三相半波共阳极可控整流电路

1.三相半波共阳极可控整流电路

三相半波可控整流电路还可以把晶闸管的三个阳极接在一起,而三个阴极分别接到三相交流电源,形成共阳极的三相半波可控整流电路,其带电感性负载的电路如图1(a)所示。由于三个阳极是接在一起的,即是等电位的,所以对于螺栓式的晶闸管来说,可以将晶闸管的阳极固定在同一块大散热器上,散热效果好安装方便。但是,此电路的触发电路不能再像共阴极电路的触发电路那样,引出公共的一条接阴极的线,而且输出脉冲变压器二次侧绕组也不能有公共线,这就给调试和使用带来了不便。

图1.三相半波共阳极可控整流电路

(a)电路图(b)a=30°时波形图

共阳极的三相半波可控整流电路的工作原理与共阴极的一致,也是要晶闸管承受正向电压即其阳极电位高于阴极电位时,才可能导通。所以,共阳极的三只晶闸管VT2、VT4和VT6哪一只导通,要看哪一只的阴极电位低,触发脉冲应在三相交流电源相应相电压的负半周加上,而且三个管子的自然换相点在电源两相邻相电压负半周的交点,即图1(b)中的2、4、6点,故2、4、6的位置分别是与w相、u相、v相相连的晶闸管VT2、VT4和VT6的角的起始点。从图8.21(b)中可以看出,当时,输出全部在电源负半周。例如,在时刻触发晶闸管VT2,因其阴极电位最低,满足其导通的条件,故可以被触发导通,此时在负载上得到的输出电压为。至时,给VT4加触发脉冲,由于此时u相电压更负,故VT2会让位给VT4,而VT4的导通会立即使VT2承受反向的线电压而关断。同理,在时刻又会换相给v相的晶闸管VT6。由图1(a)可见,共阳极接法时的整流输出电压波形形状与共阴极时一样的,只是输出电压的极性相反。

从上面的讨论的三相半波电路中可以看出,不论是共阴极还是共阳极接法的电路,都只用了三只晶闸管,

所以接线都较简单,但其变压器绕组利用率较低,每相的二次侧绕组一周期最多工作,而且绕组中的电流(波形与相连的晶闸管的电流波形一样)还是单方向的,因此也会存在铁心的直流磁化现象;还有晶闸管承受的反向峰值电压较高(与三相桥式电路相比);另外,因电路中负载电流要经过电网零线,也会引起额外的损耗。正是由于上述局限,使得三相半波可控整流电路一般只用于中等偏小容量的场合。

1.1三相半波共阳极可控整流电路仿真电路图如图2所示:

图2三相半波共阳极可控整流电路

脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟分别为(α+120)/360*0.02,(α+240)/360*0.02,(α)/360*0.02。如图3,图4,图5所示

图3.脉冲参数设置

图4.脉冲参数设置

图5.脉冲参数设置

电源参数,频率50hz,电压100v,其相限角度分别为0°、120°、-120°如图6、图7、图8所示。

图6 电源参数设置

图7 电源参数设置

单相半波可控整流电路设计

电力电子技术课程设计说明书 单相半波可控整流电路设计 学生姓名:学号: 学生姓名:学号: 学院:计算机与控制工程学院 专业:电气工程及其自动化 指导教师: 2016年月

中北大学 课程设计任务书 2015/2016 学年第一学期 学院:计算机与控制工程学院 专业:电气工程及其自动化 学生姓名:学号: 学生姓名学号: 课程设计题目:单相半波可控整流电路设计 起迄日期: 2015年12月27日~ 2016年1月8日课程设计地点:德怀楼八层虚拟仿真实验室 指导教师: 学科部副主任: 下达任务书日期: 2015 年 12月 26日

课 程 设 计 任 务 书 1.设计目的: 1) 了解并掌握电力电子电路的一般设计方法,具备初步的独立设计能力 2) 学习Visio 绘图软件和Matlab 仿真软件 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 1) 设计的电路为单相半波可控整流电路,负载为电阻负载。 2) 已知参数:直流负载电阻5L R =Ω,单相交流电压100cos100U t π= (V), 3) 绘制电路原理图。首先,分别分析并计算电阻两端平均电压25L U V =和30L U V =时,功率管相对应的触发角。其次,按照原理图,在仿真软件中建立仿真模型,验证计算结果,结果应包含电阻两端平均电压25L U V =和30L U V =时的电路工作的波形图。并对仿真结果进行必要的文字分析。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 1) 根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定器件类型,可供选择的变流器件为晶闸管、Mosfet 和IGBT ,设计电路原理图; 2) 画出电路方框图,完成电路各部分的指标分配,计算各单元电路的参数和确定各元件的参数值,叙述主要元器件的功能及他们之间的控制关系和数据传输。 3) 用Visio 绘图软件绘制电路原理图 4) 利用Matlab 仿真软件对电路图进行仿真分析。 课 程 设 计 任 务 书

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

电力电子技术—单相半波可控整流电路

电力电子技术—单相半波可 控整流电路 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

整流电路 1、单相半波可控整流电路 电阻负载: 注:电阻负载的特点是电压d u 与电流d i 成正比,两者波形相同。 g u :触发脉冲;α:触发角;θ:导通角 1、直流输出电压平均值: ()()2 145.0122sin 221222ααπωωππαCOS U COS U t td U U d +=+==? 2、相控方式:通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式

阻感负载: 1、流过电感的电流变化时,在其两端产生感应电动势dt di L ,它的极性反过来阻止电流减小。L 的存在使d i 不能突变,d i 从0开始增加。 2、2u 由正变负的过零点处,d i 已经处于减小的过程中,但尚未降到零,因此VT 仍处于通态。 3、2t ω时刻,d i 降至零,VT 关断并立即承受反压。 4、由于电感的存在延迟了VT 的关断时刻,使d u 波形出现负的部分,与带电阻负载时相比其平均值d U 下降。 5、 ()22L R Z ω+=,R L ω?arctan =

6、若?为定值,ɑ角大,θ越小。若ɑ为定值,?越大,θ越大,且平均值 U d 越接近零。 阻感负载(带续流二极管): i连续,且其波形接近一条水平线。 1、若L足够大, d 2、流过晶闸管的电流平均值IdT 和有效值IT 分别为: 续流二极管的电流平均值IdDR 和有效值IDR 分别为:

3、其移相范围为180°,其承受的最大正反向电压均为2u的峰值即 2U。续流 2 二极管承受的电压为-ud ,其最大反向电压为 2U,亦为u2 的峰值。 2

三相半波可控整流电路

三相半波可控整流电路

1. 电阻负载 (1) 工作原理 三相半波可控整流电路如图1 a) 所示。为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。此时,三个二极管对应的相电压中哪一个的值最大,则该相所对应的 二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,波形如图1 d) 所示。在一个周期中,器件工作情况如下:在ωt1~ωt2期 间,α相电压最高,VD1导通,u d= u a;在ωt2~ωt3期间,b 相电压最高, VD2导通,u d= u b;在ωt3~ωt4期间,c 相电压最高,VD3导通,u d= u c。此后,在下一周期相当于ωt1的位置即ωt4时刻,VD1又导通,重复前一周期的工作情况。如此,一周期中VD1、VD2、VD3轮流导通,每管各导通120o。u d波形为三个相电压在正半周期的包络线。 在相电压的交点ωt1、ωt2、ωt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0o,要改变触发角只能是在此基础上增大,即沿时间坐标轴向右移。若在自然换相点处触发相应的晶闸管导通,则电

路的工作情况与以上分析的二极管整流工作情况一样。由单相可控整流电路可知,各种单相可控整流电路的自然换相点是变压器二次电压u2的过零点。 当α= 0o时,变压器二次侧 a 相绕组和晶闸管VT1的电流波形如图1 e) 所示,另两相电流波形形状相同,相位依次滞后120o,可见变压器二次绕组电流有直流分量。 图1 f) 是VT1两端的电压波形,由3段组成:第1段, VT1导通期间,为一管压降,可近似为u VT1=0;第2段,在VT1关断后,,VT2导通期间,u VT1= u a-u b = u ab ,为一段线电压;第3段,在VT3导通期间,u VT1= u a-u c = u ac 为另一段线电压。即晶闸管电压由一段管压降和两段线电压组成。由图可见, α= 0o时,晶闸管承受的两段线电压均为负值,随着α增大,晶闸管承受的电压中正的部分逐渐增多。其他两管上的电压波形形状相同,相位依次差120o。 增大α值,将脉冲后移,整流电路的工作情况相应地发生变化。 图2 是α=30o时的波形。从输出电压、电流的波形可看出,这时负载电流处于连续和断续的临界状态,各相仍导电120o。 如果α >30o,例如α =60o时,整流电压的波形如图3 所示,当导通一相的相电压过零变负时,该相晶闸管关断。此时下一相晶闸管虽承受正电压,但它的触发脉冲还未到,不会导通,因此输出电压电流均为零,直到触发脉冲出现为止。这种情况下,负载电流断续,各晶闸管导通角为90o,小于120o 若α角继续增大,整流电压将越来越小,α=150o时,整流输出电压为零。故电阻负载时α角的移相范围为150o。 (2) 负载电压 整流电压平均值的计算分两种情况: 1) α≤30o时,负载电流连续,有 当α= 0 时,U d最大,为U d= U d0=1.17U2. 2) α >30o时,负载电流断续,晶闸管导通角减小,此时有

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

单相半波可控整流电路教学实例

单相半波可控整流电路教学实例 发表时间:2019-07-03T16:34:11.227Z 来源:《教育学》2019年7月总第182期作者:徐敏隋璐娜 [导读] 本文作者以单相半波可控整流电路教学实例阐述了其整体授课思路,结合企业实际,如何使用任务驱动教学法,六步法完成任务的思路,逐步引导学生深入研究单相半波可控整流电路的原理,规范安装调试操作过程。 青岛市技师学院山东青岛266229 摘要:本文作者以单相半波可控整流电路教学实例阐述了其整体授课思路,结合企业实际,如何使用任务驱动教学法,六步法完成任务的思路,逐步引导学生深入研究单相半波可控整流电路的原理,规范安装调试操作过程。 关键词:单相半波可控整流电路任务驱动教学法安装调试 随着电力电子技术在现代企业应用的普及,开设电气、机电专业的职业学校都会安排电力电子技术这门课程,而且电力电子技术方面的题目在电工高级工及以上等级鉴定题库占比重越来越多。而电力电子课程理论性比较强,更加抽象,应用到其它专业课程内容进行分析,难度大一些,学生学习会相对困难。教学要从学生角度出发,了解他们的当前基础,制定适合的教学计划,目标是学生学会。教学也要从企业角度出发,培养企业需要的人才,通过和生产一线技术与管理人员交流,深入生产现场调研,将企业的需求转化整合,制定课堂教学目标,设计教学方案。 单相半波可控整流电路是最简单的可控整流电路,也是学生接触的第一个可控整流电路,因此能够成功引起学生的学习兴趣,为今后分析复杂的可控整流与逆变电路打下良好的基础,会起到极为重要的作用。以一体化形式进行教学,理论实践相结合,分析电路原理和动手操作直接观察现象结合,符合认知发展规律,利于学生掌握知识与技能。 课题从企业开发新产品新型充电桩,让学生协助研究单相半波可控整流电路,测试电路的参数,使用任务驱动法导入。以企业提供的电路图图纸和需要测试的数据、记录波形变化的表格,为了完成企业交付的工作任务,引起学生对单相半波可控整流电路组成、原理、安装调试测试方法等内容的学习具有需求性。 老师带领学生按照完成任务的思路阅读图纸(见图1),制定工作计划如下:安装电路——调节参数——测量记录——计算绘图——核对验收——提交上报。为了更好体现工作场景,将全班分成若干小组,每个组布置测试不同控制角的参数,每个小组内再将任务分解,具体分配给每一名成员,通过全组学生的分工合作完成单相半波可控整流电路参数表和波形测试报告。参数记录表包括U2,Ud记录值,Ud/Ud计算值。波形测试报告包括电阻性负载、阻感负载,阻感负载加续流二极管的不同控制角Ud,UVT的波形。以此推动促进学生主动学习。 图1 对于计划中的每一项任务,都包含着理论与技能的学习训练。安装电路——学生通过识读电路图,了解到单相半波可控整流电路的组成,训练了识别元器件、看图接线的操作能力。调节参数——要在分析电路原理的基础上才能正确完成调整参数。通过调节单结晶体管触发电路的电位器RP1,改变晶闸管的控制角,如何正确读取控制角度大小,要会使用示波器测量波形,并保证调节准确,会判断各控制角的波形。测量记录——复习万用表、直流电压表的使用,能够熟练掌握常用仪表的使用方法。计算绘图——训练学生公式运用和规范绘图能力,具备基本计算能力。核对验收——让学生了解企业的工作程序,严谨认真对待每一项工作,每一个数字,培养对待工作的责任感,把职业素养养成教育融入其中。提交上报——郑重对待工作的临场感与完成任务的秩序观念养成教育。从小组配合完成任务,体验团队合作,互相配合,互相帮助的关系。用设计的表格量化评价小组(见表1)与学生(见表2)完成任务的情况,明确责任,便于查找问题原因。 表1. 单相半波可控整流电路安装调试验收项目 完成任务过程,教师要关注到各组的整体进度,还要照顾个别学生的操作,出现问题及时给予指导解答。多运用鼓励方式让学生积极探索,有意识锻炼理解力和操作能力强的学生去协助老师完成辅导任务。 将学生测量的数据汇总后,指导学生从不同角度对比分析。通过分析数据,可以对理论逐渐深入,更重要的是指导学生学习不能仅停留在表面浅层次,要细心观察进入更深的层次,能够运用以前学过的理论解释分析实践出现的现象。 完成任务后,安排实验完成出色的学生介绍经验,使全班能够分享到操作技巧和拓展延伸理论知识,也要列举学生出现失误的地方,

三相半波可控整流电路电阻性负载课程设计

三相半波可控整流电路电阻性负载 摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

1主电路设计及原理 1.1 主电路设计 其原理图如图1所示。 图1 三相半波可控整流电路原理图 为了得到零线,整流变压器的二次绕组必须接成星形,而一次绕组多接成三角形,使其3次谐波能够通过,减少高次谐波的影响。三个晶闸管的阳极分别接入u、v、w三相电源,它们的阴极连接在一起,称共阴极接法,这对触发电路有公共线者连线较方便,用得较广。 1.2 主电路原理说明

图 1.1 三相半波可控整流电路电阻负载α=00时的波形 图 1.2三相半波可控整流电路电阻负载α=300时的波形

图 1.3三相半波可控整流电路电阻负载α=600时的波形 稳定工作时,三个晶闸管的触发脉冲互差120o,规定ωt=π/6为控制角α的起点,称为自然换相点。三相半波共阴极可控整流电路自然换相点是三相电源相电压正半周波形的交叉点,在各相相电压的π/6处,即ωt1、ωt2、ωt3 ,自然换相点之间互差2π/3,三相脉冲也互差120o。 在ωt1时刻触发VT1,在ωt1~ωt2区间有uu>uv、uu>uw,u相电压最高,VT1承受正向电压而导通,输出电压ud=uu。其他晶闸管承受反向电压而不能导通。VT1通过的电流iT1与变压器二次侧u相电流波形相同,大小相等。 在ωt2时刻触发VT2,在ωt2~ωt3区间v相电压最高,由于uu<uv,VT2承受正向电压而导通,ud=uv。VT1两端电压uT1=uu-uv= uuv<0,晶闸管VT1承受反向电压关断。 在VT2导通期间,VT1两端电压uT1= uu-uv= uuv。在ωt2时刻发生的一相晶闸管导通变换为另一相晶闸管导通的过程称为换相。 在ωt3时刻触发VT3,在ωt3~ωt4区间w相电压最高,由于uv<uw,VT3承受正向电压而导通,ud=uw。VT2两端电压uT2= uv-uw=uvw<0,晶闸管VT2承受反向电压关断。在VT3导通期间VT1两端电压uT1= uu-uw= uuw。 这样在一周期内,VT1只导通2π/3,在其余4π/3时间承受反向电压而处于关断状态。只有承受高电压的晶闸管元件才能被触发导通,输出电压ud波形是相电压的一部分,每周期脉动三次,是三相电源相电压正半波完整包络线,输出电流id与输出电压ud波形相同(id=ud/R)。 电阻性负载α=0o时,VT1在VT2、VT3导通时仅承受反压,随着α的增 加,晶闸管承受正向电压增加;其他两个晶闸管承受的电压波形相同,仅相位依

三相半波整流电路论文设计

电力电子技术课程设计 题目:三相半波整流电路的设计 作者:伟龙 学号: 指导教师:宁 专业班级:13级电气工程及其自动化本科2班 工业学院 2015年12月21日

目录 一、目录 (1) 二、引言 1.1 什么是电力电子技术 (2) 1.2 整流电路的应用领域及分类 (2) 三、设计目的及意义 (3) 四、设计的要求和容 4.1 三相半波整流电路电阻负载原理组成 (3) 4.2 三相半波整流电路电阻负载原理图 (4) 4.3 三相半波整流电路原理波形分析 (4) 4.4 三相半波整流电路的保护电路 (6) 五、三相半波整流电路数量计算 5.1 输出值的计算 (7) 5.2 晶闸管电流有效值 (8) 5.3 晶闸管额定电流 (8) 六、Matlab软件电脑仿真原理图 6.1 电阻负载Matlab原理图仿真 (8) 6.2 阻感负载Matlab原理图仿真 (9) 6.3 电阻负载Matlab波形图仿真 (9) 七、心得体会 (11) 八、参考文献 (12) 九、致 (12)

二、引言 2.1 什么是电力电子技术 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统量应用。 2.2 整流电路的应用领域及分类 工业中广泛使用的整流电路的目的是把国家电网中的交流电能转换为直流电能。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用 当整流负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,又因为整流电路应用非常广泛,在三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波可控整流电路的基础上进行分析,因此本次我们要做的实践是三相半波可控整流电路。

基于Simulink的三相半波可控整流电路仿真

基于Simulink的三相半波可控整流电路仿真 一、实验目的: 通过Simulink进行三相半波可控整流电路仿真模型的建立,进一步理解其电路原理。并观察在不同负载情况下,改变晶闸管控制角α对电路输出的影响。 二、实验原理: 三相半波可控整流电路如图1所示。电路由三相交流电源、晶闸管、负载及触发电路组成。改变晶闸管的控制角可以调节输出直流电压和电流的大小。此次仿真实验过程分为建立仿真模型、设置模型参数和观察仿真结果。 图1 三、实验记录: (一)建立仿真模型: 在Simulink中将电路元件按相半波可控整流电路的原理图连接起来组成仿真电路。如图2所示。 图2 (二)设置模型参数: 设置三相电源电压幅值为220V,频率为50Hz,晶闸管采用脉冲触发器间隔120°交替触发,负载阻性时取R=5Ω,阻感负载时取R=5Ω,L=。 (四)模型仿真结果: 1、电阻负载(R=5Ω) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

(2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (3)α=60° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

2、阻感负载(R=5Ω,L=0.02H) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

单相半波整流电路教案 - 1

单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路、 教学重点和难点 单相半波整流电路的工作原理分析,输出电压极性和波形分析及负载直流电压电流的计算。 (一):师生互动环节(教师展示手机充电器对锂电池充电过程) 师:同学们我们现在使用的手机锂电池的低压直流电能是从哪里得来的呢? 生:是手机充电器供给的(学生异口同声的回答) 师:是的。充电器直接引入的是市电220V,50H Z的交流电能,而手机锂电池需要存储的是低压直流电能,那么请同学们思考下充电器是如何给锂电池充电的呢? 生:先降压后变换(少数学生能回答) 换成脉动的低压直流电能--------单相半波整流电路(板书) (一):单相半波整流电路的结构与工作原理(板书)(约43分钟) 教师提示:“单相”一词是指输入整流电路的交流电是单相交流电。而“半波”一词同学们可在下面讲授的半波整流原理中自己总结,到时老师请同学们回答。(任务驱动法教学可集中学生的听课注意力) 1:电路结构组成(板书) 2:工作原理(板书) 教师引导:输入整流电路的交流电压来自于电源变压器的二次绕组输出端,在分析整流原理时应将交流电压分成正、负半周两种情况来考虑。另外为了分析方便,变压器T应假设为无损耗的理想元件,整流二极管V应为理想二极管,负载为纯电阻性负载。 教师提问:①:上面分析了半波整流电路的工作原理,由此可以回答什么是半波整流。 (请学生回答) ②:若在上面图中把整流二极管V极性对调后整理电路的原理又怎样分析

三相半波可控整流电路课程设计(中北大学)

电力电子技术课程设计说明书 三相半波可控整流电路设计 学生姓名:李明雨学号:1307044353 学生姓名:李秋月学号:1307044357 学院:计算机与控制工程学院 专业:电气工程及其自动化 指导教师:李晓秦鹏 2016年 1月

中北大学 课程设计任务书2015/2016 学年第一学期 学院:计算机与控制工程学院 专业:电气工程及其自动化 学生姓名:李明雨学号:1307044353 学生姓名:李秋月学号:1307044357 课程设计题目:三相半波可控整流电路设计 起迄日期: 2015年12月27日~2016年1月8 日 课程设计地点:德怀楼八层虚拟仿真实验室 指导教师:李晓秦鹏 学科部副主任:刘天野 下达任务书日期: 2015 年 12月 26日

课 程 设 计 任 务 书 1.设计目的: 1) 了解并掌握电路的一般设计方法,具备初步的独立设计能力 2) 学习Visio 绘图软件和Matlab 仿真软件 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 1) 设计的电路为三相半波可控整流电路,负载为电阻负载。 2) 已知参数:直流负载电阻5L R =Ω,三相交流电压100cos100a U t π= (V), 2100cos(100)3b U t ππ=+ (V),2100cos(100)3 c U t ππ=- (V) 3) 绘制电路原理图。首先,分别分析并计算电阻两端平均电压82L U V =和72L U V =时,功率管相对应的触发角。其次,按照原理图,在仿真软件中建立仿真模型,验证计算结果,结果应包含电阻两端平均电压82L U V =和72L U V =时的电路工作的波形图。并对仿真结果进行必要的文字分析。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、 实物样品等〕: 1) 根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定器件类型,可供选择的变流器件为晶闸管、Mosfet 和IGBT ,设计电路原理图; 2) 画出电路方框图,完成电路各部分的指标分配,计算各单元电路的参数和确定各元件的参数值,叙述主要元器件的功能及他们之间的控制关系和数据传输。 3) 用Visio 绘图软件绘制电路原理图 4) 利用Matlab 仿真软件对电路图进行仿真分析。

三相半波可控整流电路

《电力电子技术》课程设计说明书三相半波可控整流电路 学院:电气与信息工程学院 学生姓名:XXX 指导教师:XXX 职称副教授 专业:电气工程及其自动化 班级:XXXX班 学号: 完成时间:2015年06月

摘要 三相整流电路有三相半波整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。 本文主要介绍三相半波可控整流电路的主电路、触发电路和保护电路的原理及电路仿真图,输入电压为三相交流线电压380V,通过降压变压器后由晶闸管转换为直流。触发电路控制晶闸管的导通,通过调节脉冲的触发角可得到不同的输出电压。本文利用Simulink对三相半波整流电路进行建模,对不同控制角、故障情况下进行了仿真分析,在触发角的调节范围为97°~150°时输出电压为0~100V。既进一步加深了三相半波整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 关键词:三相半波整流电路;晶闸管;MATLAB仿真

目录 1 设计目的及要求 (1) 1.1 设计目的 (1) 1.2 设计要求 (1) 1.2.1 设计课题 (1) 1.2.2 设计内容 (1) 2 主电路设计 (2) 2.1 主电路原理分析 (2) 2.2 触发角分析 (3) 2.3 主要元器件选择 (3) 2.3.1 晶闸管参数计算与选择 (3) 2.3.2 触发电路芯片选择 (3) 3 触发电路的设计 (5) 4 保护电路的设计 (6) 4.1 过压保护 (6) 4.1.1 过压的原因 (6) 4.1.2 过压保护的措施 (6) 4.2 过流保护 (6) 4.2.1 过流的原因 (6) 4.2.2 过流保护的措施 (7) 4.3 保护电路选择 (7) 5 MATLAB仿真 (8) 5.1 仿真软件MATLAB介绍 (8) 5.1.1 MATLAB简介 (8) 5.1.2 Simulink简介 (8) 5.1.3 Simulink启动与退出 (9) 5.2 MATLAB仿真模型 (10) 5.3 MATLAB仿真结果及分析 (10) 心得体会 (12)

三相半波共阳极可控整流电路

1.三相半波共阳极可控整流电路 三相半波可控整流电路还可以把晶闸管的三个阳极接在一起,而三个阴极分别接到三相交流电源,形成共阳极的三相半波可控整流电路,其带电感性负载的电路如图1(a)所示。由于三个阳极是接在一起的,即是等电位的,所以对于螺栓式的晶闸管来说,可以将晶闸管的阳极固定在同一块大散热器上,散热效果好安装方便。但是,此电路的触发电路不能再像共阴极电路的触发电路那样,引出公共的一条接阴极的线,而且输出脉冲变压器二次侧绕组也不能有公共线,这就给调试和使用带来了不便。 图1.三相半波共阳极可控整流电路 (a)电路图(b)a=30°时波形图 共阳极的三相半波可控整流电路的工作原理与共阴极的一致,也是要晶闸管承受正向电压即其阳极电位高于阴极电位时,才可能导通。所以,共阳极的三只晶闸管VT2、VT4和VT6哪一只导通,要看哪一只的阴极电位低,触发脉冲应在三相交流电源相应相电压的负半周加上,而且三个管子的自然换相点在电源两相邻相电压负半周的交点,即图1(b)中的2、4、6点,故2、4、6的位置分别是与w相、u相、v相 相连的晶闸管VT2、VT4和VT6的角的起始点。从图8.21(b)中可以看出,当时,输出全部在电源负半周。例如,在时刻触发晶闸管VT2,因其阴极电位最低,满足其导通的条件,故可以被触发导通,此时在负载上得到的输出电压为。至时,给VT4加触发脉冲,由于此时u相电压更负,

故VT2会让位给VT4,而VT4的导通会立即使VT2承受反向的线电压而关断。同理,在时刻又会换相给v相的晶闸管VT6。由图1(a)可见,共阳极接法时的整流输出电压波形形状与共阴极时一样的,只是输出电压的极性相反。 从上面的讨论的三相半波电路中可以看出,不论是共阴极还是共阳极接法的电路,都只用了三只晶闸管,所以接线都较简单,但其变压器绕组利用率较低,每相的二次侧绕组一周期最多工作,而且绕组中的 电流(波形与相连的晶闸管的电流波形一样)还是单方向的,因此也会存在铁心的直流磁化现象;还有晶闸管承受的反向峰值电压较高(与三相桥式电路相比);另外,因电路中负载电流要经过电网零线,也会引起额外的损耗。正是由于上述局限,使得三相半波可控整流电路一般只用于中等偏小容量的场合。 1.1三相半波共阳极可控整流电路仿真电路图如图2所示: 图2三相半波共阳极可控整流电路 脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟分别为(α+120)/360*0.02,(α+240)/360*0.02,(α)/360*0.02。如图3,图4,图5所示

单相半波可控整流电路教案

教案编号:LNJD-PR08-RE08 课程名称:电力电子技术 适用专业:电气自动化专业、2014级 授课班级:G14111 课程性质:必修 授课章节:2.1单相半波可控整流电路 授课学时:2学时 授课时间:2015年09月30日 教学目标: 知识目标:掌握单相半波可控整流电路电路图和电路分析; 能力目标:能认识电路;会分析电路; 素质目标:培养学生分析问题、解决问题的能力 教学重难点: 重点:电路分析及注意事项 难点:α的确定 授课方式:理论教学(多媒体教室) 教学方法:讲授法、PPT多媒体课件、讨论法、演示教学、问题教学、动画模拟 教学设计: 【一、导入】(板书)(15分钟) 情景:调关灯的电路结构,示波器输出波形? 引导提问1:整流电路,结构,组成? 2、晶闸管的导通条件和关断条件?【二、讲授新课】(板书+动画模拟+实物演示)(65分钟) 一、可控整流电路(板书)(10分钟) 结构框图(见板书) 讨论:比较可控整流和整流电路。 二、主电路(板书+动画模拟+实物)(10分钟) (一)电路图(实物观察):(见板书)(二)动画模拟接线: 三、电路分析(板书+动画模拟+实物)(40分钟) 负载特点: 导通角的确定:(结合整流电路进行分析)波形分析:(动画仿真,结合KP的导通条件和截止条件) 分析过程:(见板书) 实操:观察示波器波形,总结分析过程 练习1:通过提问和师生互动,完成α=60°的波形绘制。 练习2:让学生独立完成α=90°的波形绘制。(观察示波器波形) (动画仿真,学生练习,总结,掌握波形的绘制及方法。) 相关计算:(见板书) 练习3:计算α=90°的Ud? (教师引导,学生思考Ud与α的关系) 思考1:Ud什么时候最大,α? 思考2:Ud什么时候最小,α? 【三、小结】(5分钟) 学生总结,教师补充 【四、作业及自主学习】(5分钟) 课本113页,第二题,第三题,第四题;搜索电路应用视频,微课学习电路分析;教学后记:内容安排合理,能体现教学重难点,通过不同α的波形绘制,学生基本能够掌握电路的波形分析。 二、电路图: 三、电路分析: 负载特点:U=IR 脉冲:α (1)确定α 主要参考书目: 马宏骞编著,电力电子技术及应用项 目教程,北京:电子工业出版社,2011 *为本章重点,#为本章难点

单相半波整流电路教案

实验一、单相半波整流电路教案 教材分析 在小功率整流电路中,单相半波整流电路凭借其电路结构简单的特点广泛应用于电工电子技术中。学好本节的内容将为后续课程内容单相全波整流电路、单相桥式整流电路等打下良好的基础;同时也就是教材前面半导体二极管知识的一个重要应用,所以本节内容在顺序安排上起到了承上启下的作用。本节主要介绍了单相半波整流电路的结构、工作原理以及负载电压与电流,在讲授时教师应吃透教材,深入浅出,利用实验现象直观地帮助学生掌握本节知识,并设计问题给学生以启迪。 学生分析 电子电路理论普遍具有抽象性,而我们中职类学生基础较薄弱,所以中技生在学习基础理论的过程就较吃力,针对这一特点,本人直接通过实验的方法,利用直观现象来激发学生的学习兴趣,集中学生的听课注意力。在讲授本节内容时,本人在课堂上亲自演示用示波器测量单相半波整流电路的输入输出波形,学生可直观波形,对比波形来理解整流的作用与目的。另外结合整流电路应用于日常生活的电器(例如手机、MP3的充电器)来激发学生的学习整流电路的兴趣;在讲授整流原理时进行讲练结合,用任务驱动法来展开教学。整个教学过程中应充分利用教师的示范及学生亲自动手分析等,使学生逐步掌握分析电路的技能.要注意教给学生分析电路的方法,提高演示实验的可见度。在演示实验时最好边讲解,边操作.教师的演示将对学生起示范作用,因此要注意操作的规范性。 教学目标与价值观 情感目标:利用实物展示、演示实验现象来引导学生理解整流的概念与作用,激发学生的兴趣,促进教学的配合。 能力目标:帮助学生掌握单相半波整流电路的结构、工作原理及负载电压与电流的计算。 价值观:培养学生分析与检修整流电路故障的能力。 教学重点与难点 单相半波整流电路的工作原理分析,输出电压极性与波形分析及负载直流电压电流的计算。 课前教具准备 1N4007小功率整流二极管一只、手机充电器及其配套锂电池、示波器与事先制作好的单相半波整流电路。 教学方法 实物展示法、实验演示法、讲练结合法、启发诱导法 教学活动 一、复习提问(约3分钟) (1):教师拿出一个1N4007的小功率整流二极管复习半导体二极管的结构与符号。 (2):提问二极管的单向导电性并请同学们画出二极管的正、反向偏置电压的电路图。

三相半波可控整流电路的研究

三相半波可控整流电路的研究 一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-9。 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器. 5.双踪示波器。 6.万用电表。 五.注意事项 1.整流电路与三相电源连接时,一定要注意相序。 2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。

3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。 六.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL—18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。 2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V: (a)改变控制电压U ct,观察在不同触发移相角α时,可控整流电路的输出电压U d=f (t)与输出电流波形i d=f(t),并记录相应的U d、I d、U ct值。 (b)记录α=90°时的U d=f(t)及i d =f(t)的波形图。 (c)求取三相半波可控整流电路的输入—输出特性U d/U2=f(α)。 (d)求取三相半波可控整流电路的负载特性U d=f(I d) 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同 3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作 接入MCL—33的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。 (a)观察不同移相角α时的输出U d=f(t)、i d=f(t),并记录相应的U d、I d值,记录α=90°时的U d=f(t)、i d=f(t),U vt=f(t)波形图。 (b)求取整流电路的输入—输出特性U d/U2=f(α)。

单相半波可控整流电路实验报告

实验一、单相半波可控整流电路实验 王季诚(20101496) 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。 (3)了解续流二极管的作用。 二、实验所需挂件及附件

5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。

图3-6单相半波可控整流电路 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 (2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波

三相半波整流电路设计..

晶闸管三相半波整流电路的设计与 仿真说明书 学院:电信工程学院 班级:电气工程及其自动化(2)班 姓名:陈建龙 学号:09230220 指导老师:杨巧玲

摘要 三相整流电路有三相半波整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相半波整流电路进行建模,对不同控制角、故障情况下进行了仿真分析,既进一步加深了三相半波整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 关键词: 三相半波整流电路、晶闸管、MATLAB仿真

目录 第一章设计任务与设计要求 (4) 1、设计任务 (4) 2、设计要求 (5) 第二章方案设计 (6) 第三章系统设计 (7) 1、主电路设计 (7) 2、控制电路设计 (9) 3、保护电路设计 (12) 第四章系统参数计算 (16) 1、主电路参数计算 (16) 2、保护电路参数计算 (17) 第五章系统仿真 (19) 1、仿真电路 (19) 2、仿真参数 (19) 3、仿真波形 (20) 设计体会 (29) 参考文献 (30)

第一章、设计任务及要求 一、设计题目 三相半波整流电路的负载分析。 二、设计目标及技术要求 掌握三相半波整流电路的工作原理和分析方法,设计三相半波可控整流电路;利用MATLAB中的Simulink对三相半波整流电路进行建模,调整负载、触发角等参数进行系统仿真,输出相关波形并分析实验结果。 三、给定仿真或实验条件 晶闸管三相半波整流电路,参数要求: 电网频率 f=50Hz 电网额定电压 U=380v 负载性质:电阻(10Ω) 电阻(10Ω)、电感(10mH)。 四、具体设计过程要求 (1)了解整流和触发电路的基本原理。 (2)掌握三相半波可控整流电路的工作原理和设计方法,制定三相半波可控整流电路的设计方案。 (3)根据设计要求,选择合适的器件,组建整流主回路、控制回路。 (4)设计驱动电路、保护回路,并计算各器件参数。 (5)对系统进行建模、仿真,改变负载性质和负载大小,观察、绘制输出波形,并分析实验结果。 五、仿真、实验结果分析要求等 (1)熟悉matlab/simulink/power system中的仿真模块用法及功能; (2)根据设计电路搭建仿真模型; (3)设置不同负载参数并进行仿真; (4)绘制不同触发角时对应的电压电流波形。 六、设计的心得体会要求等 附主要参考书目 1、三相半波可控整流电路的负载分析

相关文档
最新文档