中考数学专题复习之二:待定系数法

中考数学专题复习之二:待定系数法
中考数学专题复习之二:待定系数法

【2013年中考攻略】专题2:待定系数法应用探讨

在数学问题中,若得知所求结果具有某种确定的形式,则可设定一些尚待确定的系数(或参数)来表示这样的结果,这些待确定的系数(或参数),称作待定系数。然后根据已知条件,选用恰当的方法,来确定这些系数,这种解决问题的方法叫待定系数法。待定系数法是数学中的基本方法之一。它渗透于初中数学教材的各个部分,在全国各地中考中有着广泛应用。

应用待定系数法解题以多项式的恒等知识为理论基础,通常有三种方法:比较系数法;代入特殊值法;消除待定系数法。

比较系数法:通过比较等式两端项的系数而得到方程(组),从而使问题获解。例如:“已知x2-3=(1-A)·x2+Bx+C,求A,B,C的值”,解答此题,并不困难,只需将右式与左式的多项式中对应项的系数加以比较后,就可得到A,B,C的值。这里的A,B,C 就是有待于确定的系数。

代入特殊值法:通过代入特殊值而得到方程(组),从而使问题获解。例如:“点(2,﹣3)在正比例函数图象上,求此正比例函数”,解答此题,只需设定正比例函数为y=kx,将(2,﹣3)代入即可得到k的值,从而求得正比例函数解析式。这里的k就是有待于确定的系数。

消除待定系数法:通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获

解。例如:“已知b2

a3

=,求

a b

a b

-

+

的值”,解答此题,只需设定

b2

=k

a3

=,则a=3k b=2k

,,

代入a b

a b

-

+

即可求解。这里的k就是消除的待定参数。

应用待定系数法解题的一般步骤是:

(1)确定所求问题的待定系数,建立条件与结果含有待定的系数的恒等式;

(2)根据恒等式列出含有待定的系数的方程(组);

(3)解方程(组)或消去待定系数,从而使问题得到解决。

在初中阶段和中考中应用待定系数法解题常常使用在代数式变型、分式求值、因式分解、求函数解析式、求解规律性问题、几何问题等方面。下面通过2011年和2012年全国各地中考的实例探讨其应用。

一.待定系数法在代数式变型中的应用:在应用待定系数法解有关代数式变型的问题中,根据右式与左式多项式中对应项的系数相等的原理列出方程(组),解出方程(组)即可求得答案。

典型例题:

例:(2011云南玉溪3分)若2x 6x k ++是完全平方式,则k =【 】

A .9

B .-9

C .±9

D .±3

【考点】待定系数法思想的应用。 练习题:

1.(2012江苏南通3分)已知x 2+16x +k 是完全平方式,则常数k 等于【 】

A .64

B .48

C .32

D .16

2.(2012贵州黔东南4分)二次三项式x 2

﹣kx+9是一个完全平方式,则k 的值是 ▲ 。

3.(2011江苏连云港3分)计算 (x +2) 2的结果为x 2+□x +4,则“□”中的数为【 】

A .-2

B .2

C .-4

D .4

4.(2011湖北荆州3分)将代数式2x 4x 1+-化成2(x p)q ++的形式为【 】

A.2(x 2)3-+

B.2(x 2)4+-

C.2(x 2)5+-

D.2(x 4)4++ 二. 待定系数法在分式求值中的应用:在一类分式求值问题中,已知一比例式求另一分式的值,可设定待定参数,把相关变量用它表示,代入所求分式,从而使问题获解。

典型例题:

例:(2012四川凉山4分)已知

b 5a 13=,则a b a b -+的值是【 】 A .23 B .32 C .94 D .49

【考点】比例的性质。

练习题:

1.(2012北京市5分)已知a b =023≠,求代数式5a 2b (a 2)(a+2b)(a 2b)

b ?---的值。 2.(2011四川巴中3分)若

a 22a

b 3=-,则b a = ▲ 。 三. 待定系数法在因式分解中的应用:在因式分解问题中,除正常应用提取公因式法、应用公式法、十字相乘法、分组分解法等解题外还可应用待定系数法求解,特别

对于三项以上多项式的分解有很大作用(如:

x 3-6x 2+11x -6,223x 5xy 2y x 9y 4+-++-,目前这类考题很少,但不失为一种有效的解题方法)。

典型例题:

例1:(2012湖北黄石3分)分解因式:2x x 2+-= ▲ 。

【考点】因式分解。

例2:分解因式:223x 5xy 2y x 9y 4+-++- ▲ 。

【考点】因式分解。

练习题:

1. (2012四川南充3分)分解因式:2x 4x 12-- = 。

2. (2012山东潍坊3分)分解因式:x 3—4x 2—12x= 。

3. (2011贵州黔东南4分)分解因式:=--822x x 。

四. 待定系数法在求函数解析式中的应用:待定系数法是解决求函数解析式问题的常用方法,求函数解析式是初中阶段待定系数法的一个主要用途。确定直线或曲线方程就是要确定方程中x 的系数与常数,我们常常先设它们为未知数,根据点在曲线上,点的坐标满足方程的关系,将已知的条件代入方程,求出待定的系数与常数。这是平面解析几何的重要内容,是求曲线方程的有效方法。初中阶段主要有正比例函数、一次函数、反比例函数、二次函数这几类函数,前面三种分别可设y=kx ,y=kx+b ,k y x

=的形式(其中k 、b 为待定系数,且k ≠0)。而二次函数可以根据题目所给条件的不同,设成一般式y=ax 2+bx+c(a 、b 、c 为待定系数),顶点式y=a (x -h) 2+k(a 、k 、h 为待定系数),交点式y=a (x -x 1)(x -x 2)( a 、x 1、x 2为待定系数)三类形式。根据题意(可以是语句形式,也可以是图象形式),确定出a 、b 、c 、k 、x 1、x 2等待定系数,求出函数解析式。

典型例题:

例1:(2012江苏南通3分)无论a 取什么实数,点P(a -1,2a -3)都在直线l 上,Q(m ,n)

是直线l 上的

点,则(2m -n +3)2的值等于 ▲ .

【考点】待定系数法,直线上点的坐标与方程的关系,求代数式的值。

例2:(2012山东聊城7分)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).

(1)求直线AB 的解析式;

(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.

【考点】待定系数法,直线上点的坐标与方程的关系。

【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式。

(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标。

例3:(2012湖南岳阳8分)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y(m3)与时间t(min)之间的函数关系式.

(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;

(2)问:排水、清洗、灌水各花多少时间?

【考点】一次函数的应用,待定系数法,直线上点的坐标与方程的关系。

【分析】(1)根据图象上点的坐标利用待定系数法分别得出排水阶段解析式,以及清洗阶段:y=0和灌水阶段解析式即可。

(2)根据(1)中所求解析式,即可得出图象与x轴交点坐标,即可得出答案。

例4:(2012湖南娄底3分)已知反比例函数的图象经过点(﹣1,2),则它的解析式是【】

A.

1

y

2x

=-B.

2

y

x

=-C.

2

y

x

=D.

1

y

x

=

【答案】B。

【考点】待定系数法求反比例函数解析式,曲线上点的坐标与方程的关系。

例5:(2012江苏连云港12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y

轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,

(1)求抛物线所对应的函数解析式;

(2)求△ABD的面积;

(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.

例6:(2012江苏无锡2分)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为▲ .

【答案】y=﹣x2+4x﹣3。

【考点】待定系数法,曲线上点的坐标与方程的关系。

例7:(2012浙江宁波12分)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B (2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;

(2)点P在x轴正半轴上,且PA=PC,求OP的长;

(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;

②若⊙M,求点M的坐标.

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,平行的判定和性质,相似三角形的判定和性质,解一元二次方程。

【分析】(1)根据与x轴的两个交点A、B的坐标,故设出交点式解析式,然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式。

(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可。

(3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C 下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是-2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标。

②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC 相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标。

练习题:

1.(2012上海市10分)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.

(1)求y关于x的函数解析式,并写出它的定义域;

(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.

(注:总成本=每吨的成本×生产数量)

2.(2012山东菏泽7分)如图,一次函数

2

y=x2

3

-+的图象分别与x轴、y轴交于点A、

B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.

3.(2012甘肃兰州4分)近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】

A.

400

y=

x

B.

1

y=

4x

C.

100

y=

x

D.

1

y=

400x

4.(2012广东佛山8分)(1)任选以下三个条件中的一个,求二次函数y=ax2+bx+c的解析式;

①y随x变化的部分数值规律如下表:

②有序数对(-1,0),(1,4),(3,0)满足y=ax2+bx+c;

③已知函数y=ax2+bx+c的图象的一部分(如图).

(2)直接写出二次函数y=ax2+bx+c的三个性质.

5.(2012山东莱芜12分)如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴

交于点C(0,3),

与x轴交于A、B两点.

(1)求抛物线的表达式;

(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;

(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否

存在点E,使

得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.

6. (2012山东潍坊11分)如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O 的直线y=kx 与抛物线交于M 、N 两点.分别过点C 、D(0,-2)作平行于x 轴的直线1l 、2l .

(1)求抛物线对应二次函数的解析式;

(2)求证以ON 为直径的圆与直线1l 相切;

(3)求线段MN 的长(用k 表示),并证明M 、N 两点到直线2l 的距离之和等于线段MN 的长.

五. 待定系数法在求解规律性问题中的应用: 近几年中考数学中常会出现一种寻找规律的题型,其中有一类实际是高中数学中的等差数列或二阶等差数列,由于初中没有学习它们的通项公式和递推法求二阶等差数列的通项,因此中考学生在确定数列的通项时有一定的困难。对于等差数列的通项公式()n 11a a n 1d dn a d =+-=+- (其中a 1为首项,d 为公差,n 为正整数),若将n 看成自变量, a n 看成函数,则a n 是关于n 的一次函数;若一列数a 1,a 2,…a n 满足n n 1a a kn b --=+ (其中k,b 为常数),则这列数是二阶等差数列,即每一后项减去前项得到一新的数列,这一新数列是等差数列。它的通项2n a an bn c =++是关于n

的二次函数。前面,我们讲过用待定系数法确定函数解析式,由于数列是特殊的函数,因此我们可以用待定系数法来确定等差数列和二阶等差数列的通项。

典型例题:

例1:(2012湖北孝感3分)2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦

举行,奥运会的年份与届数如下表所示:

表中n的值等于▲ .

【考点】分类归纳(数字的变化类),待定系数法。

例2:(2012山西省3分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是▲ .

【考点】分类归纳(图形的变化类),待定系数法。

例3:(2012湖南永州3分)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是▲ .

【答案】21。

【考点】新定义,分类归纳(数字的变化类),待定系数法。

练习题:

1.(2012山东济宁6分)问题情境:

用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?

建立模型:

有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.

解决问题:

根据以上步骤,请你解答“问题情境”.

2.(2012江苏宿迁3分)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是▲ .

3.(2012广西桂林3分)下图是在正方形网格中按规律填成的阴影,根据此规律,则第n

个图中阴影部

分小正方形的个数是▲ .

4.(2012青海省2分)观察下列一组图形:

它们是按一定规律排列的,依照此规律,第n 个图形中共有 ▲ 个★.

5.(2012浙江宁波6分)用同样大小的黑色棋子按如图所示的规律摆放:

(1)第5个图形有多少黑色棋子?

(2)第几个图形有2013颗黑色棋子?请说明理由.

六. 待定系数法在几何问题中的应用: 在几何问题中,常有一些比例问题(如相似三角形对应边成比例,平行线截线段成比例,锐角三角函数等),对于这类问题应用消除待定系数法,通过设定待定参数,把相关变量用它表示,代入所求,从而使问题获解。

典型例题:

例1:(2012江苏南京2分)如图,菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D’F ⊥CD 时,CF FD

的值为【 】

A. 12

B. 6

C. 16

D. 18

【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。

例2:(2012江苏扬州3分)如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3

=,那么tan ∠DCF 的值是 ▲ .

。 例3:(2012贵州铜仁10分)如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=

AC BC αα=角的角的邻边对边,根据上述角的余切定义,解下列问题:

(1)ctan30°= ;

(2)如图,已知tanA=4

3,其中∠A 为锐角,试求ctanA 的值.

例4:(2012江苏镇江11分)等边△ABC 的边长为2,P 是BC 边上的任一点(与B 、C 不重合),连接AP ,以AP 为边向两侧作等边△APD 和等边△APE ,分别与边AB 、AC 交于点M 、N (如图1)。

(1)求证:AM=AN ;

(2)设BP=x 。

①若,BM=38

,求x 的值;

②记四边形ADPE 与△ABC 重叠部分的面积为S ,求S 与x 之间的函数关系式以及S 的最小值;

③连接DE ,分别与边AB 、AC 交于点G 、H (如图2),当x 取何值时,∠BAD=150?并判断此时以DG 、GH 、HE 这三条线段为边构成的三角形是什么特殊三角形,请说明理由。

解得x=

12或x=32。 。

∴当x=1时,S 。 ③

∴当2时,∠BAD=150。

猜想:以DG 、GH 、HE 这三条线段为边

构成的三角形是直角三角形。

【考点】等边三角形的性质,全等三角形的判定和性质,相似三角

形的判定和性质,解一元二次方程,锐角三角函数定义,特殊角的三角函数值,二次函数的最值,菱形的判定和性质,勾股定理和逆定理。 练习题:

1. (2012江苏连云港3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是【 】

A 1

B 1

C .2.5

D 2. (2012广西河池3分)如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C

与点A 重合,

折痕为MN ,连结CN .若△CDN 的面积与△CMN 的面积比为1︰4,则 MN BM

的值为【 】

A.2 B.4 C.D.

3.(2012广西柳州10分)如图,AB是⊙O的直径,AC是弦.

(1)请你按下面步骤画图(画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑);

第一步,过点A作∠BAC的角平分线,交⊙O于点D;

第二步,过点D作AC的垂线,交AC的延长线于点E.

第三步,连接BD.

(2)求证:AD2=AE?AB;

(3)连接EO,交AD于点F,若5AC=3AB,求EO

FO

的值.

4.(2012黑龙江哈尔滨10分)已知:在△ABC中,∠ACB=900,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,A0=MN.(1)如图l,求证:PC=AN;

(2)如图2,点E是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,∠DKE=∠ABC,EF⊥PM于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ的长.

5. (2012四川泸州9分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,C 是的弧AD 中

点,弦CE ⊥AB

于点H ,连结AD ,分别交CE 、BC 于点P 、Q ,连结BD 。

(1)求证:P 是线段AQ 的中点;

(2)若⊙O 的半径为5,AQ=152

,求弦CE 的长。

中考数学专题复习之二:待定系数法

对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法.

【范例讲析】:

【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.

(1)求这个函数的解析式.

(2)求函数与直线y=-x+1的交点坐标.

【例2】一次函数的图象经过反比例函数x

y 8-

=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;

(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

【闯关夺冠】

1.已知:反比例函数和一次函数图象的一个交点为(-3,4),且一次函数的图象与x轴的交点到原点的距离为5,分别确定这两个函数的解析式。

2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C 点,点A、C的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学几何专题复习

几何专题 题型一考察概念基础知识点型 例1.如图1,等腰△ ABC的周长为21,底边BC = 5, AB的垂直平分线是DE,则△ BEC 的周长为_________________ 。 例2?如图2,菱形ABCD 中,~A 60° E、F是AB、AD的中点,若EF 2,菱形边长 ____________ 图1 图2 例3 已知AB是。O的直径,PB是。O的切线,AB = 3cm, PB = 4cm,贝U BC = _______________________________________________________________ . 题型二折叠题型:折叠题要从中找到对就相等的关系,然后利用勾股定理即可求解。 例4 D, E分别为AC , BC边的中点,沿DE折叠,若CDE 48°则APD等于_______________ 。例5如图4?矩形纸片ABCD的边长AB=4, AD=2 .将矩形纸片沿EF折叠,使点A与点C 重合,折 叠后在其一面着色(图),则着色部分的面积为() 积,侧面积,三角函数计算等。 例6如图3, P为。O外一点,PA切于A, AB是。O的直径,PB交。O于C, P心2cm PO 1cm,则图中阴影部分的面积S是() 八 5.3 2 5.3 2 5.32 2 23 2 A. cm B cm C cm D cm 2 4 4 2 【题型四】证明题型: 第二轮复习之几何(一)一一三角形全等 【判定方法1: SAS 例1.AC是菱形ABCD勺对角线,点E、F分别在边AB AD上,且AE=AF求证:△ ACE^A ACF

例2正方形ABCD中, AC为对角线,E为AC上一点,连接EB ED. (1)求证:△ BEC^A DEC

中考数学压轴题专题复习——旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF. (1)求证:四边形ABEF是菱形; (2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示). 【答案】(1)详见解析;(2)FE·sin(-90°) 【解析】 【分析】 (1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得 ∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论; (2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可. 【详解】 (1)∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠FAE=∠BEA, 由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF, ∴∠BAE=∠FEA, ∴AB∥FE, ∴四边形ABEF是平行四边形, 又BE=EF, ∴四边形ABEF是菱形; (2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.

∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B ∴∠1=∠2 又AM=NM,AB=MG ∴△ABM≌△MGN ∴∠B=∠3,NG=BM ∵MG=AB=BE ∴EG=AB=NG ∴∠4=∠ENG= (180°-)=90°- 又在菱形ABEF中,AB∥EF ∴∠FEC=∠B= ∴∠FEN=∠FEC-∠4=- (90°-)=-90° ②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN. 同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90° 综上所述,∠FEN=-90° ∴当点M在BC上运动时,点N在射线EH上运动(如图3) 当FN⊥EH时,FN最小,其最小值为FE·sin(-90°) 【点睛】 本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值. 2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

86中考数学几何专项训练及答案

中考数学几何专题训练含答案 1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点, 且∠BEH=∠HEG. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长. 2、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE. (1)如图1,连接线段BE、CD.求证:BE=CD; (2)如图2,连接DE交AB于点F.求证:F为DE中点.

3、如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F (1)求证:BF=AD+CF; (2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长. 4、在等腰梯形ABCD中,AD∥BC,AB=AD=CD,∠ABC=60°,延长AD到E,使DE=AD,延长DC到F,使DC=CF,连接BE、BF和EF. ⑴求证:△ABE≌△CFB; ⑵如果AD=6,tan∠EBC的值. A B D E C F

5、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF 分别交AB于G、H点(1)求证:FG=FH;(2)若∠E=60°,且AE=8时,求梯形AECD的面积. 6、如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE ∥AB,交∠BCD的平分线于点E,连接BE. (1)求证:BC=CD; (2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG; (3)延长BE交CD于点P.求证:P是CD的中点.

中考数学中考数学压轴题 复习专题强化试卷检测试卷

一、中考数学压轴题 1.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC (1)直接写出四边形ABCD 的形状:______; (2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F . ①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明); ②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式; (2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围) (3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.

九年级中考数学高频考点专题突破与提升策略(二次函数五大必考考点专题练习)

中考数学高频考点专题突破与提升策略(二次函数) 考点一:二次函数图像信息题 一.解决函数图象问题的一般步骤: 1.弄清题意,分析函数自变量的取值范围及分段. 2.分析各段上的函数的变化趋势. 3.确定函数表达式,根据函数的图象与性质作出判断. 二.典型题专练 1. 如图,下列各曲线中能够表示y是x的函数的是( ) 2. 小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间 t(min)的大致图象是( ) 3.如图,正方形ABCD的边长为2 cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1 cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为x s,△APQ的面积为y cm2,则下列图象中能大致表示y与x的函数关系的是( )

4. 如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm 的速度运动,同时动点N自D点出发沿折线DC-CB以每秒2 cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是 ( ) 考点二:二次函数的图象和性质 =ax2+bx 1.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y 1 与一次函数y =ax+b的大致图象不可能是( ) 2 2.抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( ) A.先向左平移3个单位,再向下平移2个单位 B.先向左平移6个单位,再向上平移7个单位 C.先向上平移2个单位,再向左平移3个单位 D.先向右平移3个单位,再向上平移2个单位

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学几何部分专题复习

1 / 3 数学几何部分专题复习 一、点到直线的距离垂线段最短 精炼1、点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E , PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值 为________ 二、等腰三角形底边上任意一点到两腰的距离之和等于腰上的 高 精炼: 如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点 122013,,,p p p ?,过(1,2,i p i =?,2013)作i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,则 111122222013201320132013PE PF P E P F P E P F ++++?++的值为_______________. 三、利用轴对称解决最短距离问题 几何模型: 条件:如图1,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA+PB 的值最小. 方法:作点A 关于直线l 的对称点A′,连接A′B 交l 于点P ,则PA+PB=A′B 的值最小(不必证明). 模型应用: (2)如图3,正方形ABCD 的边长为4,E 为AB 的中点,P 是AC 上一动点.连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB+PE 的最小值是 ; (3)如图4,在菱形ABCD 中,AB=10,∠DAB=60°,P 是对角线AC 上一动点,E 、F 分别是线段AB 和BC 上的动点,则PE+PF 的最小值是 . (4)如图5,在菱形ABCD 中,AB=6,∠B=60°,点G 是边CD 边的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF+ED 的最小值是 . (5)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 . 中考名题:1、长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一 圈到达点B ,那么所用细线最短需要______cm ;如果从点A 开始经过4个侧面缠绕圈到达点B ,那么所用细线最短需要______cm . 2、 如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m 的半圆,其边缘AB=CD=20cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为 m .(π取3) 3、如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为_________cm . 4、如图,在等腰梯形ABCD 中,AD=2,∠BCD=60°,对角线AC 平分∠BCD,E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA+PB 的最小值为 . 四、直角三角形斜边上的中线等于斜边的一半 精炼1、如图,已知BD 、CE 是ABC V 的两条高,M 、N 分别是BC 、DE 的中点,MN 与DE 有怎样的位置关系。请证明。 2、如图,在△ABC 中,BF 平分∠ABC,AF⊥BF 于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=10,BC=16,则线段EF 的长为( ) A .3 B .2 C .4 D .5 3、如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为 n 图3 图5 图4 B A 6cm 3cm 1cm 第1题图 第2题图 A B C D O F (第13题) E

中考数学提高题专题复习中考数学压轴题练习题及解析(1)

一、中考数学压轴题 1.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC , 连接CD 交AB 于E , (1)如图(1)求证:90AEC ∠=?; (2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接 MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠ (3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==?的面积等于8,求线段MN 的长度 2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y ) (1)如图2,ω=45°,矩形OABC 中的一边OA 在x 轴上,BC 与y 轴交于点D , OA =2,OC =1. ①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C .

②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 . ③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 . (2)若ω=120°,O 为坐标原点. ①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =23,求圆M 的半径及圆心M 的斜坐标. ②如图4,圆M 的圆心斜坐标为M (23,23),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 . 3.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”. (概念感知) (1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=?,试判断ABC 是否是“准黄金”三角形,请说明理由. (问题探究) (2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到 DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求 AB BC 的值. (拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上. 10 5 AB BC = ,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα?<

2020年中考数学必考34个考点专题33:最值问题

专题33 最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性 一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法 根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法 “最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质 在实数范围内,显然有a b k k 2 2 ++≥,当且仅当a b ==0时,等号成立,即a b k 2 2 ++的最小值为k 。 6. 零点区间讨论法 用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解 在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。 8. “夹逼法”求最值 在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。 专题知识回顾 专题典型题考法及解析

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

2020-2021哈尔滨备战中考数学压轴题专题复习——相似的综合

2020-2021哈尔滨备战中考数学压轴题专题复习——相似的综合 一、相似 1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1. (1)求点C的坐标(用含a的代数式表示); (2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式; (3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标. 【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1, 而抛物线与x轴的一个交点A的坐标为(﹣1,0) ∴抛物线与x轴的另一个交点B的坐标为(3,0) 设抛物线解析式为y=a(x+1)(x﹣3), 即y=ax2﹣2ax﹣3a, 当x=0时,y=﹣3a, ∴C(0,﹣3a) (2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a), ∴AB=4,OC=3a, ∴S△ACB= AB?OC=6, ∴6a=6,解得a=1, ∴抛物线解析式为y=x2﹣2x﹣3 (3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图, ∵点G与点C,点F与点A关于点Q成中心对称, ∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3, ∴OF=2m+1,HF=1,

当∠CGF=90°时, ∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°, ∴∠GQH=∠HGF, ∴Rt△QGH∽Rt△GFH, ∴ = ,即,解得m=9, ∴Q的坐标为(9,0); 当∠CFG=90°时, ∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°, ∴∠CFO=∠FGH, ∴Rt△GFH∽Rt△FCO, ∴ = ,即 = ,解得m=4, ∴Q的坐标为(4,0); ∠GCF=90°不存在, 综上所述,点Q的坐标为(4,0)或(9,0). 【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标; (2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB?OC=6可求得a的值,则解析式可求解; (3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。分两种情况讨论:①当∠CGF=90°时,由同角的余角相等可得∠GQH=∠HGF,于是根据有两个角相等的两个三角形相似可得 Rt△QGH∽Rt△GFH,则可得比例式,代入可求得m的值,则点Q的坐标可求解; ②当∠CFG=90°时,同理可得另一个Q坐标。 2.如图,在中,,点M是AC的中点,以AB为直径作 分别交于点. (1)求证:; (2)填空:

成都数学中考考点分析

中考数学复习建议 1 中考数学复习 经过本人对成都历年中考的分析以及解剖觉得,若要在中考数学轻松的高分,以及对高中数学打下牢实的基础,一下几个过程不可少。 无论你来自成都市还是成都附近的,都有自己的梦想的高中学校:四七九中、成外、实外、新都实验一中、新津一中、棠湖中学。。。。。。希望这个小小的总结能帮你实现梦想。 一、近年成都市中考试题分析 为了更好地做好中考复习,首先应对近年成都市中考试题作必要的分析. 1.整体特点 (1)主要考查重点知识点,无偏题怪题; (2)试卷结构、题型保持较平稳,但在不断寻求变化,推陈出新; (3)A卷除最后一题(20题)外,整体较简单、运算量也较小;B卷难度较大,区分度明显,充分体现选拔功能. 2.考点分布及分值统计 按国家初中数学学业考试命题指导研究组的要求:初中数学学业考试整卷应涉及全部二级知识点,即数与式、方程与不等式、函数、图形的认识、图形与变换、图形与坐标、图形与证明、统计、概率.三级知识点(共45个)的覆盖率不能低于85%.下表是近三年成都市中考数学试题中,“数与代数”、“空间与图形”、“统计与概率”三大板块分值占比情况的统计:

3、考点分析 从上表不难看出很多考点每年都考,且题型大体不变 ●选择、填空题常见考点: (1)科学计数法; (2)整式(幂)的运算; (3)函数自变量取值范围; (4)三视图; (5)几何变换与坐标; (6)与圆有关的角度或长度计算; (7)与圆锥有关的计算; (8)众数与中位数. ●计算题常见类型: (1)实数运算(含特殊角三角函数); (2)分式运算; (3)整式运算; (4)解不等式组; (5)解方程. ●解答题常见题型: (1)一次函数与反比例函数的综合; (2)用列表法或树状图求概率; (3)解直角三角形的应用; (4)以四边形为基架,结合全等或相似的证明与计算; (5)现实情景应用题; (6)以圆为基架的综合题; (7)以二次函数为基架的综合题. 4.命题趋势 (1)淡化纯概念和文字命题的考查(2)渗透参数思想,强化符号运算

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学压轴题专题复习——旋转的综合及详细答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.(探索发现) 如图,ABC ?是等边三角形,点D 为BC 边上一个动点,将ACD ?绕点A 逆时针旋转 60?得到AEF ?,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的: (1)请参考小明的思路写出证明过程; (2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用) 如图,在ABC ?中,AD BC ⊥于点D .将ABD ?绕点A 逆时针旋转90?得到AEF ?,延长FE 与BC ,交于点G . (3)判断四边形ADGF 的形状,并说明理由; (拓展迁移) (4)在(3)的前提下,如图,将AFE ?沿AE 折叠得到AME ?,连接MB ,若 6AD =,2BD =,求MB 的长. 【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4) 13【解析】 【分析】 (1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,

BD=CF ,可得AC=CF+CD ; (3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形; (4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】 (1)证明:∵ABC ?是等边三角形, ∴AB BC AC ==. ∵ACD ?绕点A 逆时针旋转60?得到AEF ?, ∴60CAE =?,AC AE =. ∴ACE ?是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形. (2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ?绕点A 逆时针旋转90?得到AEF ?, ∴AF AD =,90DAF ∠=?. ∵AD BC ⊥, ∴90ADC DAF F ∠=∠=∠=?. ∴四边形ADGF 是矩形. ∵AF AD =, ∴四边形ADGF 是正方形. (4)如图,连接DE . ∵四边形ADGF 是正方形, ∴6DG FG AD AF ====. ∵ABD ?绕点A 逆时针旋转90?得到AEF ?, ∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ?沿AE 折叠得到AME ?, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠. ∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =,

2020年中考数学考点提分专题二十四-计算能力提升(解析版)

2020年中考数学考点提分专题二十四 计算能力提升(解析版) (时间:90分钟 满分120分) 一、选择题(每小题3分,共36分) 1.(2019· x 的取值范围是( ) A .x≥4 B .x >4 C .x≤4 D .x <4 2.(2019·湖北初二期中)已知3y =,则2xy 的值为( ) A .15- B .15 C .15 2 - D . 152 3.(2019·四川中考真题)若:3:4a b =,且14a b +=,则2a b -的值是( ) A .4 B .2 C .20 D .14 4.(2019·湖北中考真题)已知二元一次方程组1249x y x y +=??+=? ,则2222 2x xy y x y -+-的值是( ) A .5- B .5 C .6- D .6 5.(2019·甘肃中考真题)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2- B .3- C .4 D .6- 6.(2019·湖南中考真题)下列运算正确的是( ) A = B = C 2=- D 3= 7.(2019·重庆中考真题)估计( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 8.(2019·陕西初三期中)关于x 的一元二次方程2 (2)210m x x -++=有实数根,则m 的取值范围是( ) A .3m ≤ B .3m < C .3m <且2m ≠ D .3m ≤且2m ≠ 9.(2019·湖北中考真题)若方程2240x x --=的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .-4 10.(2019·重庆市万州第二高级中学初三期中)在△ABC 中,若21 cos (1tan )2 A B - +-=0,则∠C 的度数

相关文档
最新文档