太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池的的性能主要取决于它的光电转换效率和输出功率
太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池板

太阳能电池的的性能主要取决于它的光电转换效率和输出功率.

1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳能电池板可以节省安装面积, 但是价格更贵.

2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得这块太阳能电池板的输出功率.

太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。

太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一。

太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相

同光照条件下的输出功率也越大。

2.太阳能电池板的种类

(1)单晶硅太阳能电池

目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。

(2)多晶硅太阳能电池

多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。

太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或 110V,还需要配置逆变器

各部分的作用为:

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。

(三)蓄电池:一般为铅酸电池,一般有12V和24V这两种,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:在很多场合,都需要提供AC220V、AC110V的交流电源。由于太阳能的直接输出一般都是DC12V、DC24V、DC48V。为能向AC220V的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。

晶体硅太阳能电池的制作过程:

晶体硅太阳能电池

“硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a、提纯过程b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。

原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

(1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。

(2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的

电池板原料:玻璃,EVA,电池片、铝合金壳、包锡铜片、不锈钢支架、蓄电池等

至23%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。目前,光伏发电产品主要用于三大方面:一是为无电场合提供电源,主要为广大无电地区居民生活生产提供电力,还有微波中继电源、通讯电源等,另外,还包括一些移动电源和备用电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草坪灯等;三是并网发电,这在发达国家已经大面积推广实施。

组成

(1)单晶硅太阳能电池

单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。

(2)多晶硅太阳能电池

多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右 (2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。

(3)非晶硅太阳能电池

非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,目前国际先进水平为10%左右,且不够稳定,随着时间的延长,其转换效率衰减。

(4)多元化合物太阳电池

多元化合物太阳电池指不是用单一元素半导体材料制成的太阳电池。现在各国研究的品种繁多,大多数尚未工业化生产,主要有以下几种:a) 硫化镉太阳能电池b) 砷化镓太阳能电池c) 铜铟硒太阳能电池(新型多元带隙梯度Cu(In, Ga)Se2薄膜太阳能电池)

Cu(In, Ga)Se2是一种性能优良太阳光吸收材料,具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光谱范围,进而提高光电转化效率。以它为基础可以设计出光电转换效率比硅薄膜太阳能电池明显提高的薄膜太阳能电池。可以达到的光电转化率为18%,而且,此类薄膜太阳能电池到目前为止,未发现有光辐射引致性能衰退效应(SWE),其光电转化效率比目前商用的薄膜太阳能电池板提高约50~75%,在薄膜太阳能电池中属于世界的最高水平的光电转化效率。

寿命

现在太阳能电池板厂家提供的数据是包用20年,不是储能的铅酸电池,只是电池板,现在每瓦的价格在国内差不多30-40元,国际价格 3.5-3.8美元每瓦。价格是按瓦算的!

功率计算方法

太阳能交流发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法:

1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为

100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。

2.计算太阳能电池板:按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充电过程中,太阳能电池板的实际使用功率。

发电系统

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或 110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。

(三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。

太阳能电池模组结构及其对背板的性能要求

一般按玻璃-胶膜-电池板-胶膜-TPT叠合于铝合金框内。由于太阳能电池模组是放置在室外的电气产品,因此背板除了具有保护功能以外,还必须具备25年之久的可靠的绝缘性能、阻水性、耐老化性能。表1列出了背板性能要求的一览表,在这些指标中一个衡量太阳能电池背板性能好坏的重要指标是水蒸气渗透率。若太阳能背板阻隔水蒸气渗透的性能不良,则空气中的湿气(尤其是阴雨湿气更大)会透过太阳能背板进入到内侧,水蒸气的渗透会影响到EVA(乙烯一醋酸乙烯共聚物)的粘结性能,导致背板与EVA脱离,进而使更多湿气直接接触电池片而使电池片被氧化

太阳能电池板的组成结构

1、正面:因电压的不同所用电池片的个数也不同。黑色的小片就是太阳能电池片,很多小片按一定规则连接起来就可以达到客户需要的电压和电流,一般是36片或72片电池片。就是这些小片,完成了太阳能光能到电能的转化。现在单晶硅片的转化率已经达到了15-17%。

2、四周的边框:是铝合金的,首先很牢固,再就是已经经过氧化处理,很光滑,也不会生锈,第三,很好看,移动方便。

3、电池板的表面是太阳能专用的低铁钢化玻璃,比一般玻玻璃硬度要高得多,可以承受的最大压力为:60m/s,不易碎,万一碎了也不会有危险。

4、背面:那个黑色的盒子就是接线盒,电线按正负极从里面导出来,就可以接控制器了。

太阳能电池(片)是一种利用太阳光直接发电的光电半导体薄片

太阳能电池板由电池片、组件边框、钢化玻璃、封装材料以及接线盒等组成的,可以利用阳光来发电的一块板子。

太阳能电池板的标准测试条件

太阳能板的功率是在标准条件:温度25度,AM1.5, 1000W/M2下测试出来的。一般用WP(峰瓦)表示,也可以用W(瓦)表示。在这个标准下测试出来的功率称为标称功率。

太阳能板在一定强度的光照下可以产生电流,接上电器就可以用了。前提是单位时间产生的电流要大于电器的消耗。实际应用中,这种直接使用的情况比较少。一般都是整套系统来使用的。

峰值功率(最大功率)=最大功率点电压*最大功率点电流

最大功率点就是电池板达到峰值功率时的一瞬间

是发电能力的参数

与负载无关

开路电压是指电池未接入电路时的电压也可以认为是电动势了。

短路电流是指不接电器时的电流,相当于直接找个导线把电池的正负极相连接时的电流。

峰值电压\峰值电流\峰值功率这几个概念对应的是交流电,直流电是没有峰值这一说的。峰值顾名思意就是最大值,比如我们用点220其实是有效值,那么我们的用电峰值应该是318。开路电压就相当于你直接拿电压表去量电池板(可看成一直流电源)两端电压;峰值电压是运行过程中带负载以后的电压,所以开路电压>峰值电压>实际电压。我们的电池板实际电压有18伏和36伏两种。

一个小型的太阳能发电系统,在太阳辐射充足的情况下给负载供电,是由电池板先存到蓄电池里再转由蓄电池向外供电的。

通常是蓄电池连接逆变器、逆变器连接负载(电动车,灯泡)。负载从蓄电池取电,太阳能电池板源源不断地向蓄电池供电:1)如果负载太重会使太阳能电池的充电供不应求,所以负载不应该超过太阳能电池的总容量,负载以十分之一的蓄电池安时数用电电流可以长期使用

规格工作电压工作电流开路电压短路电流系统电压 Cell(Pes)重量尺寸mm

多晶300W 35.7V 8.41A 43.8V 9.89A 1000V 144 28kg 1310*1192*5

单晶300W 24.3 V 12.35A 28.9V 14.53A 1000V 96 28kg 2090*992*5

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

一文看懂光电转化效率计算方法

一文看懂光电转化效率计算方法 光电转化效率简介光电转化效率,即入射单色光子-电子转化效率(monochromaticincidentphoton-to-electronconversionefficiency,用缩写IPCE表示),定义为单位时间内外电路中产生的电子数Ne与单位时间内的入射单色光子数Np之比。 光电转化效率的公式从电流产生的过程考虑,IPCE与光捕获效率(lightharvestingefficiency)LHE(l)、电子注入量子效率finj及注入电子在纳米晶膜与导电玻璃的后接触面(backcontact)上的收集效率fc三部分相关。见公式: IPCE(l)=LHE(l)′finj′fc=LHE(l)′f(l) 其中finj′fc可以看作量子效率f(l)。由于0£LHE(l)£1,所以对于同一体系,IPCE (l)£f(l)。两者相比,IPCE(l)能更好地表示电池对太阳光的利用程度,因为f(l)只考虑了被吸收光的光电转化,而IPCE(l)既考虑了被吸收光的光电转化又考虑了光的吸收程度。譬如,若某电极的光捕获效率为1%,而实验测得量子效率f(l)为90%,但其IPCE(l)只有0.9%。作为太阳能电池,必须考虑所有入射光的利用,所以用IPCE(l)表示其光电转化效率更合理;作为LB膜或自组装膜敏化平板电极的研究主要用来筛选染料而不太注重光捕获效率,所以常用f(l)表示光电转化效果。在染料敏化太阳能电池中,IPCE(l)与入射光波长之间的关系曲线为光电流工作谱。 太阳能电池板转换效率计算公式光照强度—以AM1.5为标准,即1000W/m2 暗电流比例—Irev》6电池片所占比例 低效片比例—P156Eff《14.5%电池片所占比例 太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压V oc;最大功率点电压Vap;最大功率点电流Iap;最大功率Pmpp;转换效率Eff等。标准测试条件下,最大功率Pmpp与转换效率之间有如下关系:

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式(图) 太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W÷12V=5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00开启,夜11:30关闭1路,凌晨4:30开启2路,凌晨5:30关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天) 蓄电池=5A×7h×(5+1)天=5A×42h=210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A×7h×120%)÷4.5h WP÷17.4V=9.33 WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MW级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。 光伏系统的设计包括两个方面:容量设计和硬件设计。 在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。 蓄电池的设计包括蓄电池容量的设计计算和蓄电池组的串并联设计。首先,给出计算蓄电池容量的基本方法。 (1)基本公式

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

什么是光电转化效率

光电转化效率(IPCE) 光电转化效率,即入射单色光子-电子转化效率(monochromatic incident photon-to-el ectron conversion efficiency,用缩写IPCE表示),定义为单位时间内外电路中产生的电子数Ne与单位时间内的入射单色光子数Np之比.其数学表达式见公式:IPCE= 1240 Isc / (l Pin) 其中Isc、l和Pin所使用的单位分别为μA cm-2 、nm和W m-2。 从电流产生的过程考虑,IPCE与光捕获效率(light harvesting efficiency) LHE (l)、电子注入量子效率finj及注入电子在纳米晶膜与导电玻璃的后接触面(back cont act)上的收集效率fc三部分相关。见公式: IPCE (l) = LHE (l) ′ finj ′ fc= LHE (l) ′ f(l) 其中finj′fc可以看作量子效率f (l)。由于0 £LHE (l) £1,所以对于同一体系, IPCE (l) £ f (l)。两者相比,IPCE (l)能更好地表示电池对太阳光的利用程度,因为f (l)只考虑了被吸收光的光电转化,而IPCE (l) 既考虑了被吸收光的光电转化又考虑了光的吸收程度。譬如,若某电极的光捕获效率为1%,而实验测得量子效率 f (l) 为90%,但其IPCE (l) 只有0.9%。作为太阳能电池,必须考虑所有入射光的利用,所以用IPCE (l) 表示其光电转化效率更合理;作为LB膜或自组装膜敏化平板电极的研究主要用来筛选染料而不太注重光捕获效率,所以常用f (l)表示光电转化效果。在染料敏化太阳能电池中,IPCE (l) 与入射光波长之间的关系曲线为光电流工作谱。 太阳能光伏行业: 太阳能电池的IPCE是指太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的IPCE与太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的IPCE与光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的IPCE 为1。对于能量低于能带隙的光子,太阳能电池的IPCE为0。理想中的太阳能电池的IPCE是一个正方形,也就是说,对于测试的各个波长的太阳能电池IPCE是一个常数。但是,绝大多数太阳能电池的IPCE会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池的IPCE通过用波长可调的单色光照射太阳能电池,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的IPCE。通常太阳能电池IPCE的测试需要由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。[1] 参考资料 1.

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池板太阳能电池的的性能主要取决于它的光电转换效率和输出功率. 1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳 能电池板可以节省安装面积, 但是价格更贵. 2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池 板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得 这块太阳能电池板的输出功率. 太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。 太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一。 太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相同光照条件下的输 出功率也越大。 2.太阳能电池板的种类 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (2)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单 晶硅太阳能电池还略好。

纳米二氧化钛太阳能电池的制备及其性能测试

华南师范大学实验报告 学生姓名学号 专业化学教育年级、班级 课程名称综合化学实验课件密码 实验类型□验证□设计□综合实验时间 2016 年 4 月19 日 实验指导老师老师实验评分 纳米二氧化钛太阳能电池的制备及其性能测试 一、前言 1.实验目的 (1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点; (2)掌握实合成纳米二氧化钛溶胶、组装成电池的方法与原理; (3)学会评价电池性能的方法。 2.实验意义 随着地球上矿物能源日趋枯竭及环境问题的出现,人们不断寻求新能源。太 阳能作为一种可再生能源,具有其它能源所不可比拟的优点) 它取之不尽,用 之不竭,而且分布广泛,价格低廉,使用安全,不会对环境构成任何污染) 将太 阳能转换为电能是利用太阳能的一种重要形式) 在过去的十几年中,利用半导 体光电化学电池替代常规固态光伏半导体太阳能电池来完成太阳能转换的潜在 经济价值日益显现)在众多的半导体材料中,TiO2以其独有的低廉、稳定的特点 得到广泛的应用)辐射到地球表面的太阳光中,紫外光占4%,可见光占43%,N型 半导体TiO2的带隙为3.2eV,吸收位于紫外区,对可见光的吸收较弱,为了增加 对太阳光的利用率,人们把染料吸附在TiO2表面,借助染料对可见光的敏感效应,增加了整个染料敏化太阳能电池对太阳光的吸收率,由此构造了染料敏化太 阳能电池-DSSC(dye-sensitizedsolar cell)电池。 3.文献综述与总结

我国在染料敏化纳TiO2太阳能电池的研究中也取得了不少阶段性的成果。2004年10月中国科学院等离子体物理研究所承担的大面积染料敏化纳米TIO:薄膜太阳电池研究项目取得了重大的突破性进展,建成了500W规模的小型示范电站,光电转化效率可以达到5%[1]。2005年,孟庆波与陈立泉等合作,合成了一种新型的具有单碘离子输运特性的有机合成化合物固态电解质,研制的固态复合电解质纳米晶染料敏化太阳电池的光电转化效率达到了5.48%。这些都为染料敏化纳米TiO2太阳电池的最终产业化奠定了坚实的基础。 我国己将染料敏化纳米晶太阳能电池的研究列入“973”重大课题研究,小面积染料敏化纳米TiO2太阳电池光电转化效率已突破11%。由于封装技术,液体电解质存在不稳定等问题,提高封装技术,和引入固态电解质便成为这种电池研究的重要方向。 染料敏化太阳能电池存在的问题 研究工作者一们发现DSSC的实用化还存在着一些问题:(l)液态电解质容易导致 TiO2表面上染料的脱落,从而影响电池的稳定性;(2)液态电解质中的溶剂易挥发,可能会与染料作用导致染料发生光而影响电池的稳定性;(3)液态电解质中的溶剂易挥发,可能会与染料作用导致染料发生光降解;(4)密封困难,且电解质可能与密封剂反应,容易漏液,从而导致电池寿命大大下降;(5)液态电解质本身不稳定,易发生化学变化,从而使太阳能电池失效;(6)电解质中的氧化还原电对在高强度光照下不稳定。由于DSSC电池具有低成本、高效率的特点,所以有着很大发展潜力,已经引起了人们的广泛关注。一我们相信,在不久的将来,随着科学技术的进一步发展,这种太阳能电池将会有着十分广阔的应用前景。 二、实验部分 1 基本原理 (1)DSSC结构和工作原理 染料敏化纳米晶二氧化钛太阳能电池(DSSC)是由导电玻璃、吸附染料的纳米晶二氧化钛薄膜、两极间的电解质(常用I-/I3-)和镀铂导电玻璃对电极组成

光伏系统以及提高光伏系统光电转化效率的方法与相关技术

本技术公开了光伏系统以及提高光伏系统光电转化效率的方法。其中,光伏系统包括安装场地、光伏组件以及辐射制冷层,辐射制冷层至少部分地覆盖安装场地的表面,光伏组件设于安装场地内,辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将安装场地内的热量通过大气窗口向太空发射。本技术的辐射制冷层一方面反射太阳辐射以减少安装场地对热量的吸收,另一方面通过红外辐射的方式将安装场地的热量发射出,从而使安装场地形成相对于周围环境独立的“冷岛”,利用冷岛效应降低光伏组件周围环境的温度,使得设置在安装场地内的光伏组件可以在相对较低的环境温度下工作,有利于提高炎热天气下光伏组件的光电转化效率以及使用寿命。 权利要求书 1.一种光伏系统,其特征在于,包括安装场地、光伏组件以及辐射制冷层,所述辐射制冷层至少部分地覆盖所述安装场地的表面,使所述安装场地形成相对于周围环境独立的冷岛,所述光伏组件设于所述安装场地内,所述辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将所述安装场地内的热量通过大气窗口向太空发射,所述安装场地内所述光伏组件的安装面积不超过所述辐射制冷层表面积的75%。 2.根据权利要求1所述的光伏系统,其特征在于,所述安装场地内所述光伏组件的安装面积不超过所述辐射制冷层表面积的50%。 3.根据权利要求1所述的光伏系统,其特征在于,所述安装场地的表面包括混凝土地面、混凝土屋面、沥青地面、沥青屋面、混砖地面、混砖屋面、岩石地面、岩石屋面、琉璃瓦、彩钢瓦、粘土瓦中的一种或多种。 4.根据权利要求1所述的光伏系统,其特征在于,所述光伏系统还包括安装支架,所述安装

支架用于安装、支撑所述光伏组件,所述安装支架包括固定底座,所述辐射制冷层还覆盖所述固定底座;所述光伏系统还包括逆变器,所述辐射制冷层还覆盖所述逆变器。 5.根据权利要求1所述的光伏系统,其特征在于,所述光伏组件选自单面发电组件、双面发电组件中的一种或多种。 6.根据权利要求1-5任一所述的光伏系统,其特征在于,所述安装场地在所述辐射制冷 层的下方具有储冷空间,所述储冷空间为密闭腔体。 7.根据权利要求1-5任一所述的光伏系统,其特征在于,所述辐射制冷层为辐射制冷涂料形成的涂层,所述辐射制冷涂料包括颗粒填料以及辐射制冷功能树脂,所述颗粒填料分散于所述辐射制冷功能树脂中,所述辐射制冷层在7μm~14μm波段的红外发射率大于80%,所述辐射制冷层对太阳光的反射率大于80%。 8.一种提高光伏系统光电转化效率的方法,其特征在于,包括步骤:在用于安装光伏组 件的场地表面设置辐射制冷层,所述辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将所述安装场地内的热量通过大气窗口向太空发射。 9.根据权利要求8所述的提高光伏系统光电转化效率的方法,其特征在于,还包括步骤:在用于支撑所述光伏组件的安装支架表面和/或光伏系统的功能部件表面设置所述辐射制冷层,所述功能部件包括储能系统、控制系统、逆变器中的一种或多种。 10.根据权利要求8或9所述的提高光伏系统光电转化效率的方法,其特征在于,所述辐射制冷层由辐射制冷涂料干燥或固化形成。 技术说明书

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

太阳能电池转换效率

Research on New Technologies of Photoelectric Conversion Efficiency in Solar Cell Tianze LI, Chuan JIANG, Cuixia SHENG School of Electric and Electronic Engineering Shandong University of Technology Zibo 255049 ,China e-mail: ltzwang@https://www.360docs.net/doc/578342906.html, Hengwei LU,Luan HOU, Xia ZHANG School of Electric and Electronic Engineering Shandong University of Technology Zibo 255049 ,China e-mail: henrylu007@https://www.360docs.net/doc/578342906.html, Abstract—The characteristics of the solar energy and three conversion mode of solar energy including photovoltaic conversion, solar thermal conversion, and photochemical conversion are represented in this paper. On this basis,the materials used in solar cell, as well as the working principle of solar cells, the factors of low convert efficiency of solar cells and the two major bottlenecks encountered in the solar application are analyzed.The idea that spontaneous arrangement of compound organic molecules is achieved by changing the molecular arrangement structure of the organic thin-film solar is put forward. The new structure of liquid crystal layer come into being accordingly so that the electron donor and the receptor molecules of the mixture are separated, and the contacting area between them is enlarged. So the efficiency solar photovoltaic is improved. The research and development of this new technology can solve the technical problem of the low conversion efficiency of solar cell, and open up an effective way to improve the conversion efficiency of solar cells. At last,the prospect of solar photovoltaic technology, solar energy exploit technology and the development of industry is offered in the article. Keywords- photoelectric conversion efficiency; electron donor and recipient; photovoltaic generate power technology I.I NTRODUCTION Energy is the material basis of human society survival and development. In the past 200 years?the energy system based on coal, oil, natural gas and other fossil fuel has greatly promoted the development of human society. However, material life and spiritual life is increasing, the awareness of serious consequences brought from the large-scale use of fossil fuels is increasing at the same time: depletion of resources, deteriorating environment, in addition to all of the above, it induce political and economic disputes of a number of nations and regions, and even conflict and war. After in-depth reflection of the development process of the past, human advance seriously the future path of sustainable development. Today in the 21st century, there is no a problem as important as a sustainable energy supply, especially for the benefit of solar energy development and has been highly concerned by all mankind. Around the world are faced with limited fossil fuel resources and higher environmental challenges, it is particularly important to adhere to energy conservation, improve energy efficiency, optimize energy structure, rely on scientific and technological progress, development and utilization of new and renewable sources.After analyzing two bottleneck problems which affect the conversion efficiency of the solar cell, we put forward a new structure of molecular arrangement of the solar cell to improve the conversion efficiency of the solar cell. II.T HE F EATURES O F S OLAR A ND T HREE C ONVERSION M ODES A.The Features of Solar Solar resources are solar radiation energy on the entire surface of the earth. Solar energy has four features. Firstly, solar energy is sufficient. The gross of solar radiation energy on the surface of the earth is about 6h1017kWh every year. It can be used several billions of years, which is reproducible and cleanest. It isn’t monopolized by any groups or coutries. Secondly, the energy density of solar energy is low. People want to obtain higher energy density by condensers. Thirdly, because of climatic change, the solar energy is mutative. For example, cloudy day and rainy day, the solar energy is weak. People should consider energy storage or use auxiliary devices which provide conventional energy to use solar energy in a row. Forthly, because of the earth rotation, the earth revolution and the angle between the axis of rotation and the orbital plane, days and sensons must change on the earth, solar energy must change too. Fifthly, use of solar energy can make energy level appropriate allocation, so heat energy is made used of. When the sun light shines on the earth, part of the light is reflected or scattered, some light is absorbed, only about 70% of the light which are direct light and scattered light passes through the atmosphere to reach the surface of the earth. Part of the light on the surface of the earth is absorbed by the objects surface, another part is reflected into the atmosphere. Fig.1 shows the schematic diagram of the sun incident on the ground. Figure1. Schematic diagram of the sun incident on the ground 978-1-4244-7739-5/10/$26.00 ?2010 IEEE

太阳能光伏电池测试与分析

哈尔滨工业大学创新实验报告 ogyhTecnolI nstitute of Harbin 验创新实近代 光学 实验名称:太阳能光伏电池测试与分析 院 系: 专 业: 名:姓

号:学 指导教师: 实验时间: 哈尔滨工业大学. 哈尔滨工业大学创新实验报告 一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

相关文档
最新文档