弹簧振子运动的研究

弹簧振子运动的研究
弹簧振子运动的研究

弹 簧 振 子 运 动 的 研 究

如图(1)所示,把一个有孔的小球安在弹簧的一端,弹簧的另一端固定,小球穿在光滑的水平杆上,可以在杆上滑动。小球在水平杆之间的摩擦忽略不计,弹簧的质量比小球的质量小得多,也可忽略不计。这样的系统称为弹簧振子,其中的小球常称作振子。

图(1)

由弹簧振子的定义可以看出,振子在运动的过程中,由于合外力时刻在改变,从而导致了加速度。速度跟着不断改变,因此它的运动就显得较为复杂。为了能够更好的掌握它的运动规律,同时锻炼我们对运动的研究能力,我们对它进行了初步的研究。

一、弹簧振子的周期和运动表达式 1.周期规律

可能影响因素:小球的质量(M ),弹簧的劲度系数(K )以及振子的振幅(A )。

(1)周期与振幅(A )的关系。

质量为m 的小球,前后两次振幅分别为1A ,2A ,弹簧的劲度系数为K ,前后两次振动的周期分别为T 1,T 2。

推论:在前后两个运动过程中分别取两小段位移1x ,2x ,使得q A A x x ==2

1

21,根据胡克定律及牛顿第二定律,得

m kx a 11-

=,m kx a 22-= ∴q A A

a a ==2121 由于位移x 是任意的,且q 为定值。 ∴

q A A a a ==

2

1

2

1 而2

222

1112112

1)4

()4(44T a T

a T v T v A A ??=??

=

∴21T T =

△结论:弹簧振子的周期与振幅无关。

(2)周期与振子质量和劲度系数的关系。

有两个弹簧振子,振子的质量分别为1m ,2m ,弹簧的劲度系数分别为1k ,2k ,并且振子的振幅相同(因为周期与振幅无关,所以不用考虑它的影响)

推论:在两个运动中都取一小段位移x (任意的),同样有

12212

2

112

1m k m k m x

k m x

k a a =--

=

由于是任取的,

1

22

121m k m k a a = 同样可得22

122

1212

2221121)4

()4(T m k T m k T a T a A A =??=

所以2

2221211m T k m T k =

因此有k m

T ∝ 由此可以看出:弹簧振子的周期与振子的质量的算术根成正比,与弹簧劲度系数的算术根成反比,即k

m

n

T

=(其中n 是一个与小球质量,弹簧劲度系数,振子振幅等无关的常数)。

2.振子位移,速度,加速度的变化规律

根据沙漏实验(图2)可知:弹簧振子的位移——时间图像是一条余弦曲线。因为右图沙漏实验得到的余弦曲线,实际上是由x 方向上的匀速直线运动和y 方向的振动的合成,因此y 方向上弹簧振子的振动图像也应为余弦曲线。

图(2)

如图(3),以经平衡位置向右运动开始计时,则其初相为

2

π

图(3)

设)2

cos(π

ω+

=t A x t (A ,ω>0)

∴)2

sin('π

ω+-==t A x v t t . )2

cos("2π

ωω+

-==t A x a t t

∵t t ma kx F

=-=

∴2

21

)

2

cos()

2

cos(ω

π

ωωπ

ω-=+

-+

=

-=t A t A k

m a x

∴m

k

=

ω ∴)2

cos(

π+=t m k A x t

)2sin('π+-==t m k A x v t t . )2

cos(π

+-=t m k m k A a t

如图(4)是弹簧振子运动的x-t 图象。

图(4)

由图像可见k

m

T

π

ωπ

22==

(即正面的常数 η=2π);当4π+=nT t 时,x 达

到正向最大,此时振子速度ν=0(振子ν-t 图象如图(5)所示);当2

)12(T

n t ?+=时,

振子位移为0,速度达到反向最大。

图(5)

(3)振子机械能的变化规律

取任意时刻t ,则此时系统的总机构能为:

222222

1)]2sin([21)]2cos([212121kA t m k m k A m t m k A k mv kx E =+??++?=+=

ππ

如图(6)是振子动能和弹簧势能的关系图,亦可见其机械能总量E 恒等于2

2

1

kA

图(6)

△结论:弹簧振子在运动过程中机械能守恒,恒为22

1kA E =

上述弹簧振子均为理想化模型,在实际生活中,由于各种阻力的存在,导致振子周期出现偏差,与理论不相符;振子的振幅也会逐渐减小,机械能逐渐减小。

4.恒力作用下的弹簧振子

如图(7)是竖直方向上的弹簧振子,振子受到一个恒力--重力的作用。设弹簧的劲度系数为K ,自然长度为0l ,振子静止时弹簧伸长量为△x ,则有:mg=k △x 。现将振子向下拉伸x ,则:

kx x k x x k mg F F =?-?+=-=∑)(弹 因为ΣF 与x 反向,所以矢量式为kx F -=∑

∴k

m T

π

2= 由此可见,恒力作用下的弹簧振子(此时平衡位置为静止放置时振子

所在处)周期不变,运动表达式不变。

二.实验验证周期公式(主要验证周期与质量和振幅的关系)

图(7)

1.实验装置:

(1)如图(1),弹簧和小球(穿孔)穿过细杆,一端固定在支架上,另一端系着一个小球,使小球在细杆上振动。这种装置既有优点,亦有缺点。 优点:可以避免小球在振动中偏离原来的轨道。

缺点:由于细杆与小球间存在较大的摩擦,给实验造成较大的误差。为减小摩擦,考虑在细杆上涂一层油脂。但是油是粘性物质,会给实验造成新的误差。

(2)既然水平细杆的存在会造成摩擦,那么去掉呢?则小球会下落。但如果顺应或防止这种下落,实验还是可以顺利进行。

①顺应下落。将水平弹簧振子变为竖直方向上的弹簧振子,如图(7),由于恒力对振子周期没有影响,因此可以用此装置实验。这种装置的优点是:可以减少阻力的影响;但当振子的振幅较大时,振子会左右摆动。

②防止小球下落。考虑用细线吊住小球,但是由于左右受力不平衡,会造成小球严重脱离轨道。因此可以在小球右端加多一根劲度系数与左边相近的弹簧(此时21k k k +=)如图(8) 虽然解决了偏离问题,但也存在一些新的问题。

△当振幅太大时,小球受到细绳的拉力变大,且此拉力水平分量也变大,小球会上偏。

△解决办法:(1)增加细绳长度。这样,相同振幅下,绳偏离角度变小,绳拉力的水平分量减小,且小球上偏程度减小。(2)减小振子振幅,同样可以减小阻力和上偏程度。

比较图(7)和图(8)装置,图(8)的装置显得优越些。因此,实验时选择图(8)装置。

2.实验测取数据并分析整理

按图(8)装置,取不同质量的小球,振子振幅不同(都不会太大)。测得的数据如下(弹簧劲度系数k=k 1+k 2=23.13+23.13=46.43N/m )

△结论:在误差允许的范围内,周期满足公式k

m

T π

2=,即周期与小球质量的算术平方根成正比,与振幅无关。

三.弹簧振子的扩展--简谐运动

1.除了弹簧振子外,单摆也是简谐运动的典例。下面我们对单摆进行研究。 (1)单摆周期与质量的关系

如图(9)是一个单摆。前后两次用两个质量分别为M ,m (M 〉m )小球拉开

图(8)

相同的角度,然后放手让小球作单摆运动。

假如质量大的周期长(即速度快),所以M 运动的速度小于m 。如果有一个质量M+m 的小球,则它下落的速度应小于M 。但是,将M+m 的小球看成两部分,由于m 下落比M 快,m 可以带动M 从而使整个球的速度大于M ,这与质量大的周期长相等。因此质量大的周期不一定长。同样,我们可以推出,质量小的周期也不一定长。由此可见,周期与小球质

量无关。

(2)推导单摆周期公式

现在,让我们用能量的角度来推导。如图(10)当小球的振幅为A 时,有(∵θ很小,所以振幅为θA )。 Rt △0θD ∽Rt △θ0E

A h A

A l =

2

1 ∴l

A h A 22

=

同样,当位移为x 时,l x h x 22

=

∴l

x A h h h x A 22

2-=-=?

由于绳的拉力方向始终垂直于小球的速度方向,因此拉力对绳不做功,机械能守恒。

∴l

x A mg h mg mv 221222-?=?=

∴)(2

22x A l g v -?=

∴2

22A v g

l x =+ …①

根据弹簧振子机械能守恒公式222212121kL mv kx =+得222

A v k m x =+

…② 对比①②式,用g l 取代k m ,即可得:g

l

2k m 2T π

=π=(亦可得到位移x ,速度v ,加速度a 的表达式)

2.据对弹簧振子和单摆的研究可以得到简谐运动的一般规律。 (1)回复力x m F 2

ω-=(亦可写成F=-kx ,k 为比例常数)

(2)周期T=k

m 2π

(3)瞬时速度t sin A v ωω-=

3.简谐运动的其它例子

(1)均速圆周运动质点在x 轴(或y 轴)上的投影作反复运动,可以证明,它的运动是简谐运动。

图(9) 图(10)

如图所示:

△在x 轴投影的位移t A x v t A x sin ,cos '?===ωω

△在y 轴投影的位移t A y v t A y ωωωcos ,sin '

?-===

由此可见,两个相互垂直,振幅,

频率相同初相差为2

π

的简谐运动的合成是匀速圆

周运动。

(2)如下的运动亦为简谐运动:

简谐运动是最简单最原始的振动,它在自然界中广泛存在。

在此次研究性学习中,我们没有查到太多的资料,以上的理论,大多是我们用自己所学的知识推导出来的,因此不免显得有些浅薄,敬请见谅。但是,此次学习中我们也学到了一些东西。我们不仅初步掌握了弹簧振子、单摆等的规律,增长了见识,同时也提高了我们的思维能力和实验能力,掌握了研究运动的基本方法。

在半径较大的光滑圆弧槽中运动的小球,其运动为简谐运动,类似单摆。 弯曲水管中的具有一定高度差的水在做简谐运动。 两物块固定在弹簧两端压缩(或拉伸)一段距离后放手,两物块做简谐运动,周期相同。

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量0m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω=

且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

气垫导轨上弹簧振子振动的研究

气垫导轨上弹簧振子振动的研究 力学实验最困难的问题就是摩擦力对测量的影响。气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表的摩擦,也就是说,物体受到的摩擦阻力几乎可以忽略。利用气垫导轨可以进行许多力学实验,如测速度、加速度,验证牛顿第二定律、动量守恒定律,研究简谐振动、阻尼振动等,本实验采用气垫导轨研究弹簧振子的振动。 一、必做部分:简谐振动 [实验目的] 1.测量弹簧振子的振动周期T 。 2.求弹簧的倔强系数k 和有效质量 0m 。 [仪器仪器] 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 [实验原理] 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图13-1所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。 设质量为m 1的滑块处于平衡位置,每个弹簧的伸长量为x 0,当m 1距平衡点x 时,m 1只受 弹性力)(01x x k +-与)(01x x k --的作用,其中k 1是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 x m x x k x x k =--+-)()(0101(1) 令 12k k = 方程(1)的解为 )s i n (00?ω+=t A x (2) 说明滑块是做简谐振动。式中:A —振幅;0?—初相位。 m k = 0ω (3) 0ω叫做振动系统的固有频率。而 01m m m += (4) 式中:m —振动系统的有效质量;m 0—弹簧的有效质量;m 1—滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系: k m m k m T 010 222+=== ππ ωπ (5) 在实验中,我们改变m 1,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 图13-1简谐运动原理图

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

实验十九 弹簧振子的研究

实验十九 弹簧振子的研究 【实验目的】 1.研究弹簧本身质量对振动的影响; 2.研究不同形式的弹簧,其质量对振动的影响是否相同 【实验仪器】 弹簧(锥形的、柱形的),停表(或数字毫秒计及光电门),砝码,托盘。 【实验原理】 设弹簧的劲度系数为k ,悬挂负载质量为m (图 19-1)。一般给出弹簧振动周期T 的公式为 k m T π 2= (19-1) 测量加各种不同负载m 的周期T 的值,作T m -图线,如图 19-2(a),可以看出T 与m 不是线性关系,但是作m T -2图 线,则显然是一直线(图19-2(b)),不过此直线不通过 零点,即 0=m 时02≠T 。从上述实验结果可以看出在弹簧周期公式中的质量,除去负载 m 还应包括弹簧自身质量0m 的一部分,即 )219(20 -+=k Cm m T π 式中C 为未知系数。在此实验中就是研究C 值。 【实验内容】 研究锥形弹簧的C 值 (1)先测弹簧的质量0m 。其次测量弹簧下端悬挂不同负载m 时的周期T (砝码托盘的质量应计入负载中), 共测 n 次。(2)用停表测量周期时,要测量连续振动50次的时间t 。握停表 的手最好和负载同步振动。 为了显示0m 的影响,负载 m 的

起始值应尽可能取小些(比如0m 的三分之一左右或更小),变化范围适当大些。 n 也应大些。 2.数据处理 将式(19—2)改为 )319(442 022 -+=m k cm k T ππ 则得令 k b cm k a m x T y 2 022 4,4,,ππ= === bx a y += 从n 组),(i i y x 值,可以求得b a 、值,从而求出C 值, bm a C = (19-4) 并且C 的不确定度)(c u 为 )519())(())(())(( )(2 022-++=m m u b b u a a u C C u 3.研究柱形弹簧的C 值,步骤同上 4.比较二C 值是否一致。 注意:有的弹簧,当所加负载增到某值m 附近时,在上下振动的同时有明显地左右摆动,这对测量周期很不方便,这时可在弹簧上端加一长些的吊线即可解决 回答问题: 1.你对如何测准周期有何体会? 2.对此实验的结果你作些什么说明?设想再做什么探索? 测量举例 1.锥形弹簧(No.15) g m g m 8242.1)(,651.120='=托盘

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和k2,如下图所示: 当m1偏离平衡位置x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量,m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的T,考察T 和的关系,最小二乘法线性拟合求出k 和 (二)简谐振动的运动学特征: 将()对t 求微分 ) 可见振子的运动速度v 的变化关系也是一个简谐运动,角频率为,振幅为,而且v 的相位比x 超前 .消去t,得 v2=ω02(A2?x2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量x和v 随时间的变化规律及x和v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和A均不随时间变化。上式说明机械能守恒,本实验通过测定不同位 置x上m 1的运动速度v,从而求得和,观测它们之间的相互转换并验证机 械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工

各种弹簧振子的周期研究及其求解方法 论文

各种弹簧振子的周期研究及其求解方法 上海大学09级自强学院朱小强 摘要: 在高中和大学间断的学习过程中,我们接触到很多关于简谐运动的周期求解的有关问题,而且对于不同情况下的简谐运动的周期求解有着不同的方法。笔者在接触了几种情况下的简谐运动后,发现一些求解周期问题的一般性方法,其中主要包括三种:利用纯数学运算的方法求解、利用能量守恒的方法求解、利用运动学的方法求解。在这几种方法里面,利用的较为普遍也较为简单的方法是利用能量守恒的方法,其他的方法可能在一定程度上比较复杂一点,不过也可以求解。当然,关于本文中的部分周期求解结果有着不同的意见,可能是因为前提假设不同,所以求解的结果会有所不同。 关键词:弹簧阵子周期能量守恒简谐运动

在高中和大学的物理学习过程中,我们会接触到很多的关于弹簧振子的问题。在大学的物理学习过程中,我们所了解到的主要有两种弹簧振子:水平放置的和竖直放置的振子 我们在学习的过程中主要讨论的问题是围绕着振子所做的简谐运动的位移表达式展开,比如说我们经常会求物体在某位移处的速度,或者是当速度为某值时所对应的位移,或者是求解有关能量的转换守恒。但是真正在关于各种弹簧振子的周期的推倒上并没有下很多的笔墨。本文主要讨论几种情况下的弹簧振子的周期求解方法:①轻弹簧水平运动的情况;②轻弹簧竖直运动的情况;③一般情况下弹簧水平运动的情况;④一般情况下弹簧竖直运动的情况;⑤单摆的周期求解。 1. 轻弹簧水平运动 设物体的质量为m ,弹簧的劲度系数为k ,物体做简谐运动的周期为T ,初相位为,角速度为,则对于该系统周期的求法比较简单,可以有以下方法: ① 公式法:物体做简谐运动的位移随时间变化的关系式为: )cos(?ω+=t A x 对时间求导有: )sin(?ωω+-=t A v 再次对时间求导有: )cos(2?ωω+-=t A a 由简谐运动的特征方程有: x m k a m a kx F - ==-= 由以上方程可得:

弹簧振子的简谐振动

弹簧振子的简谐振动 实验目的: (1) 测量弹簧振子的振动周期T 。 (2) 求弹簧的倔强系数k 和有效质量0m 实验原理: 设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ②

在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和 0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 2 21 104()T m m k π=+ 2 22 204()T m m k π=+

弹簧振子运动的研究

弹 簧 振 子 运 动 的 研 究 如图(1)所示,把一个有孔的小球安在弹簧的一端,弹簧的另一端固定,小球穿在光滑的水平杆上,可以在杆上滑动。小球在水平杆之间的摩擦忽略不计,弹簧的质量比小球的质量小得多,也可忽略不计。这样的系统称为弹簧振子,其中的小球常称作振子。 图(1) 由弹簧振子的定义可以看出,振子在运动的过程中,由于合外力时刻在改变,从而导致了加速度。速度跟着不断改变,因此它的运动就显得较为复杂。为了能够更好的掌握它的运动规律,同时锻炼我们对运动的研究能力,我们对它进行了初步的研究。 一、弹簧振子的周期和运动表达式 1.周期规律 可能影响因素:小球的质量(M ),弹簧的劲度系数(K )以及振子的振幅(A )。 (1)周期与振幅(A )的关系。 质量为m 的小球,前后两次振幅分别为1A ,2A ,弹簧的劲度系数为K ,前后两次振动的周期分别为T 1,T 2。 推论:在前后两个运动过程中分别取两小段位移1x ,2x ,使得q A A x x ==2 1 21,根据胡克定律及牛顿第二定律,得 m kx a 11- =,m kx a 22-= ∴q A A a a ==2121 由于位移x 是任意的,且q 为定值。 ∴ q A A a a == 2 1 2 1 而2 222 1112112 1)4 ()4(44T a T a T v T v A A ??=?? = ∴21T T = △结论:弹簧振子的周期与振幅无关。

(2)周期与振子质量和劲度系数的关系。 有两个弹簧振子,振子的质量分别为1m ,2m ,弹簧的劲度系数分别为1k ,2k ,并且振子的振幅相同(因为周期与振幅无关,所以不用考虑它的影响) 推论:在两个运动中都取一小段位移x (任意的),同样有 12212 2 112 1m k m k m x k m x k a a =-- = 由于是任取的, 1 22 121m k m k a a = 同样可得22 122 1212 2221121)4 ()4(T m k T m k T a T a A A =??= 所以2 2221211m T k m T k = 因此有k m T ∝ 由此可以看出:弹簧振子的周期与振子的质量的算术根成正比,与弹簧劲度系数的算术根成反比,即k m n T =(其中n 是一个与小球质量,弹簧劲度系数,振子振幅等无关的常数)。 2.振子位移,速度,加速度的变化规律 根据沙漏实验(图2)可知:弹簧振子的位移——时间图像是一条余弦曲线。因为右图沙漏实验得到的余弦曲线,实际上是由x 方向上的匀速直线运动和y 方向的振动的合成,因此y 方向上弹簧振子的振动图像也应为余弦曲线。 图(2) 如图(3),以经平衡位置向右运动开始计时,则其初相为 2 π

简谐振动的研究

简谐振动的研究 (用气垫导轨法) 实验目的 1.验证弹簧振子的运动规律。 2.验证谐振动的周期决定于振动系统本身的性质,与初始条件无关。 3.测量弹簧的等效质量。 实验仪器 气垫导轨,滑块儿与附加物,弹簧,光电计时装置等。 实验原理 1.弹簧振子的振动规律 如图12a-1所示。在水平气垫导轨上的滑 块儿两端联接倔强系数分别为K1、K2的两弹簧 振子。选水平向右的方向为x正方向,把滑块 儿由平衡位置O向右移动一段距离x。如果忽略阻力,物体只受弹性恢复力-(K1+K2)x的作用,方向指向平衡位置,由牛顿第二定律可知,其运动方程为 (12a-1) 式中k=K1+K2,如令,则有 此微分方程的解为 (12a-2) 上式表明滑块儿的位置按正弦函数随时间而改变。所以,滑块的运动是简谐振动。

式中A是振幅,是初相位。是弹簧振子固有的圆频率,M是弹簧振子的有效质量,它等于滑块儿质量m与二弹簧有效质量m 0之和,即M=m+m0。由系统本身决定,A和由初始条件决定。(12a-2)式对时间求微商,有 (12a-3) 上式表明滑块儿的速度按余弦函数随时间变化。由(12a-2)和(12a-3)式可以消去t,有 (12a-4) 上式是滑块儿速度与位移随时间变化时应满足的关系。当x=0时,由公式(12a -4)可得 v =ω A 这时v的数值最大,即 v max =ω A(12a-5) 2.弹簧振子的振动周期 弹簧振子的周而复始完全振动一次所需要的时间,称为简谐振动的周期T。 上面公式可改写为 (12a-6) 当k一定时,~m成线性关系,并且由其斜率和截距可以求出二弹簧的倔强系数k和有效质量m0。 实验内容

弹簧振子系统的简谐振动研究 matlab课程作业

《数学实验》报告 实验名称弹簧振子系统的简谐振动研究___ 学院 专业班级 姓名 学号 2012年6月

一、【实验目的】 1.熟悉MATLAB各个函数命令及使用方法. 2.熟悉MATLAB编程原则和子函数应用的方法. 3.进行MATLAB的综合应用以提高使用技巧. 4.对于弹簧振子系统的简谐振动进行编程以更好的理解其定义并熟悉 MATLAB. 二、【实验任务】 设弹簧振子系统由质量为m的滑块和劲度系数为k的弹簧所组成。已知t=0时,m在A处,即x0=A,并由静止开始释放。试研究滑块的运动规律。三、【问题分析】 以x表示质点相对于原点的位移,线性回复力为f=-kx。由牛顿第二定律以及题设条件,可写出弹簧振子的振动微分方程及其初始条件为 d^2x/dt^2+kx/m=0 x(0)=A v(0)=dx/dt|(t=0)=0 滑块的速度和加速度分别为 V=dx/dt a=d^2x/dt^2 令ω*ω=k/m,用符号法求解上诉微分方程,求出运动方程、速度和加速度,并绘制出x-t,v-t和a-x曲线。 四、【实验程序】 clc x=dsolve('D2x=-w^2*x','Dx(0)=0,x(0)=A','t') v=diff(x,'t'),a=diff(x,'t',2), 2

3 k=400;m=2;w=sqrt(k/m); A=0.1;t=0:0.01:0.9; x=eval(x);v=eval(v);a=eval(a); subplot(3,1,1),plot(t,x); title('x-t 关系图 ') subplot(3,1,2);plot(x,v); title('v-x 关系图') subplot(3,1,3);plot(x,a) title('a-x 关系图') 一、 【实验结果】 x = (A*exp(i*t*w))/2 + A/(2*exp(i*t*w)) v = (A*i*w*exp(i*t*w))/2 - (A*i*w)/(2*exp(i*t*w)) a = - (A*w^2*exp(-t*w*i))/2 - (A*w^2*exp(t*w*i))/2 00.10.20.30.40.50.60.70.80.9 -0.10 0.1x-t 关系图 -0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1 -20 2v-x 关系图 -0.1 -0.08-0.06-0.04-0.0200.02 0.040.060.080.1 -200 20a-x 关系图

相关文档
最新文档