常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理
常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理(4066,4051-53)

开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。

一、常用CMOS模拟开关引脚功能和工作原理

1.四双向模拟开关CD4066

CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051

CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通

常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表1

3.双四路模拟开关CD4052

CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。

表2

4.三组二路模拟开关CD4053

CD4053的引脚功能见图4。CD4053内部含有3组单刀双掷开关,3组开关具体接通哪一通道,由输入地址码ABC来决定。其真值表见表3。

表3

5.十六路模拟开关CD4067

CD4067的引脚功能见图5。CD4067相当于一个单刀十六掷开关,具体接通哪一通道,由输入地址码ABCD来决定。其真值表见表4。

表4

二、典型应用举例

1.单按钮音量控制器

单按钮音量控制器电路见图6。VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。VT1的D极和S极之间的电阻随VGS成反比变化,因此控制VGS就可实现对音量大小的控制。VT1的G极接有3个模拟开关S1~S3和一个100μF的电容,其中100μF电容起电压保持作用。由于VMOS管的G极和S极之间的电阻极高,故100μF电容上的电压可长时间基本保持不变。模拟开关S1为电容提供充电回路,当S1导通时,电源通过S1给电容充电,电容上电压不断增高,使VT1导通电阻越来越小,使音量也越来越小。模拟开关S2为电容提供放电回路,当S2导通时,电容通过S2放电,电容上电压不断下降,使音量越来越大。模拟开关S3起开机音量复位作用,开机时,电源在S3控制端产生一短暂的正脉冲,使S3导通,由于与S3连接的电阻较小,故使电容很快充到一定的电压,使起始音量处于较小的状态。F1~F6及其外围元件组成长短脉冲识别电路。静态时,F1、F2输入为高电平,当较长时间按压按钮开关AN时,F4输出变高,经100k电阻给3.3μF电容充电,当充电电压超过CMOS门转换电压时,F5输出由高变低,F6输出由低变高,模拟开关S2导通,100μF电容放电,音量变大。与此同时,F1输出也变高,也给电容充电,但F1输出的一次正跳变不足以使电容上电压超过转换电压,故F2输出仍为高

电平,F3输出低电平,模拟开关S1保持截止。当连续按动按钮开关AN时,F4输出也不断变化,输出为高时,给电容充电,而输出变低时,电容又很快通过二极管VD3放电,故电容上电压总是达不到转换电压,因此F6输出一直为低。而此时F1输出连续高低变化,经二极管整流不断给电容充电,使3.3μF电容上电压迅速达到转换电压,F2输出变低,F3输出变高,模拟开关S1导通,给电容充电,音量变小。由此,利用一只按钮开关,实现了对音量的大小控制。

2.四路视频信号切换器

四路视频信号切换器电路见图7。“与非”门YF3、YF4组成脉冲振荡器,振荡频率由100k电位器调节。若嫌调节范围不够,可适当更换0.47μF电容和100k电阻。脉冲振荡器受YF1、YF2组成的双稳态电路的控制,按S1时,YF1输出低电平,脉冲振荡器停振;按S2时,YF1输出高电平,脉冲振荡器开始振荡。脉冲振荡器的输出作为CD4017十进制计数器的时钟,使Y0~Y3依次出现高电平,相应的四个模拟开关依次导通,由Vi1~Vi4输入的视频信号被依次切换至输出端,完成了四路视频信号的切换。显然,增加一片CD4066可做成八路视频信号切换器,相应地,由Y0~Y7进行模拟开关控制,Y8连至Cr。依此类推,可做成更多路数的视频信号切换器。而且,输入、输出也可以是其它形式的信号。如要求视频、音频信号同传,则并接上相应数量的模拟开关即可。

3.数控电阻网络

图8示出数字控制电阻网络电阻值大小的电路。在图8中,CD4066的四个独立开关分别并接在四个串接电阻上,电阻的值是按二进制位权关系选择的。当某个开关接通时,并接在该开关上的电阻被短路,此处假设该电阻阻值R RON(RON 为模拟开关的导通电阻);当某个开关断开时,电阻两端阻值仍保持原阻值不变,此处假设该电阻阻值R ROFF(ROFF为模拟开关断开时的电阻)。四个开关的控制端由四位二进制数A、B、C、D控制,因此,在A、B、C、D端输入不同的四位二进制数,可控制电阻网络的电阻变化,并从其上获得2~16种不同的电阻值。按图8所给的电阻值,该电阻网络所对应的16种阻值列于表5中。

表5

4.音量调节电路

音量调节电路见图9。音频信号由Vi端输入,经分压电阻R11和隔直电容加到由R1~R10构成的加/减电阻网络。CD40192为十进制加/减计数器,“与非”门YF3、YF4构成低频振荡器,“与非”门YF1、YF2分别为加计数端CPU和减计数端CPD的计数闸门。

当D1端为高电平时,闸门YF1开通,低频脉冲经YF1加到CD40192的CPU

端,使其作加法计数,输出端Q0~Q3数据增大,使16路模拟开关的刀向低端转换,

顺序接通R1~R10,接通的电阻增大,经与R11分压后,使输出音频信号Vo增大;当

D2端为高电平时,闸门YF2开通,低频脉冲经YF2加到CD40192的CPD端,使其

作减法计数,输出端Q0~Q3数据减小,使16路模拟开关的刀向高端转换,顺序接通

R10~R1,接通的电阻减小,经与R11分压后,使输出音频信号Vo减小。

CD4051 CD4052 CD4053中文资料

CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。当INH输入端=“1”时,所有的通道截止。三位二进制信号选通8通道中的一通道,可连接该输入端至输出。

CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控

制峰峰值至20V的模拟信号。例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。

CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE 电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。当INH输入端=“1”时,所有通道截止。控制输入为高电平时,“0”通道被选,反之,“1”通道被选。

CD4051引脚图

CD4052引脚图

CD4053引脚图

CD4051逻辑图

CD4052逻辑图

CD4053逻辑图

切换时间波形图

Absolute Maximum Ratings 绝对最大额定值:

Recommended Operating Conditions 建议操作条件:

DC Electrical Characteristics 直流电气特性:

多路模拟开关的选择

今天做电路研究的时候要用到多路数据选择器,多路开关。和开发部的头讨论了下,才发现里面有很多东西要学,这里就贴出来一些心得分享一下,一下的内容也有从别处摘来的一部分。选择开关时需考察以下指标: 1 多路开关通断方式的选择 目前市场上的多路开关的通断切换方式大多为“先断后通” (Break-Before-Make)。在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2. 通道数量 集成模拟开关通常包括多个通道。通道数量对传输信号的精度和开关切换速率有直接的影响,通道数越多,寄生电容和泄漏电流就越大。因为当选通一路时,其它阻断的通道并不是完全断开,而是处于高阻状态,会对导通通道产生泄漏电流,通道越多,漏电流越大,通道之间的干扰也越强。 3. 泄漏电流 一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零。而实际开关断开时为高阻状态,漏电流不为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。 4. 导通电阻 导通电阻的平坦度与导通电阻一致性。导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失更大。应用中应根据实际情况选择导通电阻足够低的开关。必须注意,导通电阻的值与电源电压有直接关系,通常电源电压越大,导通电阻就越小,而且导通电阻和泄漏电流是矛盾的。要求导通电阻小,则应扩大沟道,结果会使泄漏电流增大。导通电阻随输入电压的变化会产生波动,导通电阻平坦度是指在限定的输入电压范围内,导通电阻的最大起伏值△RON=△RONMAX—△RONMIN。它表明导通电阻的平坦程度,△RON应该越小越好。

如何选择模拟开关

如何选择模拟开关 模拟开关 模拟开关和多路转换器的作用主要是用于信号的切换。目前集成模拟电子开关在小信号领域已成为主导产品,与以往的机械触点式电子开关相比,集成电子开关有许多优点,例如切换速率快、无抖动、耗电省、体积小、工作可靠且容易控制等。但也有若干缺点,如导通电阻较大,输入电流容量有限,动态范围小等。因而集成模拟开关主要使用在高速切换、要求系统体积小的场合。在较低的频段上f<10MHz),集成模拟开关通常采用CMOS工艺制成:而在较高的频段上(f>10MHz),则广泛采用双极型晶体管工艺。 如何选择模拟开关 选择开关时需考察以下指标: 通道数量集成模拟开关通常包括多个通道。通道数量对传输信号的精度和开关切换速率有直接的影响,通道数越多,寄生电容和泄漏电流就越大。因为当选通一路时,其它阻断的通道并不是完全断开,而是处于高阻状态,会对导通通道产生泄漏电流,通道越多,漏电流越大,通道之间的干扰也越强。 泄漏电流一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零。而实际开关断开时为高阻状态,漏电流不为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。 导通电阻导通电阻的平坦度与导通电阻一致性导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失更大。应用中应根据实际情况选择导通电阻足够低的开关。必须注意,导通电阻的值与电源电压有直接关系,通常电源电压越大,导通电阻就越小,而且导通电阻和泄漏电流是矛盾的。要求导通电阻小,则应扩大沟道,结果会使泄漏电流增大。导通电阻随输入电压的变化会产生波动,导通电阻平坦度是指在限定的输入电压范围内,导通电阻的最大起伏值△RON=△RONMAX—△RONMI N。它表明导通电阻的平坦程度,△RON应该越小越好。导通电阻一致性代表各通道导通电阻的差值,导通电阻的一致性越好,系统在采集各路信号时由开关引起的误差也就越小。 开关速度指开关接通或断开的速度。通常用接通时间TON和断开时间TOFF表示。对于需要传输快变化信号的场合,要求模拟开关的切换速度高,同时还应该考虑与后级采样保持电路和A/D转换器的速度相适应,从而以最优的性能价格比来选择器件。

模拟选择开关

本资料由OKXIA视听皮带资源库www.okxia.cn提供 模拟开关介绍及应用电路 北阳电子技术有限公司保留对此文件修改之权利且不另行通知。北阳电子技术有限公司所提供之资讯相信为正确且可靠的,但并不保证本文件中绝无错误。请于向北阳电子技术有限公司提出订单前, 自行确定所使用之相关技术文件及规格为最新之版本。若因贵公司使用本公司之文件或产品,而涉及第三人之专利或著作权等智慧财产权之应用及配合时,则应由贵公司负责取得同意及授权,本公司仅单纯贩售产品,上述关于同意及授权,非属本公司应为保证之责任。又未经北阳电子技术有限公司之正式书面许可,本公司之所有产品不得用于医疗器材,維持生命系統及飞航等相关设备。 凌阳大学计划推广中心 北京市海淀区上地信息产业基地中黎科技园1号楼6层C段邮编:100085

目录 1编写目的 (3) 2芯片介绍及应用 (3) 2.1CD4052的介绍 (3) 2.2应用电路 (5) 3器件的选择 (6) 3.1器件的选择 (6)

1 编写目的 1、着重了解CD40××系列的模拟选择开关功能。 2、了解使用SPCE061A如何来控制。 2 芯片介绍及应用 2.1 CD4052的介绍 CD4052是一个双4选一的多路模拟选择开关,其使用真值表如表1所示 表1 应用时可以通过单片机对A/B的控制来选择输入哪一路,例如:需要从4路输入中选择第二路输入,假设使用的是Y组,那么单片机只需要分别给A和B送1和0即可选中该路,然后进行相应的处理, ※注意第6脚为使能脚,只有为0时,才会有通道被选中输出 芯片管脚图:

图1 TI- CD4052 图2 FSC-CD4052

CD4066模拟开关

开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066 的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051 引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当 “INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V, VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表1 输入状态 接通通道 INH C B A 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3” 0 1 0 0 “4” 0 1 0 1 “5” 0 1 1 0 “6” 0 1 1 1 “7” 1 均不接通 3.双四路模拟开关CD4052 CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理(4066,4051-53) 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 表1

常用模拟开关芯片引脚,功能及应用电路

常用模拟开关芯片引脚,功能及应 用电路 ! m8r*}3V"d'w , n7x8L1z&B#r1a0Z3~ CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。$ \, \4F-]5}8 W6 G2 T 2 t$y5I&R!n6N&}4z 一、常用CMOS模拟开关功能及引脚介绍) ]) S f7 X; S& Z+ X 1.四双向模拟开关CD4066% b$ Y) P- k5 c3 \# _, |+ a 4 D7{6F T4v8e,S,y CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。. V"T!S1O,h#n O 2.单八路模拟开关CD4051 n*L+X%k._+L CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。& Q/]9t"F8o,`7J(q 表1 附件: 您所在的用户组无法下载或查看附件, 保暖

模拟开关的技术特性和应用

模拟开关的关键技术特性和应用实例分析 近年来,便携式产品越来越多地采用多源设计,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。 尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。 模拟开关的模拟特性 许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性: 1. 导通电阻(R on)随输入信号(V IN)变化而变化 图1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两个对偶的N沟道MOSFET与P沟道MOSFET构成,可使信号双向传输,如果将不同V IN值所对应的P沟道MOSFET与N沟道MOSFET的导通电阻并联,可得到图1b并联结构下R on随输入电压(V IN)的变化关系,如果不考虑温度、电源电压的影响,R on随V in呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,R on也受电源电压的影响,通常随着电源电压的上升而减小。 图1:a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系 2. 模拟开关输入有严格的输入信号范围 由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。 3. 注入电荷

正确选择CMOS模拟开关的建议..

正确选择CMOS模拟开关的建议 集成模拟开关常常用作模拟信号与数字控制器的接口。当今市场上的模拟开关数量众多,产品设计人员需要考虑多项性能标准。同时也有许多35年前开发的标准CMOS开关已经发展为专用的开关电路。 本文回顾标准CMOS模拟开关的基本结构并介绍常见模拟开关参数,例如导通电阻(RON)、RON平坦度、漏电流、电荷注入及关断隔离。文中讨论最新模拟开关的性能改善:更好的开关特性、更低的供电电压,以及更小的封装。也介绍了专用的特性,例如故障保护、ESD保护、校准型多路复用器(cal-mux)和加载-感应功能。介绍了适用于视频、高速USB、HDMI和PCIe的专用开关。 标准模拟开关基础 传统模拟开关的结构如图1所示。将n沟道MOSFET与p沟道MOSFET 并联,可使信号在两个方向上同等顺畅地通过。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决定。由于开关对电流流向不存在选择问题,因而也没有严格的输入端与输出端之分。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS或是TTL逻辑、以及模拟电源电压是单或是双,对数字输入信号进行所需的电平转换。 图1. 采用并联n沟道和p沟道MOSFET的典型模拟开关的内部结构 现在,许多半导体制造商都提供诸如早期CD4066这样的传统模拟开关。有些最新设计的模拟开关与这些早期开关的引脚兼容,但性能更高。例如,有些与CD4066引脚兼容的器件(例如MAX4610)相对于原来的CD4066具有更低的RON和更高的精度。

对基本模拟开关结构也有一些功能性改变。有些低电容模拟开关在信号通路中只使用n沟道MOSFET(例如MAX4887),省去了较大的大幅降低模拟开关带宽的p沟道MOSFET。 其它采用单个正电源轨工作的模拟开关采用电荷泵,允许负信号电压。例如,MAX14504音频开关工作在+2.3VCC至+5.5VCC单电源,采用内部电荷泵,允许-VCC至+VCC的信号无失真通过。除功能改善外,工业上许多最新模拟开关的封装比早期的器件更小。 导通电阻(RON)开关降低信号损耗 在VIN为各种电平条件下,p沟道和n沟道RON的并联值形成并联结构的RON特征(图2)。RON随VIN的变化曲线在不考虑温度、电源电压和模拟输入电压对RON影响的情况下为直线。为使信号损耗和传输延迟最小,理想情况下的RON应尽量小。然而,降低RON将增大MOSFET硅片的宽度/长度(W/L)比,从而造成较高的寄生电容和较大的硅片面积。这种较大的寄生电容降低模拟开关的带宽。如果不考虑W和L,RON是电子和空穴迁移率(μn和μp)、氧化物电容(COX)、门限电压(VT)及信号电压、n沟道及p沟道MOSFET的信号电压VGS (VIN)的复合函数,如式1a和1b 所示。 将RON和寄生电容最小化,同时改善整个温度和电压范围内RON相对于VIN的线性度,往往是设计新产品的首要目的。 图2. RON与VIN的关系。图1中的n沟道和p沟道RON构成一个复合的低 值RON

模拟开关电路介绍

模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。模拟开关在电子设备中主要起接通信号或断开信号的作用。由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。 一、模拟开关的电路组成及工作原理 模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。模拟开关的真值表见表一。 表一 模拟开关的工作原理如下: 当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。 当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。 当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。

从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。 二、常用的CMOS模拟开关集成电路 根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。现将常用的模拟开关集成电路的型号、名称及特性列入表二中。 表二常用的模拟开关 三、CD4066模拟开关集成电路的应用举例 CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。使用时选通端是不允许悬空的。 下面介绍CD4066模拟开关的两个应用实例。 1.采样信号保持电路 采样信号保持电路如图二所示。 图二采样信号保持电路 模拟信号Ui从运算放大器的同相输人端输人。当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。当采样结束时,使模拟开关控制端为低电平,模拟开关断开。由于模拟开关断开时的电阻高达100M以上,且运放A2的输人阻抗也极高,故电容C上可以保持采样信号。

CMOS模拟开关的选择与典型应用

一、前言: 早期的模拟开关大多工作于±20V 的电源电压,导通电阻为几百欧姆,主要用于模拟信 号与数字控制的接口,近几年,集成模拟开关的性能有了很大的提高,它们可工作在非常低的电源电压,具有较低的导通电阻、微型封装尺寸和极佳的开关特性。被广泛用于测试设备、通讯产品、PBX/PABX 设备以及多媒体系统等。一些具有低导通电阻和低工作电压的模拟开关 成为机械式继电器的理想替代品。 模拟开关的使用方法比较简单,但在具体应用中应根据实际用途做合理的选择。本文主 要介绍模拟开关的基本特性和几种特殊模拟开关的典型应用。 二、正确选择CMOS开关: 1、导通电阻:传统模拟开关的结构如图1 所示,它由N 沟道MOSFET 与P 沟道MOSFET 并联构成,可使信号双向传输,如果将不同V IN值所对应的P 沟道MOSFET 与N 沟道MOSFET 的导通电阻并联,可得到图2 并联结构下导通电阻(R ON)随输入电压(V IN)的变化关系,如果不 考虑温度、电源电压的影响,R ON 随V IN 呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD),这是设计人员所不希望的,如何将R ON随V IN的变化量降至最小也是设计新一代模拟开关所面临的一个关键问题。

另外,导通电阻还与开关的供电电压有关,由 图3 可以看出:R ON随着电源电压的减小而增大,当 MAX4601的电源电压为5V 时,最大R ON为8Ω;当电 源电压为12V 时,最大R ON为3Ω;电源电压为24V 时,最大R ON仅为2.5Ω。R ON的存在会使信号电压产 生跌落,跌落量与流过开关的电流成正比,对于适 当的电流这一跌落量在系统容许的误差范围内,而 要降低R ON所耗费的成本却很高,因此,应根据实际 需要加以权衡。R ON 确定后,还需考虑通道间的失配 度与R ON的平坦度。ATMEL代理通道失配度用来描述同一芯片不 同通道间R ON 的差别;R ON 的平坦度用于描述每一通 道的R ON在所规定的信号范围内的变化量。这两个参 数的典型值为2Ω至5Ω,对于低R ON 模拟开关,这 些参数仅为0.5Ω。失配度/R ON、平坦度/R ON 这两个 比值越小,说明模拟开关的精度越高。 注入电荷:低R ON 并非适用于所有的应用,较低的R ON 需要占据较大的芯片面积,从而产生较大的输入电容,在每个开关周期其充电和放电过程会消耗更多的电流。时间常数t = RC,充电时间取决于负载电阻(R)和电容(C),一般持续几十ns。这说明低R ON开关具有更长的导通和关断时间。Maxim 提供两种类型的开关,每种开关都有微型SOT23 封装,MAX4501 和MAX4502 的导通电阻较高,但开关速度较快;MAX4514 和MAX4515 具有较低的导通电阻,但开关时间较长。 3、系统电源:为单电源供电系统选择模拟开关时,应尽量选择那些专为单电源供电而设计的产品,这类开关不需要单独的V-和GND引脚,节省了一个引脚,能够把一个单刀双掷(SPDT)开关封装在微小的SOT23-6 中。同样,低电压双电源供电系统需选用双电源供电开关,它们

多路复用器和模拟开关

多路复用器和模拟开关 多路复用器(MULTIPLEXER也称为数据选择器)是用来选择数字信号通路的;模拟开 关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的,所以模拟开关也能 传递数字信号。 在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。但是TTL的多路复用器就不能选择模拟信号.。 用CMOS勺多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为 1; 或者用单电源供电,而使模拟信号的变化中值在1/2电源电压上,传递之后再恢复到原来 的值。 一、常用CMO模拟开关引脚功能和工作原理 1. 四双向模拟开关 CD4066 CD4066的引脚功能如下图所示。每个封装内部有4个独立的模拟开关,每个模拟开关 有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止 时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模 拟信号的上限频率为 40MHz各开关间的串扰很小,典型值为一50dB。 2. 单八路模拟开关 CD4051 CD4051引脚功能如下图所示。CD4051相当于一个单刀八掷开关,开关接通哪一通道, 由输入的3位地址码ABC来决定。“INH”是禁止端,当“ INH” =1时,各通道均不接通。此外,CD4051还设有另外一个电源端 VEE以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMO电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰—峰值达 15V 的交流信号。例如,若模拟开关的供电电源VDD斗5V, VSS=0V 当VEE=- 5V时,只要对此模拟开关施加0?5V的数字控制信号,就可控制幅度范围为-5V? + 5V的模拟信号。

常用模拟开关

常用模拟开关 关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个 独立的模拟开关,每个模拟开关有输入、输出、控制三个端 子,其中输入端和输出端可互换。当控制端加高电平时,开关 导通;当控制端加低电平时开关截止。模拟开关导通时,导通 电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看 成为开路。模拟开关可传输数字信号和模拟信号,可传输的 模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 图1 CD4066的引脚功能 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 图2 CD4051引脚功能 表1 CD4051真值表

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理ˇ4066ˇ4051-53ˇ 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器ˇ当给驱动继电器的驱动电路加高电平或低电平时ˇ继电器就吸合或释放ˇ其触点接通或断开电路。CMOS模拟开关是一种可控开关ˇ它不ˇ继电器那样可以用在大电流、高电压场合ˇ只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双ˇ模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关ˇ每个模拟开关有输入、输出、控制三个端子ˇ其中输入端和输出端可互换。当控制端加高电平时ˇ开关导通ˇ当控制端加低电平时开关截止。模拟开关导通时ˇ导通电阻为几十欧姆ˇ模拟开关截止时ˇ呈ˇ很高的阻抗ˇ可以看成为开路。模拟开关可传输数字信号和模拟信号ˇ可传输的模拟信号的上ˇ频率为40MHZ。各开关间的串扰很小ˇ典型值为ˇ50dB。 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051ˇ当于一个单刀八掷开关ˇ开关接通哪一通道ˇ由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端ˇ当“INH”=1时ˇ各通道均不接通。此外ˇ CD4051还设有另外一个电源端VEEˇ以作为电平位移时使用ˇ从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关ˇ并使这种多路开关可传输峰ˇ峰值达15V 的交流信号。例如ˇ若模拟开关的供电电源VDD=ˇ5VˇVSS=0Vˇ当VEE=ˇ5V时ˇ只要对此模拟开关施加0~5V的数字控制信号ˇ就可控制幅度范围为ˇ5V~ˇ5V的模拟信号。 表1 输入状态接通通道 INH C B A 0 0 0 0“0” 0 0 0 1“1” 0 0 1 0“2” 0 0 1 1“3” 0 1 0 0“4”

ADG619_620_2选1模拟开关

CMOS, ±5 V/+5 V, 4 Ω, Single SPDT Switches ADG619/ADG620 Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 https://www.360docs.net/doc/5714953864.html, Fax: 781.461.3113 ?2001–2007 Analog Devices, Inc. All rights reserved. FEATURES 6.5 Ω (maximum) on resistance 0.8 Ω (maximum) on-resistance flatness 2.7 V to 5.5 V single supply ±2.7 V to ±5.5 V dual supply Rail-to-rail operation 8-lead SOT-23, 8-lead MSOP Typical power consumption (<0.1 μW) TTL-/CMOS-compatible inputs APPLICATIONS Automatic test equipment Power routing Communication systems Data acquisition systems Sample-and-hold systems Avionics Relay replacement Battery-powered systems FUNCTIONAL BLOCK DIAGRAM IN S2 S1 D NOTES 1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.026 1 7 - 1 Figure 1. GENERAL DESCRIPTION The ADG619/ADG620 are monolithic, CMOS single-pole double-throw (SPDT) switches. Each switch conducts equally well in both directions when the device is on. The ADG619/ADG620 offer a low on resistance of 4 Ω, which is matched to within 0.7 Ω between channels. These switches also provide low power dissipation, yet result in high switching speeds. The ADG619 exhibits break-before-make switching action, thus preventing momentary shorting when switching channels. The ADG620 exhibits make-before-break action. The ADG619/ADG620 are available in an 8-lead SOT-23 and an 8-lead MSOP. PRODUCT HIGHLIGHTS 1.Low on resistance (R ON): 4 Ω typical. 2.Dual ±2.7 V to ±5.5 V or single 2.7 V to 5.5 V supplies. 3.Low power dissipation. 4. Fast t ON/t OFF. 5.Tiny, 8-lead SOT-23 and 8-lead MSOP. Table 1. Truth Table for the ADG619/ADG620 IN Switch S1 Switch S2 0 On Off 1 Off On

模拟开关的选用

CMOS
±20V ( Maxim RON MAX4601 +4.5V +36V ± 4.5V ± 20V RON +5V 8? +12V 3? +24V
MAX4601 ) 2.5? ( 3)
– Maxim
RON 2.5? +2V 4 +5V
±15V CMOS : : CD4066 MAX4066 N MOSFET P 1 MOSFET
RON (?) 250
±12V 3.3V
5V
ON-RESISTANCE vs. VIN
P-CHANNEL 200
150
MOSFET CMOS TTL
100
N-CHANNEL
50
0 -15 -10 -5 0 VIN (V) 5 10 15
VIN ( RON ) (
P ( 2)
N )
MOSFET RON VIN
2. 1 N P
RON
10 9 8 7 VIN N-CHANNEL BODY S G D BODY S G V+ D RON (?) OUT 6 5 4 3 2 1 0 0 2
MAX4601/MAX4602/MAX4603 ON-RESISTANCE vs. VCOM (SINGLE SUPPLY)
V+ = 5V
V+ = 12V V+ = 24V
LOGIC 1 = ON
4
6
8 10 12 14 16 18 20 22 24 VCOM (V)
1.
N
P
MOSFET
3.
7

模拟开关介绍与应用

模拟开关介绍与应用 模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。模拟开关在电子设备中主要起接通信号或断开信号的作用。由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。 一、模拟开关的电路组成及工作原理 模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。模拟开关的真值表见表一。 表一 模拟开关的工作原理如下: 当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。 当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。

当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。 从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。 二、常用的CMOS模拟开关集成电路 根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。现将常用的模拟开关集成电路的型号、名称及特性列入表二中。 表二常用的模拟开关 三、CD4066模拟开关集成电路的应用举例 CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。使用时选通端是不允许悬空的。 下面介绍CD4066模拟开关的两个应用实例。 1.采样信号保持电路 采样信号保持电路如图二所 示。 图二采样信号保持电路 模拟信号Ui从运算放大器的同相输人端输人。当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。当采样结束时,使模拟开关控制

常用CMOS模拟开关功能和原理(CD40xx)

本页已使用福昕阅读器进行编辑。 福昕软件(C)2005-2007,版权所有, 仅供试用。 常用CMOS模拟开关功能和原理 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器, 当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接 通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大 电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字 信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每 个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制 端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电 阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传 输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串 扰很小,典型值为-50dB。 图1 CD4066的引脚功能 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一 通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当 “INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作 为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提 供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达

15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 图2 CD4051引脚功能 表1 CD4051真值表 3.双四路模拟开关CD4052 CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。 图3 CD4052的引脚功能

CMOS 模拟开关的选择与典型应用模拟开关的选择与典型应用模拟开关

CMOS 模拟开关的选择与典型应用 Maxim 公司北京办事处 魏智 编译 一、前言: 早期的模拟开关大多工作于±20V 的电源电压,导通电阻为几百欧姆,主要用于模拟信号与数字控制的接口,近几年,集成模拟开关的性能有了很大的提高,它们可工作在非常低的电源电压,具有较低的导通电阻、微型封装尺寸和极佳的开关特性。被广泛用于测试设备、通讯产品、PBX/PABX 设备以及多媒体系统等。一些具有低导通电阻和低工作电压的模拟开关成为机械式继电器的理想替代品。 模拟开关的使用方法比较简单,但在具体应用中应根据实际用途做合理的选择。本文主要介绍模拟开关的基本特性和几种特殊模拟开关的典型应用。 二、正确选择CMOS 开关: 1、导通电阻:传统模拟开关的结构如图1所示,它由N 沟道MOSFET 与P 沟道MOSFET 并联构成,可使信号双向传输,如果将不同V IN 值所对应的P 沟道MOSFET 与N 沟道MOSFET 的导通电阻并联,可得到图2并联结构下导通电阻(R ON )随输入电压(V IN )的变化关系,如果不考虑温度、电源电压的影响,R ON 随V IN 呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD ),这是设计人员所不希望的,如何将R ON 随V IN 的变化量降至最小也是设计新一代模拟开关所面临的一个关键问题。 另外,导通电阻还与开关的供电电压有关,由 图3可以看出:R ON 随着电源电压的减小而增大,当 MAX4601的电源电压为5V 时,最大R ON 为8Ω;当电 源电压为12V 时,最大R ON 为3Ω;电源电压为24V 时,最大R ON 仅为2.5Ω。R ON 的存在会使信号电压产 生跌落,跌落量与流过开关的电流成正比,对于适 当的电流这一跌落量在系统容许的误差范围内,而 要降低R ON 所耗费的成本却很高,因此,应根据实际 需要加以权衡。R ON 确定后,还需考虑通道间的失配 度与R ON 的平坦度。通道失配度用来描述同一芯片不 同通道间R ON 的差别;R ON 的平坦度用于描述每一通 道的R ON 在所规定的信号范围内的变化量。这两个参 数的典型值为2Ω至5Ω,对于低R ON 模拟开关,这 些参数仅为0.5Ω。失配度/R ON 、平坦度/R ON 这两个 比值越小,说明模拟开关的精度越高。 2、注入电荷:低R ON 并非适用于所有的应用,较低的R ON 需要占据较大的芯片面积,从而产

模拟开关CD4051的应用要点

模拟开关CD4051的应用要点 1、使用单电源时,CD4051的VEE可以和GND相连。 2、强烈建议A,B,C三路片选端要加上拉电阻。 3、CD4051的公共输出端不要加滤波电容(并联到地),否则不同通道转换后的电压经电容冲放电后会引起极大的误差。 4、禁止输出端(INH)为高电平时,所有输出切断,所以在应用时此端接地。作音频信号切换时,最好在输入输出端串入隔直电容。 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS 模拟开关是一种可控开关,它不像继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号,CD4051是最常用的模拟开关。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见图1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS 电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V 的交流信号。 图1 CD4051真值表 CD4051导通电阻小,CD4051在常温下的导通电阻为几百欧姆.供电电压范围较宽,速度相对较快,控制简单,适合作为量程转换模块中选择放大反馈回路的开关。但是,多路模拟开关也有其不利的地方。其导通电阻不恒定,随电源电压的增大而减小;控制信号电平也随电源电压增大而增大,在使用时需根据现场实际情况综合考虑,添加必要的外围电路,保证其工作正常。在电源电压的选择上要结合实际需要,适当增大。

相关文档
最新文档