HT6871S_Datasheet_CN_3.5W单声道D类功放

HT6871S_Datasheet_CN_3.5W单声道D类功放
HT6871S_Datasheet_CN_3.5W单声道D类功放

专业功率放大器桥接单声道输出如何使用

专业功率放大器桥接单声道输出如何使用 专业功率放大器在桥接单声道输出模式,工作模式选择开关打向桥接单声道输出(BTL)模式,输入信号从功率放大器的左声道输入口加入,用左声道音量控制旋钮(LEVEL)同时控制左声道、右声道两路输出信号的电压大小,此时右声道输入口和音量控制旋钮(LEVEL)的信号通路都已在内部被开关切断,左声道输出的是与输入信号同相位、幅度被放大了的信号,右声道输出的是与输入信号反相位、幅度与左声道输出信号幅度绝对值相同的信号,如图5-3中标有BTL文字所指两路波形。这种输出模式也只要一路输入信号即可,通常在音箱额定输入电功率很大时使用,用一台立体声功率放大器的两路功率放大器共同推动一只音箱,由于左声道、右声道输出是同幅度、反相位,所以加到音箱上的电压是单路输出电压的2倍,那么功率就是4倍了,所以一般应该将左声道的音量控制旋钮(LEVEL)从最小开始慢慢往大调节,到音量满足要求为止。从波形图中看到,由于左声道功率放大器的输出是与输入信号同相位的,所以左声道功率放大器的红色(正端)输出接线柱应该接音箱的红色接线柱(正端),右声道功率放大器的红色(正端)输出接线柱应该接音箱的黑色接线柱(负端),接线示意图如图所示。由于一台立体声功率放大器只能推动一只音箱,所以一对音箱就需要两台相同的立体声功率放大器来推动,但是接线时不论推动的是左音箱,还是右音箱,接线方法都是左声道功率放大器的红色(正端)输出接线柱应该接音箱的红色接线柱(正端),右声道功率放大器的红色(正端)输出接线柱应该接音箱的黑色接线柱(负端),其区分左、右声道的是前面设备输出的是左声道信号,还是右声道信号加到处于BTL工作模式的立体声功率放大器,如果是取自前面设备的左声道信号,则功放输出用来推动左音箱,反之,如果是取自前面设备的右声道信号,则功放输出用来推动右 音箱。 收藏分享

流行的及常用的6款发烧IC音频功率放大器

流行的及常用的6款发烧IC音频功率放大器 6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA7293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 关键词: 音频功率放大器功率IC TDA7294 TDA7293 应用 LM1875 LM4766 LM3886 一、6片IC简介 本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。 虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。 1. LM1875 LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。它采用TO-220封装,外围元件少,性能优异,直到现在还一直被广泛应用于音响上。LM1875价格低廉,最适合于不想花太多钱又想过发烧瘾的爱好者业余制

3W单声道AB类音频功率放大器

3W单声道AB类音频功率放大器 概述 LPA4871是一款3W、单声道AB类音频功率放大器。工作电压2.5-5.5V,以BTL桥接方式,在5V电源供电情况下,可以给4Ω负载提供THD小于10%、平均3.0W的输出功率。在关断模式下,电流典型值小于0.5μA。 LPA4871是为提供足功率、高保真音频输出而专门设计的,它仅需少量的外围器件,输出不需要外接耦合电容或上举电容,采用SOP-8封装,节约电路面积,非常适合移动电话及各种移动设备等使用低电压、低功耗应用方案上使用。 应用 ◆移动电话(手机等) ◆扩音器,蓝牙音响等 ◆收音机 ◆GPS,电子狗,行车记录仪 ◆语音玩具等特征 ◆工作电压:2.5 - 5.5V ◆创新的“开关/切换噪声”抑制技术,杜绝了上电、 掉电出现的噪声 ◆10% THD+N,VDD=5V,4Ω负载下,提供高达 2.9W的输出功率 ◆10% THD+N,VDD=5V,8Ω负载下,提供高达 1.8W的输出功率 ◆关断电流< 0.5μA ◆过温保护 ◆SOP-8封装 订购信息 LPA4871□□□ F: 无铅 封装类型 SO: SOP-8

封装及引脚配置 Bypass +IN -IN GND VDD VO1 VO2 图1. LPA4871的管脚定义图 典型应用电路 音频输入

音频输入 图3. LPA4871差分输入模式电路图 最大额定值 附注1:最大功耗取决于三个因素:T JMAX ,T A ,θJA ,它的计算公式P DMAX =(T JMAX -T A )/θJA ,LPA4871的T JMAX =150℃。T A 为外部环境的温度,θJA 取决于不同的封装形式。(SOP 封装形式为140℃/W )

[音频功率放大器] D类音频功放IC的原理及特点

D类音频功放IC的原理及特点 1 D类音频功放IC系统结构 D类放大器由积分移相、PWM调制模块、G栅级驱动、开关MOSFET 电路、Logic辅助、输出滤波、负反馈、保护电路等部分组成。流程上首先将模拟输入信号调制成PWM方波信号,经过调制的PWM信号通过驱动电路驱动功率输出级,然后通过低通滤波滤除高频载波信号,原始信号被恢复,驱动扬声器发声,如图1所示。 2 调制级(PWM-Modulation) 调制级就是A/D转换,对输入模拟音频信号采样,形成高低电平形式数字PWM信号。图2中,比较器同相输入端接音频信号源,反向端接功放内部时钟产生的三角波信号。在音频输入端信号电平高于三角波信号时,比较器输出高电平VH,反之,输出低电平VL,并将输入正弦波信号转换为宽度随正弦波幅度变化的PWM波。这是D类功放核心之一,必须要求三角波线性度好,振

荡频率稳定,比较器精度高,速度快,产生的PWM方波上升、下降沿陡峭,深入调制措施参见文献[2]。 3 全桥输出级 输出级是开关型放大器,输出摆幅为VCC,电路结构如图3所示。将MOSFET等效为理想开关,关断时,导通电流为零,无功率消耗;导通时,两端电压依然趋近为零,虽有电流存在,但功耗仍趋近零;整个工作周期,MOSFET 基本无功率消耗,所以理论上D类功放的转换效率可接近100%,但考虑辅助电路功耗及MOSFET传导损耗,整体转换效率一般可达90%左右。因为转换效率很高,所以芯片本身消耗的热能小,温升也才很小,完全可以不考虑散热不良,因此被称为绿色能效D类功放。 对全桥,进一步减小导通损耗,要使MOSFET漏源的导通电阻RON尽量小。选取低开关频率和栅源电容小的MOSFET,加强前置驱动器的驱动能力。

(整理)正确使用好功放IC.

正确使用好功放IC 80年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。进入80年代后,国内开始 研制生产出一些小功率的功放IC,但由于这些功放IC的性能指标不佳,尤其是可靠性比较差,很快就 被国外生产的功放IC所取代。日本生产的HA1392、TA7240曾经是80年代用得非常普遍的功放IC。HA 1392与TA7240的输出功率都只有4W ~ 6W。HA1392的工作频率上限较低,电源极性接反就即刻损 坏。TA7240的外围电路设计难度较大,静音控制易受外界干扰而产生误动作。意法SGS公司在80年代 初开发生产的TDA2030A算是比较好的一款功放IC,它的输出功率能够达到12W以上。尽管SGS公司 在TDA2030A基础上又研制出TDA2040、TDA2050功放IC,使输出功率能够达到24W,但由于它们的 电源适用范围只有±22V,如果使用未经稳压的整流滤波直流电供电,它们实际上都只能给4Ω负载输 出12W功率。美国NS公司在80年代开发生产的LM1875功放IC,比SGS公司生产的TDA2030A功放IC 输出功率高出一倍,原因就在于它的电源适用范围可以达到±30V。如果使用稳压直流电供电,TDA20 30A与LM1875实际上都能在±18V供电条件下给4Ω负载输出24W正弦波有效功率。而且提高供电电压,除了使LM1875在更低的输出功率下发生功耗过载保护动作外,并不能增大输出功率。作为早期开 发的功放器件,TDA2030A与LM1875都没有静音控制功能,对电源纹波的抑制能力也不够强。荷兰菲 利普公司在意法SGS公司推出TDA2030A之后不久,也开发生产出一款性能指标类同的TDA1521Q双功 放IC。该款功放IC的电源适用范围也是±22V,能够同时给两个4Ω负载分别输出12W功率。由于TDA1 521Q已把决定放大倍率的负反馈电路做在IC内部,使用上相对比较简便。此后,菏兰菲利普公司又推 出一款型号为TDA1514A的高性能功放IC,产品介绍资料上称它能够输出40W的功率。但是,实际的使 用实验证明:在使用稳压直流电源供电的情况下,TDA1514A能够可靠工作的电源电压只到±18V,给 4Ω负载输出的正弦波有效功率为24W。如果将电源电压提高到±20V以上电压,TDA1514A将出现过 载保护动作,而且所进行的过载保护动作表现为半波截止输出。这样,人们只能把TDA1514A的工作电 压设计为与LM1875相同的工作电压。 在90年代以前,电子器件生产厂商提供的功放IC输出功率实际都在30W以下。在经过10多年的努力后,美国NS公司和意法SGS公司都在90年代期间相继开发生产出多款输出功率超过30W的功放IC芯片。其中,LM3876、LM3886是美国NS公司的代表作,TDA7294、TDA7295、TDA7296是意法SGS 公司的代表作。这些功放IC芯片都具有很小的安装体积和多项安全保护功能,使用上很可靠。但同时 也正因为功放IC芯片需要有很可靠的过热、过流、过压、过功耗等多项安全保护功能,生产厂家在设 计IC芯片的内部保护电路时,可能会因为所采取的检测方式过于敏感或欠成熟,出现一些不够良好的 问题。生产厂家没有在其产品介绍说明中将这些缺陷写出来,固然有可能是不希望自己的产品销售受 到影响,但更多的原因是他们自己也未必发现了这些缺陷,而需要用户在使用过程中将发现的问题反 馈给生产厂家,他们再去改进开发新的器件。譬如,美国NS公司的音响工程师曾给我推荐使用他们生 产的功放IC,其中有一款型号为LM4701(样品型号为LM4700),该款功放IC据说是替代LM1875的 器件,它具有静音控制功能,输出功率比LM1875高。但实际的使用证明:LM4701在推动4Ω负载时能 够正常工作,不出现误保护动作的电源电压不可以超过±20V,最大输出功率只有20W。如果电源电压 超过±20V,譬如为±22V时,输出功率不但不会增大,100Hz以下低声频段能够正常输出的功率会降 低到只有10W。虽然在±26V稳压电源供电下,LM4701可以给8Ω负载输出25W功率,但因其电源实用 范围只有±32V,在使用非稳压直流电源供电情况下,LM4701可以给8Ω负载输出的功率还达不到20 W。又譬如,意法SGS公司生产的TDA7264双功放IC,产品介绍资料中标明它的最高工作电压为±25 V,最大输出电流为4A,比TDA2030A的性能指标(最高工作电压为±22V,最大输出电流为3.5A)要

DS_BL6331--防破音3W单声道D类音频功放(CN,V1.0)

防破音、3W 单声道D类音频功率放大器 特性 z专业的防破音(Non-Clip)功能: 采用特有的平滑增益调整技术,确保声音大而不破。最大不 失真限幅功率高达 800mW(V DD=4.2v, R L=8?) z根据应用环境和音质需求,三种工作模式可选 NC1、NC2、NC_OFF z高输出功率 3W(V DD=5.0V, R L=8?, THD+N=10%) 0.82W(V DD=3.6V, R L=8?, THD+N=10%) z低 THD+N (0.06% @ V DD = 3.6V, R L=8?, P O=0.4W, 1kH Z) z宽电压工作范围:2.1V-5.5V z高效率(88%@RL=8Ω,Po=0.4W) z良好的Pop-Click抑制能力 z高PSRR:-75dB (217HZ) z过流、过温、欠压全方位保护 z Operation Temperature Range: -40℃ to 85℃z小尺寸的 CSP-9 封装 应用 z手机 z MP3/PDA z GPS z各种小功率音频设备 引角分布图 概要 BL6331是一种输出功率可达3W的单声道防破音D 类音频功率放大器芯片。该芯片内部植入了特有的“平滑增益调整技术”,通过CTRL电平可选择NC1、NC2两种防破音模式,启动恢复时间可选,保证你热辣舒缓的音乐都有较好的Non-Clip效果。 BL6331采用小尺寸的CSP-9封装,且采用了无需滤波器的调制结构,有效减小了外围器件的数目和PCB板的面积,可显著降低系统成本。特别适合于音质要求高、应用面积小的便携式小功率音响领域。 典型应用图 引角定义 提示:CTRL是模拟输入信号,具体设置后面详述。 管脚 名称 描述 A1 IN+ 正向音频输入端 A2 VDD 电源正端 A3 VO+ BTL正向输出端 B1 AGND 模拟地端 B2 VREF 外接旁路电容 B3 PGND 功率地端 C1 IN- 反向音频输入端 C2 CTRL 工作模式控制端 C3 VO- BTL反向输出端

主流功放芯片介绍

低档运放JRC4558。这种运放是低档机器使用得最多的。现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。 运放之皇5532。如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。5532现在主要分开台湾、美国和PHILIPS生产的,日本也有。5532原来是美国SIGNE公司的产品,所以质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS 收购后,生产的5532商标使用的都是PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就稍微差一些,价格也最便,两三块便可以买到了。NE5532的封装和4558一样,都是DIP8脚双运放(功能引脚见图),声音特点总体来说属于温暖细腻型,驱动力强,但高音略显毛糙,低音偏肥。以前不少人认为它有少许的“胆味”,不过现在比它更有胆味的已有不少,相对来说就显得不是那么突出了。5532的电压适应范围非常宽,从正负3V至正负20V都能正常工作。它虽然是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采用。不过现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,所以有些不良商家还把4558擦掉字母后印上5532字样充当5532,一般外观粗糙,印字易擦掉,有少许经验的人也可以辨别。据说有8mA的电流温热才是正宗的音频用5532。 NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互影响,所以音色不但柔和、温暖和细腻,而且有较好的音乐味。它的电压适应范围也很宽,低到正负5V的电压也能保持良好的工作状态。由于以前著名的美国BGW-150功放采用5534作电压激励时,特意让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,所以现在一般都认为如果让正电源高出0.7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535是5532的升级产品,其特点是内电路更加简洁,且输出级采用全互补结构。转换速率比5532更高。不过有个缺点就是噪声较大,频带不够宽,底电压工作时性能不够好,所以用于模拟滤波时效果不如5532理想。但在工作电压大于或等于15V时用作线形放大电路,音乐味会比5532好一些,所以其价格也比5532要贵两三元,其引脚功能和5532一样。 双运放AD827。这枚是AD公司的较新产品,它原本是为视频电路设计的,所以它的增益带宽达50MHZ,SR达到300V/us,它与EL2244一样都是目前市场上电压反馈型双运放的顶级货,一般的运放难望其项背。其高频经营剔透,低频弹跳感优

功放IC常用选型与详细说明

功放IC常用选型与详细说明 前言: 小功率功放芯片的遍地开花,使的目前生产和开发蓝牙、MP3的音箱的公司,在功放选型上有很大的多样性和灵活性。但要选择一个合适的功放芯片,也是一件比较麻烦的事,特别是选一款工作电压较宽的功放芯片,更加不容易。下面我就针对我公司的功放芯片,给在家介绍一下。 先例出几款常用功放芯片的比较:QQ:298391364 从列表可以看出,我公司推出的HX系列功放芯片,工作电压和 输出功率明显的高于其它的功放。 HX8358资料介绍: 芯片功能说明: HX8358是一款超低EMI,无需滤波器,AB/D类可选式音频功率

放大器。6V工作电压时,最大驱动功率为8W(VDD=6V,2ΩBTL负载,THD<10%),音频范围内总谐波失真噪声小于1%,(20Hz~20KHz);HX8358的应用电路简单,只需极少数外围器件; HX8358输出不需要外接耦合电容或上举电容和 缓冲网络; HX8358采用ESOP8封装,特别适合用于小音 量、小体重的便携系统中; HX8358可以通过控制进入关断模式,从而减少 功耗; HX8358内部具有过热自动关断保护机制; HX8358工作稳定,通过配置外围电阻可以调整 放大器的电压增益,方便应用。 芯片功能主要特性: 超低EMI,高效率,音质优 AB/D类切换、单通道 VDD=6V,RL=2Ω,Po=8W,THD+N≤10% VDD=6V,RL=4Ω,Po=5W,THD+N≤10% (防失真关断模式) 宽工作电压范围2.5V—7V 优异的上掉电POP声抑制 采用ESOP8封装 芯片的基本应用:

手提电脑、台式电脑 扩音器 蓝牙音箱 HX8358原理框图: 典型应用电路: 注:以上应用图中元件说明:

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

SD8002A 3W 单声道带关断模式音频功率放大器

SD8002A 3W 单声道带关断模式音频功率放大器 Datasheet Version 1.0 Shouding 3W 单声道带关断模式音频功率放大器

SD8002A SD8002A SD8002A SD8002A SD8002A 3W 单声道带关断模式音频功率放大器 一.概述 是一种桥工音频功率放大器,使用5V 电源,且THD+N≤1.0%时,能给一个4Ω的负载提 供2W 的平均功率。 音频功率放大器是为提供高质量的输出功率而设计的,需要很少的外围设备,便可以提供高品质的输出功率。 不需要输出耦合电容,具有高电平关断模式,非常适合低功耗的便携式系统。可以通过外部电阻控制增益,并有补偿器件保证芯片的正常工作。 二. 重要规格 1.1KHz ,接4Ω负载(),平均输出功率为2W ,THD+N 1%(典型) 2.1kHz ,接4Ω负载,平均输出功率为3W ,THD +N 10%(典型) 3.关断电流 0.6 μA (典型) 4.输入电压范围 2.0~5.5V 三.特征 1. 无输出耦合电容 2. 外部电阻可调增益 3. 整体增益稳定 4. 热敏关断保护电路 5. 小尺寸 (SOP-8)封装形式 四.应用 1. 个人电脑 2. 便携式消费类电子产品 3. 无源扬声器 4. 玩具及游戏机 3W 单声道带关断模式音频功率放大器Shouding

五.芯片封装引脚分布 六.典型应用 3W 单声道带关断模式音频功率放大器Shouding

七.绝对最大额定值 电源电压 6.0V 焊接信息 存储温度 -65℃~+ 150℃ 气化态(60秒) 215 ℃ 输入电压 -0.3V ~V DD +0.3V 红外线(15秒) 220℃ 功耗 内部限制 热阻 ESD 磁化系数(人体模型) 3000V θJC (典型) 35°C/W ESD 磁化系数(机器模型) 250V θJA (典型) 140°C/W 结温 150℃ 八.工作额定值 温度范围:T MIN ≤T A ≤T MAX -40 ℃≤T A ≤+ 85℃ 电源电压 2.0V ≤V DD ≤5.5V 3W 单声道带关断模式音频功率放大器Shouding

几款最常用的音频功放芯片以及应用电路介绍

几款最常用的音频功放芯片以及应用电路介绍 来源:华强北IC代购网功放芯片就好像是多媒体播放设备的“心脏”,是为播放设备提供动力的部件,也是关系到音质的重要环节之一,其重要性自然不言而喻。于是有许多音频功放芯片的初学者就会好奇,要怎么才能选到合适的芯片呢?常用的音频功放芯片有哪些?下面华强北IC代购网搜集了几款最常用的音频功放芯片,以及功率放大集成电路介绍希望对大家的音频电路设计有帮助。 常用的音频功放芯片 1、LM1875 LM1875是最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的优点,还具有完整的保护电路,在同类型芯片中属于高档型号。 2、LM3886 同样是单声道设计,共有11个引脚,相对LM1875来说,LM3885具有更大的功率,更宽的动态,在其他参数上也有优势,所以只有在最高端多媒体音响才会采用LM3886作为音频功放芯片。 3、LM4766

网上通常的说法是,LM4766等于将两个LM3886封装在一起,为什么这样说呢?从性能参数来看,LM4766恰好和LM3886相当,甚至音色表色也是如出一辙。不过,由于LM4766引脚较多,业内人士常把它称之为“蜈蚣芯片”,在焊接的时候具有一定的难度。 功率放大集成电路分类介绍 1、二声道三维环绕声处理集成电路 音响系统中使用的二声道三维环绕声系统有SRS、Spatializer、Q Surround以及虚拟杜比环绕声系统。 2、杜比定向逻辑环绕声集成电路 杜比定向逻辑环绕声解码系统是经过杜比编码处理过的左、右二声迹信号调节还原成四声道音频信号。 3、数码环绕声解码集成电路 音响系统中使用的数码环绕声系统有杜比数码系统和DTS系统等,两种系统音频信号的记录与重放均为独立六声道。 4、电子音量控制集成电路 电子音量控制集成电路是采用直流电压或串行数据控制的可调增益放大器,其内部一般由衰减器、锁存器、移位寄存器和电平传唤电路组成。 5、电子转换开关集成电路 电子转换开关集成电路是采用直流电压或串行数据控制的额多路电子互锁开关集成电路,内部一般由逻辑控制、电平转换、锁存器、模拟开关等组成。 6、扬声器保护集成电路 扬声器保护集成电路可以在音频功放芯片出现故障、过载或过电压时将扬声器系统与功放电路断开,从而达到保护扬声器和功放电路的目的。扬声器保护集成电路内部一般由检测电路、触发器、静噪电路及继电器驱动电路等组成。

tpa2005d1-1.4W单声道,D类音频功放

FEATURES APPLICATIONS DESCRIPTION APPLICATION CIRCUIT Actual Solution Size 2.5 mm R R BGA)TPA2005D1 https://www.360docs.net/doc/5715995431.html, ...............................................................................................................................................................SLOS369F–JULY 2002–REVISED JULY 2008 1.4-W MONO FILTER-FREE CLASS-D AUDIO POWER AMPLIFIER BGA Package (ZQY)? 1.4W Into 8?From a 5V Supply at –3mm x 5mm MSOP PowerPAD?Package THD =10%(Typ) (DGN)?Maximum Battery Life and Minimum Heat –TPA2010D1Available in 1,45mm ×1,45mm WCSP (YZF)–Efficiency With an 8-?Speaker: ?Use TPA2006D1for 1.8V Logic Compatibility –84%at 400mW on Shutdown Pin –79%at 100mW – 2.8-mA Quiescent Current –0.5-μA Shutdown Current ?Ideal for Wireless or Cellular Handsets and ?Capable of Driving an PDAs 8-?Speaker (2.5V ≤V DD ≤5.5V)and a 4-?Speaker (2.5V ≤V DD ≤4.2V) ?Only Three External Components The TPA2005D1is a 1.4-W high efficiency filter-free class-D audio power amplifier in a MicroStar Junior?–Optimized PWM Output Stage Eliminates BGA,QFN,or MSOP package that requires only LC Output Filter three external components.–Internally Generated 250-kHz Switching Features like 84%efficiency,-71-dB PSRR at 217Frequency Eliminates Capacitor and Hz,improved RF-rectification immunity,and 15mm 2Resistor total PCB area make the TPA2005D1ideal for –Improved PSRR (-71dB at 217Hz)and cellular handsets.A fast start-up time of 9ms with Wide Supply Voltage (2.5V to 5.5V) minimal pop makes the TPA2005D1ideal for PDA Eliminates Need for a Voltage Regulator applications.–Fully Differential Design Reduces RF In cellular handsets,the earpiece,speaker phone,Rectification and Eliminates Bypass and melody ringer can each be driven by the Capacitor TPA2005D1.The device allows independent gain control by summing the signals from each function –Improved CMRR Eliminates Two Input while minimizing noise to only 48μV RMS .Coupling Capacitors ?Space Saving Package The TPA2005D1has short-circuit and thermal protection.–3mm ×3mm QFN package (DRB) –2,5mm ×2,5mm MicroStar Junior?Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

功放中经典芯片的DIY应用设计

功放中经典芯片的DIY应用设计 自从被黑胶和原版开盘迷住以后,对CD产品已不屑一顾,难道时代的进步带来的先进数码设备反而不及过时的模拟设备?虽然旧时的模拟音源有其优越的地方,但毕竟从耐用性和内容的多样性相对今天来说,已经难以满足需求,数字音源是唯一的选择。如果用LP的效果标准来要求CD,理论上并不存在困难,而在实际应用中能达到这种要求的产品少之又少,是什么原因?于是本人也异想天开地想通过实践来知道一些相关答案。D/A芯片的三驾马车TDA1541、AD1865、PCM63据说是三大传世经典颇受青睐,一直以来都有听过多款不同版本的产品,其中滋味难以用文字语言来表达,有进口厂机,也有DIY产品,好听耐听的都是借朋友的,自己拥有的机器都不太满意,呵呵。 先从这几个经典芯片入手试试,按照自己的想法制作,摸石头过河,看看自己能做出什么水平的DIY作品出来,是否可以达到大侠们的制作水平,我个人没有多大信心,因为数字电路平时很少有了解,只好临时抱佛脚恶补相关知识、学习网友的经验,张冠李戴拉郎配把各种不同用途的芯片组合成电路试试。 成功是需要付出努力的,一番折腾调教后,就这样先完成了以下两个东西。 1:首先制作的是目前论坛最热、名满天下的TDA1541,据说,制作这个DAC难度不小,我自己也有买过几个不同版本的成品PCB自己组装,最终效果不说了,有好有坏,我觉得这个D/A最难做到的是空间感或声场的深度以及底噪。这些做过的的DIY作业,某些版本的声卡测试指标做得很好,无奈听感却不甚理想,记得不止一次的看到明大侠和其他网友提到过布线的学问技巧,自己有看了一些相关理论,觉得这方面的确是好声的前提,这些经验需要借鉴。 电源质量是声音品质的基石,这点似乎已经是广大diyer的共识,但是各式各样的电路形式却令人眼花缭乱,LM317、337稳压目前被大多数的设计者应用,但是自己有一点经验:78系列的稳压效果最终表述的声音我更喜欢(个人观点,请勿拍砖),另外的原因是自己手头上这样的零件很多,扔了浪费。IV/LPF据说是DAC的重要部分,决定产品最终的声音风格,选择什么形式的LPF也费些脑筋,论坛有运放、仿马兰士的HDMA的,为了省略调试的麻烦我还是选用了运放组合(见下图), 这个输出电路看起来是个独臂老人,仔细分析电路似乎是设计者有意少画了一个下臂电阻,不然输出中点不可能是0电位,但是调整1.5k电阻还是可以调整输出管的电流,这也是选择这个电路的原因。中点输出不在0电位,对于有耦合电容的时候却不一定是坏事,曾经见过一些国外玩家在制作音箱分频器的时候,故意给里面的电容用电池加一定的偏压,这样做的好处是可以令到电容的相位失真减少(不知是真是假哦),因此,这里的电路中点不在0电位,也许正是设计者的初衷。 数字电路是标准的组合,大家的都一样,没什么特别的地方,连接好电路图就开始画板了,使用的软件是最简单的Sprint-Layout,热转印也是第一次做的,都是在论坛潜水学习的成果,方法过程这里就不累赘了。请看图吧。.. 通电工作后一切正常,哈哈,没有BUG,那个场管使用K170,输出管调整静态电流在8ma,中点3.9v. 2:第二个做好的是大名鼎鼎的AD1865N-K,据说,这是一个充满黑胶魅力的R2R D/A芯

主流功放芯片介绍

主流功放芯片介绍 运放之皇5532。如果有谁还没有听讲过它名字的话,那就还未称得上是音响爱好者。那个当年有运放皇之称的NE5532,与LM833、LF353、C A3240一起是老牌四大名运放,只是现在只有5532应用得最多。5532现在要紧分开台湾、美国和PHILIPS生产的,日本也有。5532原先是美国SIG NE公司的产品,因此质量最好的是带大S标志的美国产品,市面上要正宗的要卖8元以上,自从SIGNE被PHILIPS收购后,生产的5532商标使用的差不多上PHILIPS商标,质量和原品相当,只须4-5元。而台湾生产的质量就略微差一些,价格也最便,两三块便能够买到了。NE5532的封装和4558一样,差不多上DIP8脚双运放(功能引脚见图),声音特点总体来讲属于温顺细腻型,驱动力强,但高音略显毛糙,低音偏肥。往常许多人认为它有少许的“胆味”,只是现在比它更有胆味的已有许多,相对来讲就显得不是那么突出了。5532的电压适应范畴专门宽,从正负3V至正负20V 都能正常工作。它尽管是一个比较旧的运放型号,但现在仍被认为是性价比最高的音响用运放。是属于平民化的一种运放,被许多中底档的功放采纳。只是现在有太多的假冒NE5532,或非音频用的工业用品,由于5532的引脚功能和4558的相同,因此有些不良商家还把4558擦掉字母后印上5 532字样充当5532,一样外观粗糙,印字易擦掉,有少许体会的人也能够辨不。据讲有8mA的电流温热才是正宗的音频用5532。 NE5532还有两位兄弟NE5534和NE5535。5534是单运放,由于它分开了单运放,没有了双运放之间的相互阻碍,因此音色不但柔和、温顺和细腻,而且有较好的音乐味。它的电压适应范畴也专门宽,低到正负5V的电压也能保持良好的工作状态。由于往常闻名的美国BGW-150功放采纳5534作电压鼓舞时,专门让正电源电压高出0.7V,迫使其输出管工作于更完美的甲类状态,使得音质进一步改善,因此现在一样都认为如果让正电源高出0. 7V音质会更好。5534的引脚功能见(图),价格和5532相当。而NE5535

大功率音频功放IC芯片选型说明

大功率音频功放IC芯片选型说明 传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。

功放IC介绍-2016最新专业技术-韦思特

功放IC介绍-2016最新专业技术-韦思特

2016年最新专业功放IC介绍 一套良好的音响系统中功放的作用功不可没。功放,作为各类音响器材中的重要家族,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。简言之,功放指功率放大器,俗称“扩音机”,是音响系统中最基本的设备。 由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。现在市面上的功放五花八门的,一般人很难选择。为您讲解一下行业先进的功放型号及其特点。目前市面上应用范围比较广的数字功放(Digital Input)型号主要有,支持15W的NTP8810、NTP8812;支持20W的NTP8212G、NTP8204G、NTP8822、NTP8824、NTP8825;支持30W的NTP8214、NTP8230G、NTP8835等。这些功放具有以下十大优点 一、24Bit,96KHz高品质音频数据处理,支持Hi-Res音频系统; 所有功放IC都是按24Bit,96KHz的音频信号处理,满足Hi-Res音频系统的要求; 更好的还原逼真音质。市场上大多功放产品基本只

有48K的数据处理能力。 二、POST DRC设计,使多段DRC可用,最多可以划分 LDRC+HDRC+SUBDRC+POSTDRC四段DRC, 分频点单独可设,每段可独立操作; 三、APEQ的专利技术,在频段压限时,其他频段还可以独立提升,充分发挥喇叭最大效能 ( 代表型号有NTP8204、NTP8214、NTP8824) 使用普通 EQ 随着音量的增加,EQ增益比较大的点容易触发DRC 门限,导致音量无法继续上升 如果放宽DRC门限,增益较大的部分比较容易失 Max output

LM4871 ETK4871 3W单声道功放

一、概述 LM4871是一颗带关断模式的音频功放IC。在5V输入电压下工作时,负载(3Ω)上的平均功率为3W,且失真度不超过10%。而对于手提设备而言,当VDD作用于关断端时,LM4871将会进入关断模式,此时的功耗极低,IQ仅为0.6uA。 LM4871是专为大功率、高保真的应用场合所设计的音频功放IC。所需外围元件少且在2.0V~5.5V的输入电压下即可工作。 二、功能特点 无需输出耦合电容或外部缓冲电路。 稳定的增益输出。 外部增益设置。 封装形式:SOP8、SOP8-PP、DIP8、MSOP8。 三、应用 可应用于手提设备,台式电脑及低电压工作的音频设备。 四、管脚排列及说明

为驱动负载,运放设置成桥接方式。桥接方式不同于一些常见的运放电路把负载的一边接到地,在同等条件下能使负载产生4倍的输出功率。 功耗 使用桥接的运放电路,负载上产生的功耗也比较大,因此在规定电压的条件下,负载功耗如下: P DMAX = 4× (V DD)2/(2π2)R L 因此在5V输入,8?负载情况下,输出最大功耗为625mW。但是此算法得出的结果如下: P DMAX = (T JMAX-T A)/ θJA 注:SOP封装θJA=140°C/W,DIP封装θJA=107°C/W,MSOP封装θJA=210°C/W 基准电压 电压基准端的外接电容应尽可能的靠近SC8220,0.1μF的电容提高了内部偏置电压的稳定性并且减少了PSRR的影响。可以通过加大BYPASS端的对地电容值来改善PSRR。CB值的大小取决于对PSRR的要求。 关断功能 为了减少功耗,LM4871的关断端可以关闭外部的偏置电路。当关断端为低电平(LM4871)或高电平 (LM4871)时,运放关闭,LM4871不工作,这时LM4871的工作电流降低到0.6uA。当关断端电压略高于GND (LM4871)或略低于VDD(LM4871)时,LM4871B工作状态不稳定。所以,关断端应置于一个稳定的电压值,以免IC进入错误的工作状态。 在很多应用场合,关断端的电平转换都是由处理器来完成的。当使用单向闸刀开关实现电平转换时,可以在关断端加上拉或下拉电阻,这样当开关关断时,因上拉或下拉电阻的作用,使得LM4871关断端的电平处于一个正确的状态,以保证LM4871不会进入错误的工作状态。 六、极限参数(Ta=25℃) 七、电气参数(VDD=5V,RL=8Ω,Ta=25℃)

相关文档
最新文档