

xy z y dx

x dz x y z z dx

?=-??≤?

?=+=??,取步长0.1h =,小数点后至少保留六位.

答案:由初值00(0)1, (0)2y y z z ====可计算得

110.800 000z 2.050 000y =??

=? , 11(0.1)0.801 500

(0.1) 2.046 951y y z z ≈=??≈=? 220.604 820z 2.090 992y =??

=? , 22

(0.2)0.604 659

(0.2) 2.088 216y y z z ≈=??≈=?

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.–作为x的近似值一定具有6位有效数字,且其误差限。() 2.对两个不同数的近似数,误差越小,有效数位越多。() 3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用近似表示cos x产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算的乘除法次数尽量少,应将该表达式改写 为; 2.–是x舍入得到的近似值,它有位有效数字,误差限 为,相对误差限为; 3.误差的来源是; 4.截断误差 为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题 1.,,分别作为的近似值,各有几位有效数字? 2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3.利用等价变换使下列表达式的计算结果比较精确: (1), (2) (3) , (4) 4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。 5*. 采用迭代法计算,取 k=0,1,…, 若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。 练习题二 一、是非题 1.单点割线法的收敛阶比双点割线法低。 ( ) 2.牛顿法是二阶收敛的。 ( ) 3.求方程在区间[1, 2]内根的迭代法总是收敛的。( ) 4.迭代法的敛散性与迭代初值的选取无关。 ( ) 5.求非线性方程f (x)=0根的方法均是单步法。 ( ) 二、填空题

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, (0) a a >的牛顿 迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 21 12(1)(,0,1,2,.... (2),1,2,...... k k k x k x a x a k x a k +-= -=≥= 证明: (1) ( 2 2 112222k k k k k k k k x a a x ax a x a x a x x x +-??-+-=+-== ? ?? (2) 取初值0 >x ,显然有0 >k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而 ( )k k k k k x x x x x 28882182 1-=-??? ? ??+=-+ n n k k x x 21221102 1 5.221041 85 .28--+?=??<-∴>≥ 1 k x +∴必有2n 位有效数字。

8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021* ?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1 a 为* x 中第一个非零数) 则7 .21 =x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71 .22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718 x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7 .21 =x ,0183.01 <-e x ∴ 其相对误差限为00678.07 .20183.01 1≈<-x e x 同理对于71 .22 =x ,有 003063.071 .20083 .022≈<-x e x

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1.Λ14159.3=π的近似值3.1428,准确数位是( 210- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=? ? ????3113,则化A为对角阵的平面旋转=θ( C ). A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2h o C.)(3h o D.)(4h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 22122122121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由0,021=??=??x x ? ?得:???=+=+96292321 21x x x x ,

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f(4)=5.9,则二次Ne wton 插值多项式中x 2系数为 ( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

现代设计方法复习题集含答案

《现代设计方法》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《现代设计方法》(编号为09021)共有单选题,计算题,简答题, 填空题等多种试题类型,其中,本习题集中有[ 填空题,单选题]等试题类型未进入。 一、计算题 1. 用黄金分割法求解以下问题(缩小区间三次)。 342)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε。 2. 用黄金分割法求解以下问题(缩小区间三次) 32)(m in 2+=x x f ,给定[][],1,2a b =-,取1.0=ε 3. 用黄金分割法求解以下问题(缩小区间三次) 432+=x )x (f min ,给定[][]40,b ,a =,取10.=ε。 4. 用黄金分割法求解以下问题(缩小区间三次)。 12)(m in 3+-=x x x f ,给定初始区间[][]3,0,=b a ,取5.0=ε 5. 用黄金分割法求解以下问题(缩小区间三次)。 107)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε 6. 用梯度法求解无约束优化问题: 168)(m in 22221+-+=x x x X f ,取初始点[]T X 1,1)0(= ,计算精度1.0=ε。 7. 用梯度法求解96)(m in 12221+-+=x x x X f ,[]T X 1,1)0(= ,1.0=ε。 8. 用梯度法求解44)(m in 22221+-+=x x x X f ,[]T X 1,1)0(=,1.0=ε 。 9. 用梯度法求解无约束优化问题:1364)(m in 222 121+-+-=x x x x X f ,取初始点

计算方法习题

《计算方法》练习题一 练习题第1套参考答案 一、填空题 1. 14159.3=π的近似值3.1428,准确数位是( 2 10- )。 2.满足d b f c a f ==)(,)(的插值余项=)(x R ( ))((!2) (b x a x f --''ξ ) 。 3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P (5 2 )。 4.乘幂法是求实方阵(按模最大 )特征值与特征向量的迭代法。 5.欧拉法的绝对稳定实区间是( ]0,2[-)。 二、单选题 1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε(C )。 A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2 )(,则=]3,2,1[f ( A )。 A.1 B.2 C.3 D.4 3.设A=?? ? ? ??3113,则化A为对角阵的平面旋转=θ( C ) . A. 2π B.3π C.4π D.6 π 4.若双点弦法收敛,则双点弦法具有(B )敛速. A.线性 B.超线性 C.平方 D.三次 5.改进欧拉法的局部截断误差阶是( C ). A .)(h o B.)(2 h o C.)(3 h o D.)(4 h o 三、计算题 1.求矛盾方程组:??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2 212 212 2121)2()42()3(),(--+-++-+=x x x x x x x x ?, 由 0,021=??=??x x ? ?得:???=+=+9 629232121x x x x , 解得14 9 ,71821== x x 。

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为00678.07 .20183.011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

计算方法引论课后答案

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产 生的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 7 015 50 651 13 236 23 解: 0 7 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字 13 05 0 解: 五位 三位 六位 四位 4. 若1/4用表示,问有多少位有效数字 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字 解: 已知4311 d 10,d 1022 a b --

计算方法练习题与答案

练习题与答案练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–作为x的近似值一定具有6位有效数字,且其误差限 4 10 2 1 - ? 。 () 2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。 ( )

和作为π的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该表 达式改写为 ; 2.* x =–是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3.误差的来源是 ; 4.截断误差为 ; 5.设计算法应遵循的原则 是 。 三、选择题 1.* x =–作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练 习 题 一 一、是非题 1.–作为x 的近似值一定具有6位有效数字, 且其误差 限4102 1 -?。 ( )

2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用212 x - 近似表示cos x 产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次 数尽量少,应将该表达式改写为 ; 2.–是x 舍入得到的近似值,它有 位有效数字,误差限为 ,相对误差限

为; 3.误差的来源是; 4.截断误差为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值

(C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断(D). 舍入 4.用s*=21g t2表示自由落体运动距离与时间的关系式(g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

计算方法各章习题及答案

第二章 数值分析 2.1 已知多项式432()1p x x x x x =-+-+通过下列点: 试构造一多项式()q x 通过下列点: 答案:54313 ()()()3122 q x p x r x x x x x =-=- ++-+. 2.2 观测得到二次多项式2()p x 的值: 表中2()p x 的某一个函数值有错误,试找出并校正它. 答案:函数值表中2(1)p -错误,应有2(1)0p -=. 2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++. 2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x e 时,使用多少个节点能够保证误差不超过 61 102 -?. 答案:需要143个插值节点. 2.5 设被插值函数4()[,]f x C a b ∈,() 3()h H x 是()f x 关于等距节点 01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a h n -= .试估计() 3||()()||h f x H x ∞-. 答案:() 4 43||()()||384 h M f x H x h ∞-≤. 第三章 函数逼近 3.1 求()sin ,[0,0.1]f x x x =∈在空间2 {1,,}span x x Φ=上最佳平方逼近多项式,并给 出平方误差. 答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-, 二次最佳平方逼近的平方误差为 0.1 22-1220 (sin )())0.989 310 710x p x dx δ=-=??. 3.2 确定参数,a b c 和,使得积分 2 1 2 1 (,,)[I a b c ax bx c -=++-?取最小值. 答案:810, 0, 33a b c ππ =- == 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式 ()p x . 答案:()f x 的最佳一致逼近多项式为3 2 3 ()74 p x x x =++ . 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-. 答案: 236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤ 3.5 求() (11)x f x e x =-≤≤上的关于权函数 ()x ρ= 的三次最佳平方逼近 多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-. 答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++, 32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤. 第四章 数值积分与数值微分 4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1 (1,2,3,4)n x dx n =? ,并与 精确值比较. 答案:计算结果如下表所示

相关文档
最新文档