超融合技术的发展和应用场景

超融合技术的发展和应用场景
超融合技术的发展和应用场景

超融合技术的发展和应用场景

1、超融合架构的基本概念

超融合基础架构(简称“HCI”),是指在同一套单元设备(x86服务器)中不仅仅具备计算、网络、存储和服务器虚拟化等资源和技术,而且还包括缓存加速、重复数据删除、在线数据压缩、备份软件、快照技术等元素,而多节点可以通过网络聚合起来,实现模块化的无缝横向扩展(scale-out),形成统一的资源池。

超融合基础架构中的H指的是“Hyper”即虚拟化,对应虚拟化计算架构,比如VMware的EXSI、KVM和Hyper-V等。融合“Converged”指的是将计算和存储部署在同一个节点上,相当于多个组件部署在一个系统中,同时提供计算和存储能力。

如下图所示,超融合架构中最根本的变化是存储,由原先的集中共享式存储(SAN/NAS)变为软件定义存储。利用软件定义的方式将互连的x86服务器的本地硬盘(SSD和HDD)形成存储资源池,组建分布式存储架构,在此基础上实现了企业级的数据服务(如:弹性副本、快照、容灾等)供上层虚拟化平台使用。

其实,超融合架构要达到的目的之一,就是现实软件与硬件的解耦。使用通用的服务器实现,传统架构下使用专用硬件才能达到的功能。

2、超融合架构的发展起源

HCI起初是受到Google、Facebook等大型互联网公司通过软件定义技术构建大规模数据中心的启发,采用计算存储融合架构用于虚拟化环境,为企业客户提供一种基于X86硬件平台的计算存储融合产品或解决方案,为企业实现可扩展的IT基础架构。可以为数据中心带来最优的效率、灵活性、规模、成本和数据保护。

以GOOGLE的技术架构为例:

Google的核心技术架构为GFS分布式文件系统、BigTable分布式数据存储系统和Mapreduce计算框架。Gfs 分布式文件系统可以使用廉价的磁盘,存储海量的数据,并提供快速的查询与高安全性,并能自动扩展海量数据规模的限制。GFS分布式文件系统性能随着客户端的数量几乎线性增加,是一个低成本,高收益的解决方案。采用类似Google基于x86服务器的分布式架构的解决方案,可有效降低投资成本,非常具有借鉴意义。3、超融合架构是未来数据中心的发展趋势

数据中心发展到现在主要经历了4个阶段,基于传统IT架构的数据中心,虚拟化数据中心,云数据中心和基于超融合架构的云数据中心。

3.1、基于传统IT架构的数据中心

传统数据中心所采用的基础架构,是一个包含孤立存储、X86或小型机服务器、网络、高可用软件和管理软件的复杂系统架构,需要很多集成商和不同硬件厂商提供技术服务团队。包括需要不的存储、技术和网络团队负责采购、扩充和对设备的支持,维护生产系统,和不同的厂商打交道。这种传统IT架构需要庞大的专业技术服务团队来支撑,不仅成本高,维护复杂,而且容易让企业对厂商形成过度依赖。再加上多厂商合作存在兼容性和管理上的问题,使数据中心缺乏灵活性,部署周期也往往长达几个月,严重制约了企业数据中心的发展。这种架构适应了当时的数据大集中趋势,直到现在仍然还被很多企业采用,它是数据中心进入初始发展阶段的标志。

传统IT硬件厂商在这一阶段得到了飞速的发展。因为集中的部署方式必然会带来对硬件产品的性能、可靠性及扩展性需求的增加,促进了高端设备的销售。特别是存储设备厂商,由于数据大集中的需要,集中式的SAN/NAS 存储得到了快速的发展。

所谓传统存储,是相对于现在兴起的分布式存储而言,传统存储是集中式的,由控制器(处理器、内存、系统、软件)、IO控制卡、IO总线、磁盘阵列组成,按照能力特性又分为低端、中端和高端。其主要的差别还是在控制器的能力的不同,目前大部分企业采用的SAN存储或网络存储。由于存储的硬盘技术在很长一段时间内没有技术和工艺的突破,传统存储厂商只能在其他的特性寻找突破,包括:双控制器、多控制器、镜像、双活、自动分层、重删、快照、精简配置和数据复制等。

由于传统数据中心的架构制约,这种存储孤岛式的数据中心弊端也随之产生,目前正受到严重的挑战:

无法满足对云计算、大数据等新兴业务的需要,缺乏灵活性

容易形成数据孤岛,资源利用率很低,运维和管理成本高

系统结构复杂、设备部署周期长,采购成本高、性价比低

随着企业应用的增加,传统存储无法适应快速增长的性能和容量需求

3.2、基于虚拟化技术的数据中心

服务器虚拟化技术的出现代表数据中心进入了虚拟化的时代。以VMware为代表的软件厂商带领数据中心由物理硬件数据中心向虚拟化数据中心转变。

虚拟花技术就是将物理服务器、操作系统、及其应用程序打为一个可移动的虚拟机(VM)。在一个物理服务器上运行多个虚拟机,这些虚拟机共享底层硬件,从应用的角度看就象是一个物理服务器,有自己的操作系统,cpu、内存和存储等虚拟资源。虚拟机是可移动的,可以提高服务器的利用率;同虚拟机支持操作系统的和数据的备份、实施更加灵活。

虚拟化技术提高了服务器的资源利用率,并通过VMware的Vmotion/HA/FT等高可靠性技术极大的提高数据中心的业务系统的连续性。服务器虚拟化技术的大规模应用直接导致了业务应用由传统IBM/HP等小型机服务器平台迁移至X86服务器、VMware虚拟化软件和集中SAN存储平台。虚拟化技术所带来的好处是显而易见的,大部分企业由传统IT架构逐步转向基于虚拟化技术的数据中心架构。

服务器虚拟化的应用对数据中心带来的好处主要有:

1、传统IT架构数据中心的硬件的成本非常高,利用虚拟化技术,可以减少硬件的需求的数量,从而降低硬件采购成本。除了节省成本,虚拟机技术和还能使数据中心更加易维护、用电少,随着时间的推移,虚拟化带来的成本降低是非常明显的。

2、应用部署的灵活性得到了极大的改善,随着虚拟化技术的发展,重新部署应用可以通过虚拟机的快照技术在几分钟之内就能够完成。同时,应用的备份和迁移同样也变得简单、方便。

随着企业业务的不断发展,越来越多的业务需要互联网化,基于虚拟化技术的数据中心也不能完全适应业务发展带来的变化。因为基于虚拟化技术的数据中心仅仅解决了服务器资源利用率和高可用性的问题,但是计算与存储分离,只能通过专用的SAN/NAS的存储访问方式。VMware服务器虚拟化的Vmotion/HA等高可用特性极度依赖于集中存储,如果没有集中存储设备,这些特性都无法实现。所以基于虚拟化的数据中心又带来了新的存储问题:

1、集中存储通常采用纵向扩展方式,性能和容配置无法扩展,存储设备之间的数据迁移非常困难,这也会导致性能孤岛和数据孤岛的出现。

2、VMware虚拟化软件+集中存储的架构非常依赖于存储,存储设备故障将导致整个虚拟机资源的停机。

3、VMware的存储性能完全取决于后端集中存储的能力。而单一存储的性能是有限的。

4、虚拟化存储并不能解决数据中心的存储性能和架构复杂性的问题。虚拟化存储只是可以整合存储资源,提高存储设备的资源利用率。其实存储虚拟化是一个网关类设备,只是在SAN存储网络上加了一个存储管理层,这并不能降低整个IT架构的复杂性。在大规模部署的时候反而会带来新的问题。

5、基于虚拟化技术的数据中心只是提高了架构的灵活性,成本并没有降低。基础设施投入比和传统IT架构基本一致,虽然采用X86服务器可以降低计算成本,但是同时也需要购买VMware的许可证和高端集中存储设备,成本并没有显著降低。同时,为了保证虚拟化系统的可靠性,存储系统往往需要购买2台做镜像。

3.3、云计算数据中心

云计算数据中心不仅仅是技术,而是一种服务模式的创新。云计算之所以能够为用户带来更高的效率、灵活性和可扩展性,是基于对整个IT数据中心架构的变革,其技术和应用涉及硬件系统、软件系统、应用系统、运维管理、服务模式等各个方面。云计算的服务模式有SPI(即SaaS、PaaS和IaaS)这三个层次。

IaaS(基础架构即服务)作为云计算的三大部分之一,将基础架构进行云化,从而更好的为应用系统的上线、部署和运维提供支撑,提升效率,降低TCO。同时,由于IaaS包含各种类型的硬件和软件系统,因此在向云迁移过程中也面临前所未有的复杂性和挑战。

云计算架构在虚拟化的技术架构上丰富了虚拟化层,并通过云管理平台系统实现对虚拟化资源的自动调度、分配和计费等自助按需服务内容。

虚拟化层:大多数云计算架构都广泛采用虚拟化技术,包括计算虚拟化、存储虚拟化、网络虚拟化等。通过虚拟化层,屏蔽了硬件层自身的差异和复杂度,向上呈现为标准化、可灵活扩展和收缩、弹性的虚拟化资源池;虚拟化层对资源池进行调配、组合,根据应用系统的需要自动生成、扩展所需的硬件资源,将更多的应用系统通过流程化、自动化部署和管理,提升IT效率。

相对于虚拟化架构,云计算架构通过虚拟化整合与自动化,应用系统共享基础架构资源池,实现高利用率、高可用性、低成本、低能耗,并且通过云平台层的自动化管理,实现快速部署、易于扩展、智能管理,帮助用户构建IaaS(基础架构即服务)云业务模式。

云计算架构资源池使得计算、存储、网络以及对应虚拟化单个产品和技术本身不再是核心,重要的是这些资源的整合,形成一个有机的、可灵活调度和扩展的资源池,面向云应用实现自动化的部署、监控、管理和运维。云计算架构资源的整合,对计算、存储、网络虚拟化提出了新的挑战,并带动了一系列网络、虚拟化技术的变革。传统IT架构和虚拟化架构模式下,服务器、网络和存储是基于物理设备连接的,因此,针对服务器、存储的访问控制、QoS带宽、流量监控等策略基于物理端口进行部署,管理界面清晰,并且设备及对应的策略是静

态、固定的。云计算架构模式下,服务器、网络、存储、安全采用了虚拟化技术,资源池使得设备及对应的策略是动态变化的。

为了应对这种变化,实现云计算的发展,进行异构硬件系统的融合是必须解决的问题。一般的云计算技术只能在专用的硬件设备上实现资源的虚拟化和管理,并没有彻底实现硬件资源与虚拟化管理软件之间的解耦。这使得存储虚拟化这类技术并不适用于大规模的虚拟数据中心环境。比如,企业如果想将传统的IT基础架构改造为虚拟化的云计算数据中心,在技术上和经济性上都是不可行的。

主要存在以下几个问题:

云计算技术为更容易的管理应用而生,它利用虚拟化技术解决了CPU、内存资源闲置的问题。但随着虚拟化的大规模应用,虚拟机越来越多,虚拟机在传统存储上运行却越来越慢了。“慢”造成“体验差”,“体验差”成为了限制虚拟化应用的最大的瓶颈。这里面的最重要原因自然是,存储的I/O性能不够,大量的虚拟机和容器同时运行,I/O的混合,使得随机读写急剧增加,传统存储的结构无法承受大量的随机I/O。

3.4、基于超融合架构的云数据中心

基于超融合架构的云数据中心是指大量采用软件定义的技术,将计算、存储、网络与专用硬件实现解耦,实现IT基础架构的真正融合,为云计算数据中心的实施与部署扫清最后一个障碍。

软件定义的概念围绕让数据中心的三个重要基础设施,即服务器、网络和存储变得更为灵活,更自动化,并且更少依赖基础物理硬件。以亚马逊、阿里、百度和腾讯等互联网公司为代表的云计算服务商都是基于标准化的X86服务器,通过软件定义技术心向客户提供计算、网络和存储服务。在存储服务上,这些互联网服务商使用大量标准的x86服务器组成集群,没有集中或共享的SAN/NAS存储设备,把分布在每个节点上的服务器本地存储,用软件定义存储的方式聚合为可共享的逻辑存储池,这是大规模互联网基础设施的典型特征。超融合架

构存储是以软件定义技术替代了传统IT基础系统中的SAN,核心内容是构筑于标准X86服务器硬件上的软件定义存储和服务器虚拟化。超融合架构被广泛认为是互联网技术影响传统IT企业领域的体现。

软件定义技术是构建大规模云计算服务的基础,为数据中心带来最优的效率、灵活性、规模、成本和可靠性。可以说,这是实现“超融合架构云数据中心”所必须的技术之一。

因此,采用超融合架构提供云计算服务已经是一个明显的趋势。其特点是通过软件帮助用户将服务器、网络、虚拟化等整合为一个易于管理的集成系统,并通过自动化运维减少手动操作,提高安全性和降低人为错误,从而降低实施和运维风险,并降低运营成本。

IT数据中心的发展趋势

实现基于超融合架构的云数据中心几个必要条件:

超融合架构是基于标准通用的硬件平台,通过软件定义实现计算、存储、网络融合,实现以虚拟化为中心的软件定义数据中心的技术架构。这里面有几个必要条件:通用硬件平台、软件定义、虚拟化,其中软件定义的分布式存储是核心。

(1)完全软件定义。独立于硬件,采用商业通用标准硬件平台(如X86),完全采用软件实现计算、存储、网络等功能。

(2)完全虚拟化。以虚拟化计算为中心,计算、存储、网络均由虚拟化引擎统一管理和调度,软件定义存储由虚拟机控制器CVM进行管理。

(3)完全分布式。横向扩展的分布式系统,计算、存储、网络按需进行动态扩展,系统不存在任意单点故障,采用分布式存储。

4、超融合架构的具体应用场景

4.1、提升云计算中心的存储性能

超融合架构存储系统采用的软件定义技术,首要解决的问题就是传统集中存储的性能问题,传统架构的存储设备已无法满足云计算架构对存储性能和灵活性的需求,超融合架构存储是分布式的,可以彻底摆脱传统IT架构对存储系统的性能约束。

传统IT架构提升存储性能的解决方案:

1)、在存储系统中增加SSD硬盘做Cache,利用自动分层技术,加速I/O。这在一定的规模下可能有效,但是存储设备的SSD Cache通常比例较小,不足5%的容量比的情况下,满足不了用户对热数据的缓存需求。超过5%成本又会很高,而且无法随需扩展,所有的数据仍然要从集中的存储控制器流出。

2)、使用服务器内置SSD硬盘做Cache,将数据直接写入到SSD上,加速I/O。这种类似的解决方案,通常缺乏高可靠性软件的支撑,服务器端的Cache如果用做写Cache,存在单点失效的问题,需要在多个服务器的Cache设备上做副本来提供可靠性,当本地SSD Cache满,需要被写回传统存储的时候,仍然被传统存储的“控制器”限制整体性能。

这两种方案都是受限于传统存储的结构,超融合存储则不一样,通过完全去掉传统存储,利用分布式文件系统来提供按线性增长的性能和容量,在这个基础上,再通过SSDCache进行加速,甚至可以全部使用SSD来构建整个分布式存储系统。

4.2、业务快速部署,降低成本,提升ROI

超融合基础架构首先给用户带来的价值是加快业务部署。传统的项目要经过一个非常长的项目设计、规划,然后到整个采购,之后要去进行集成、部署、测试等相关工作。而超融合架构一般都预集成封装虚拟化平台、云平台管理软件、SDN网络和分布式存储,集成整个存储、计算和网络以及应用软件让整个IT架构的搭建简化了很多,整个项目的IT部署周期可以缩减50%的时间,而且还可以降低很多人工出错风险。

超融合架构大部分都是基于X86硬件设备,可以显著降低IT采购成本。另外,由于X86采用统一的硬件架构,运维成本也会降低。

对于企业而言,投资回报率(ROI)是企业需要思考的另外一项重要问题。以超融合架构为例,从安装、测试、部署和运维,能够缩短IT周期大约50%的时间,减少实施的费用。另外通过超融合架构去做多种应用平台的部署,能够大大提高整个资源的利用率,对于整个企业而言都是很重要的成本节约。

4.3、大数据分析平台

目前大部分企业都在考虑部署大数据分析平台,对于存储的空间扩充和数据管理将是非常大的挑战。超融合架构具备横向扩展的特性,针对海量数据存储应用,可以实现大规模通用集群存储。超融合架构存储系统通过网络技术将大量基本X86存储单元整合起来协同工作,对外提供统一数据存储服务。另外,超融合架构设备厂商还会针对大数据环境进行了性能优化,并采用了副本、集群等大量容错技术,各项技术性能指标完全可以达到主流中高端存储阵列水平,替代传统集中式的存储设备。

4.4、支撑虚拟桌面、私有云等虚拟化计算应用

超融合架构可以将计算、存储和网络资源整合到一起,提供软硬一体的解决方案。

在虚拟化应用方面,包括存储、备份、复制、负载均衡在内所有策略的制定,都会围绕支持虚拟机进行。例如数据保护策略,传统SAN常使用第三方工具来定义,而超融合架构就将其集成在虚拟机层。不同数据中心之间或不同应用间(备份、复制等)进行负载迁移,管理员只要在虚拟机层操作就好了,无需亲自下到数据中心或底层存储去操作。

在虚拟桌面(VDI)应用方面,由于各种应用部署在单一的共享资源池里,可以不需要担心存储系统I/O影响虚拟机性能。此外,超融合架构的大容量分布式存储环境为系统灵活掌控随机和顺序负载提供可能。而且采用SSD 加速的分布式存储集群可以保障足够的IOPS应对VDI启动和登入风暴等严峻的负载挑战。

4.5、支撑高性能应用

说到高性能应用,数据库类应用对系统资源的占用一般是最高的。在传统的架构中,针对ORACLE 这类应用都会采用物理机设备。但是一般的X86物理机单台性能最高也就8颗CPU,在业务高峰期无法满足高性能需求,在业务低峰期又会造成资源浪费。而且这类系统对集中式存储的依赖性也很高,因为ORACLE数据往往要求强一致性。为了在超融合架构下使用这类应用,一般会在超融合架构存储中增加分布式锁机制等的功能,在软件定义存储系统的最底层位置,维护多数据副本间的强一致性,结合随机写日志化和数据智能分层等先进的数据读写过程,不仅可以提供给ORACLE高负载的数据库应用性能,还让数据库应用兼具了超融合架构的横向数据扩展能力。

5、超融合架构常见产品

超融合系统看起来跟一个x86服务器机架没什么区别,配有存储和计算,通过网络互联。但它又是个完全不同的东西。与普通服务器的最大的区别,是“高扩展性”。我们知道,单机要扩展只能加CPU、内存、硬盘,但超融合系统有统一的管理软件,可通过虚拟化平台、分布式存储管理等“软件定义”方式来平滑在线地增加节点,扩展系统性能和容量。

以前需要一大堆不同的软件来管理存储阵列、虚拟化和服务器硬件等,在超融合系统中用一个统一的管理界面就可以了。

超融合架构特别适合希望“即插即用”的用户,一旦接通电源,安装好用户自己的应用软件,可以立马投入使用。

超级超融合架构产品:

Nutanix:采用封装4个x86模块的定制机箱;

Simplivity:采用Cisco或Dell的定制服务器,支持VMware;

VMware 的EVO:RAIL:提供纯软件部署,硬件由认证的合作伙伴提供,只支持VMware vSphere;

华为FusionCube:采用自家定制的x86刀片服务器,一体化产品。

青云QingCloud一体机:预集成了虚拟化平台、云平台管理软件、SDN网络和分布式存储。SmartxZBS(https://www.360docs.net/doc/578929033.html,/hyper-converged/)

SMARTX:主要是软件,配置管理一套系统,支持水平扩展,支持商用x86服务器。

Zetta(中科云):中科融合存储系统是一款自主研发、针对海量数据及高并发I/O应用而设计,集硬件平台、先进的分布式存储系统和智能管理功能于一体的存储产品。

电子技术发展与展望

电子技术的发展与展望 通信0908班王格林(09211202)孙玲瑶(09211200) 可以毫不夸张的说,人们现在生活在电子世界中。电子技术无处不在:近至计算机、手机、数码相机、音乐播放器、彩电、音响等生活常用品,远至工业、航天、军事等领域都可看到电子技术的身影。电子技术是十九世纪末,二十世纪初开始发展起来的新兴技术,它在二十世纪的迅速发展大大推动了航空技术、遥测传感技术、通讯技术、计算机技术以及网络技术的迅速发展,因此它成为近代科学技术发展的一个重要标志。 一、电子技术定义: 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 二、电子技术经历时代 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。从1950年起,电子技术经历了晶体管时代,集成电路时代,超大规模集成电路时代,直至现代经历了微电子技术时代,纳米技术,EDA技术,嵌入式技术等。 1、发展初期(电子管,晶体管时代) 起源于20世纪初,20世纪三十年代达到了鼎盛时期。第一代电子技术的核心是电子管。1904年,弗莱明制成了第一只电子二极管用于检测电波, 标志着电子时代的到来。过了不久,美国的德福雷斯特(Lee de Forest)在灯丝和极板之间加人了栅极,从而发明了三极管,并于1906年申请了专利。比起二极管,三极管有更高的敏感度,而且集检波、放大和振荡三种功能于一体。1925年,苏格兰的贝尔德公开展示了他制造的电视,成功地传送了人的面部活动,分辨率为30线,重复频率为每秒5帧。 然而,电子管体积大、笨重、能耗大、寿命短的缺点,使得人们迫切需要一种新的电子元件来替代电子管。飞速发展的半导体物理为新时代的到来铺平了道路。二十世纪二十年代,理论物理学家们建立了量子物理,1928年普朗克应用量子力学,提出了能带理论【能带理论(Energy band theory )是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场】的基本思想,1931年英国物理学家威尔逊在能带理论的基础上,提出半导体的物理模型,1939年肖特基、莫特和达维多夫,建立了扩散理论。这些理论上的突破,为半导体的问世提供了理论基础。 1947年l2月23日,贝尔实验室的巴丁和布拉顿制成了世界上第一个晶体管——点接触三极管,这是世界上第一只晶体三极管,它标志着电子技术从电子管时代进入到晶体管时代迈开第一步。此后不久,贝尔实验室的肖克利又于1948年11月提出一种更好的结型晶体管的设想。到了1954年,实用的晶体管开发成功,并由贝尔实验室率先应用在电子开关系统中。与以前的电子管相比,晶体管体积小、能耗低、寿命长、更可靠,因此,随着半导体

区块链应用场景分析

区块链应用场景分析 区块链的兴起、核心技术及原理机制、国内外产业发展现状和典型应用场景,总结了历年来在区块链上的研究成果,对区块链服务BCS进行了详细介绍。 区块链服务主要专注4大类9小类应用场景,包括数据资产、IoT、运营商和金融领域等,如:身份认证、数据存证/交易,新能源、公益捐赠、普惠金融等。 区块链应用场景 区块链服务面向企业及开发者提供一站式规划、采购、配置、开发、上线和运维的区块链平台服务,企业在区块链服务上可自主搭建一套基于企业自身业务的企业级区块链系统。 区块链采用分层架构设计、云链结合、优化共识算法、容器、微服务架构与可伸缩的分布式云存储技术等创新技术方案。 区块链服务逻辑架构图 区块链的整体构想是:聚焦典型应用领域,以区块链平台为核心,联合网络和可信硬件执行环境(终端+芯片),形成三位一体的端到端区块链框架,实现软件+硬件结合,提供更快、更安全的区块链端到端解决方案。 对区块链的整体构想 关于区块链技术未来的发展,在白皮书中做出以下判断: 一、从应用维度上,2018 年是区块链的应用元年,在标准没有完善前,在不同行业的试用是重点,政府数据存证、IoT 领域物流和车联网的应用、运营商云网协同和供应链金融将进入首发试用阵容。本质上这些领域急需借助区块链构建公开透明的营商环境。 二、从技术维度上,安全是构建区块链需要考虑的重要问题,国密算法将会成为区块链在国内主要市场应用标准,区块链的框架将包含云,管,端三层,以软件+硬件相配合的方式,构建高度可靠的安全能力。

三、从区块链产业发展上看,中美欧会成为区块链应用的重要区域,区块链不会昙花一现,我们可以依靠区块链在技术竞争中占据先机,而这些需要明朗的产业政策给予保障,目前看到国内从中央到地方政府机构都在努力构建区块链的孵化环境,推动区块链产业健康发展。这就为我们发展区块链技术和产业创造了良好环境。 并且基于以上判断,提出四点建议: a.依托联盟,形成产业合作,加速我国区块链标准快速落地 b.构建区块链产业孵化环境,推动区块链产业发展 c.清晰化区块链技术和应用的产业政策 d.积极参与开源社区,倡导企业间区块链技术的互通交流。

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

区块链的20种应用场景

区块链的20种应用场景 并不是只有银行及支付行业被区块链科技影响到,网络安全、音乐以及汽车也可以被改变。 作为一种去中心化的数字货币,比特币的产生源自于众所周知的区块链技术,本质上这种技术是一种公共的总账账簿,它可以以数字化的方式安全自动地验证并记录高容量的交易。 企业家们已经相信越来越多的行业将被这种科技改变。已经有许多商业案例中的交易被一个去中心化的平台验证并组织,这种平台将不再需要中心化的管理者,并且依然可以抵御欺诈。无论是大公司还是小公司,都有不少方法去尝试利用区块链的力量。 1、银行业 本质上来说,银行是一个安全的存储仓库和价值的交换中心,而区块链作为一种数字化的、安全的以及防篡改的总账账簿可以达到相同的功效。事实上,瑞士银行UBS和在英国的巴克莱银行都已经开始进行实验,希望将它作为一种方法来加速推动后台系统功能以及清结算能力。银行业的一些机构声称区块链可能减少200亿的中间人成本。这并不令人惊奇,银行作为越来越多的金融服务巨头的一份子,正在区块链创业领域中投资。R3CEV公司,这个金融联合体已经有了50家公司,他们正在为金融行业开发定制化的区块链。Thought Machine集团已经开发了名为Vault OS(参见上图)的基于私链技术以及加密总账账簿的银行系统,无论开业多久或规模大小的银行都可适应这套安全的点对点金融系统。 2、支付和现金交易

一篇最近发布在福布斯的文章中,,世界经济论坛声称去中心化支付技术,类似比特币,可以因现金交易模式而改变“商业架构”,现今的架构已经固定存在了100余年。 因区块链,是觉得我们可能绕开这些笨重的系统,创建一个更直接的支付流,它可在国内或跨国界,并且无需中介,以超低费率几乎瞬时速度的方式支付。如上图)是一家创业公司,它正在利用区块链技术为全球的比特币以及基于区块链技术传输的现金交易而服务。 3. 网络完全 虽然区块链的账簿是公开的,但数据的通信是可被验证并使用先进的密码技术进行传输。这就保证了数据的正确来源,以及没有什么可以在过程中被拦截如果区块链技术被更广泛采用,黑客攻击的概率将降低,因为区块链被认为是比许多传

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

超融合技术白皮书超融合架构

深信服超融合架构技术白皮 书 深信服科技有限公司 2015年10月 版权声明 深圳市深信服电子科技有限公司版权所有,并保留对本文档及本声明的最终解释权和修改权。 本文档中出现的任何文字叙述、文档格式、插图、照片、方法、过程等内容,除另有特别注明外,其着作权或其它相关权利均属于深圳市深信服电子科技有限公司。未经深圳市深信服电子科技有限公司书面同意,任何人不得以任何方式或形式对本文档内的任何部分进行复制、摘录、备份、修改、传播、翻译成其他语言、将其全部或部分用于商业用途。

免责条款 本文档仅用于为最终用户提供信息,其内容如有更改,恕不另行通知。 深圳市深信服电子科技有限公司在编写本文档的时候已尽最大努力保证其内容准确可靠,但深圳市深信服电子科技有限公司不对本文档中的遗漏、不准确、或错误导致的损失和损害承担责任。 信息反馈 如果您有任何宝贵意见,请反馈至: 信箱:广东省深圳市学苑大道1001号南山智园A1栋 邮编:518055 缩写和约定 修订记录

目录 深信服超融合架构技术白皮书 1前言................................................................. 1.1IT时代的变革............................................................................................................................ 1.2白皮书总览 ................................................................................................................................ 2深信服超融合技术架构................................................. 2.1超融合架构概述 ......................................................................................................................... 2.1.1超融合架构的定义......................................................... 2.2深信服超融合架构组成模块....................................................................................................... 2.2.1系统总体架构............................................................. 2.3aSV计算虚拟化平台 ................................................................................................................. 2.3.1概述 .................................................................... 2.3.2aSV技术原理 ............................................................ 2.3.3aSV的技术特性........................................................... 2.3.4aSV的特色技术........................................................... 2.4aSAN存储虚拟化 ..................................................................................................................... 2.4.1存储虚拟化概述........................................................... 2.4.2aSAN技术原理........................................................... 2.4.3aSAN存储数据可靠性保障................................................. 2.4.4深信服aSAN功能特性 .................................................... 2.5aNet网络虚拟化....................................................................................................................... 2.5.1网络虚拟化概述........................................................... 2.5.2aNET网络虚拟化技术原理 ................................................. 2.5.3aNet功能特性 ........................................................... 2.5.4深信服aNet的特色技术...................................................

未来20年汽车电子技术发展趋势

收稿日期:2009-08-02 作者简介:高成(1937-),男,陕西人,教授级高工,主要从事汽车电子发展方向的评估和规划. 未来20年汽车电子技术发展趋势 高 成1,邱 浩2 (1. 深圳市航盛电子股份有限公司,广东 深圳; 2. 深圳职业技术学院 汽车与交通学院,广东 深圳 518055) 摘 要:安全性、节能、减排和舒适娱乐性是汽车电子未来发展的主要方向,全球各大汽车电子研发团队争相加大对这4个方面的研发力度.本文介绍了全球最具影响力的来自欧洲、美洲和亚洲的6个专业汽车电子研发公司的最新研究进展,主要集中在汽车安全、动力性、环保、车载通讯、信息娱乐、半导体技术和微控制器的开发上.分析结果表明,未来20年内汽车电子工业发展的重点将转移到第三世界国家,汽车性能的提高更多地依赖于电子技术的提升,电动汽车将不可阻挡地占据重要地位. 关键词:汽车电子;安全;环保;半导体 中图分类号:TK9;TN3 文献标识码:A 文章编号:1672-0318(2010)01-0033-07 在过去10年里,汽车工业发生了2个显著变化,一是增长的基点正在从经欧美市场向以亚洲国家为主的发展中地区市场转移[1].数据显示,2007-2012年亚洲和欧洲将会主导全球汽车产量的89%;二是在市场成熟的欧美国家,汽车的性能的提高更多地依赖于电子技术.有研究表明,1989年至2010年,电子设备在整车制造成本所占比例,由16%增至40%以上.目前每部新车的IC 成本约在310美元左右,估计到2015年将增长到400美元左右.无论是市场重心向发展中国家转移,还是技术重心向电子技术倾斜,都将势必影响到汽车电子发展的方向[2].而且,其技术本身也将面临着来自性能、安全以及环保法规多方面的苛刻要求.今后10年,电子技术在汽车工业中扮演着多大的作用,它又应该如何承担起汽车电子化的重任?本文就全球一些专业的汽车主体厂商和零配件厂商进行专业分析,展望未来20年汽车电子方向的发展趋势. 1 德尔福:绿色、安全和通讯是 汽车电子的未来 德尔福通过对推动全世界新技术、产品和市 场发展的全球趋势全面的调查和研究,发现汽车电子行业的未来就是绿色性环保性、安全性和连通通讯. (1)环保型.全球汽车行业最主要的发展趋势就是倾向于发展高效燃料、低碳排放量的发动机[3].目前有许多选择方案,其一就是先进的柴油发动机和电子控制系统,在公路驾驶时,其燃料经济性比汽油发动机提高30%~40%;其二就是电动动力系统或混合动力汽车(HEV ).混合动力汽车技术应用有许多结构,但都涉及一个小型电池组、一个电子控制器及一个可以使汽车发动机在停车时自动关闭并在发动机自动重起前对汽车进行再次电动加速的电动机.混合动力汽车系统可以提高汽车的燃油经济性达30%~40%,并降低碳排放达60%.纯电动汽车的研发工作仍在继续,而且范围已拓展至电动汽车或插入式混合动力汽车.这些汽车采用更大的电池组,可以在纯电动驱动的情况下,行驶更长的距离.最后,供应商和汽车制造商正在开发气缸压力传感和均质充量压燃燃烧(HCCI )等系统,以在经济性和汽油发动机排放方面取得更大的进展.所有这些动力系统的创新技术都将在未来的5~15年里为全世界的汽车增加大量电子内容. (2)安全性.汽车电子发展的第二大趋势是安 2010年第1期 Journal of Shenzhen Polytechnic No.1, 2010 深圳职业技术学院学报

区块链技术开发的六大应用场景

区块链技术开发的六大应用场景 区块链技术这个话题已经是老生常谈,火热程度风靡国内,加上比特币投资热潮,区块链技术开发成为各大行业宠儿。今天要说的是区块链技术六大应用场景。煊凌科技 一、追踪食品供应链 众所周知,食品从原料种植到生产运输到最终摆放到食品杂货店的货架上需要经过很多环节和流程。批量生产的现实就是如此,大多数包装产品的情况也是这样。 大规模的物流和机械生产使得食品安全、环境保护和农业工人的福利保障相较于过去几代人时的情形,重要性愈加凸显。IBM Food Trust(食品信托)利用区块链技术来精确追踪食品从农场到餐桌的全过程,提高了食品供应网络的透明度,使在召回事件中追踪污染产品变得更容易。 二、可再生能源交换 有那么一段时间内,太阳能电池板和替代能源风靡一时。现在,有环保意识的消费者仍然在寻找减少对昂贵的、对环境有害的燃料的依赖的方法。这种转变的一个不足之处是,个人消费者可能会生产过多的可再生能源,超过他们所能使用的而产生浪费。而这种情况下,布鲁克林微型电网(Brooklyn Microgrid)就有用武之地了。该项目在一个名为“ENERGY”(能源)的区块链平台上运行,社区成员可以相互交换能源,共同为一个能让所有人都受益的更可持续的、更相联相通的未来做出贡献。 三、对外援助 区块链有能力改革对发展中国家进行的援助方式。区块链技术的应用能够极大简便追踪资金流动,使任何人都能确认其援助实际上到达了预定的接收方,而没有被窃取或盗用。 更健全的问责制同时也许能让非政府组织更容易从捐助者那里筹集资金,因为捐助者可以在区块链技术的帮助下了解并追踪他们捐赠物的用途和影响。世界粮食计划署已经采用区块链技术并将其与生物识别技术结合起来,确保向居住在约旦的叙利亚难民提供安全、高效的对外援助。 四、数字民主 投票选举过程是所有功能性民主政体的核心构成部分。然而,如何让投票箱不受欺诈、技术错误、恶意攻击或破坏的风险,是一个艰巨的挑战。技术,由于系统本身固有的不完善性,通常是会出错的。而区块链是一种很具优越性的应对方法,因为区块链的设计是高度透明和安全的。从理论上讲,任何观察者都可以分析(公共)区块链上的一系列交易,但由于区块链的不可变性,发生的事件不能被抹去。 区块链的实际应用需要正确的步骤,因为所有的投票过程都非常重要;不过区块链技术本身是安全的、稳定的、开放的,所以它可能是未来构建的无欺诈行为无差错的数字投票程

2018年超融合技术市场现状与发展前景分析报告

超融合技术市场现状与发展前景分析报告

正文目录 一、超融合架构简介 (6) 二、传统服务器集群的架构形成多种瓶颈,超融合技术驱动IT基础架构达标互联网规模化 (7) 2.1大数据、云计算市场高速增长,为超融合市场高速增长奠定坚实基础 (7) 2.2 传统IT基础架构的瓶颈和问题 (8) 2.3 虚拟化、云计算发展令企业面临新问题和更复杂的抉择 (9) 2.4超融合技术使企业基础设施拥有超大型互联网公司的技术优势 (10) 2.5 替代现有IT基础架构趋势显著,市场空间广阔 (14) 2.6 全球著名企业纷纷加入 (16) 三、超融合是IT基础架构领域从设备到管理、运维市场的颠覆力量 (19) 3.1 现有存储、服务器、虚拟平台软件的厂商受到冲击 (19) 3.2 超融合技术的易用性使得数据中心运维企业同样受到冲击 (20) 四、超融合技术在国内尚处于发展初期,有望成为蓝海 (21) 4.1 IDC产业成超融合替代重点,未来千亿量级空间可期 (22) 4.2 国内名列前茅的超融合技术、解决方案企业 (23) 五、投资建议 (26) 六、风险提示 (28)

图表目录 图表1超融合架构的发展历程 (6) 图表2全球大数据产业市场规模2014-2020年间CAGR高达49% (7) 图表3我国大数据产业市场规模2014-2020年间CAGR高达53% (7) 图表6我国云计算市场规模2013-2016年间CAGR为32% (8) 图表72013-2016年我国私有云市场在我国云计算市场占比均超过70% (8) 图表8传统体系架构下的SAN存储 (9) 图表9传统SAN存储遭遇I/O瓶颈 (9) 图表10企业在抉择是否采用虚拟化、私有云时纠结的主要因素 (10) 图表11企业使用桌面虚拟化和企业级应用虚拟化时面临的挑战 (10) 图表12超大型互联网公司数据中心超融合方案的理念 (11) 图表13Nutanix超融合基础架构(HCI) (12) 图表14华为FushionCube超融合服务器 (12) 图表15Nutanix分布式存储池的结构及企业级数据和存储功能 (13) 图表16Nutanix产品架构 (13) 图表17传统IT架构、云计算架构和超融合架构云的功能比较 (14) 图表18Gartner 2015年发布的存储技术炒作周期 (14) 图表192012-2017年的超融合架构和Server SAN市场空间广阔 (15) 图表20全球超融合市场规模高速增长 (15) 图表212014年IDC魔力象限 (16) 图表222016年Gartner魔力象限 (16) 图表23EMC VxRail (17) 图表24HPE Hyper Converged 380 (17) 图表25Nutanix (18) 图表26VMware Virtual SAN (19) 图表27超融合系统的软硬件体系覆盖了数据中心中设备到平台软件的所有层面 (20) 图表28数据中心体系的沿革和代表厂商 (20) 图表29超融合系统的系统规划、实施、优化的服务周期从月、天下降到分钟数量级 (21) 图表30超融合系统带来的全方位的系统和应用管理服务 (21) 图表31H3C在我国超融合市场占有率排名第一 (22) 图表322014-2019年我国HCI市场规模及增速 (22) 图表33我国互联网数据中心市场规模高速增长 (23) 图表34联想ThinkCloudAIO一体机 (24) 图表35华三通信UIS超融合解决方案示意图 (24)

议电气工程技术与学科发展的历史及展望

议电气工程技术与学科发展的历史及展望 论文摘要:梳理了电气工程技术从电磁学理论的建立到新技术革命时期电气工程技术的进步这样一个发展脉络,介绍了电气学科的形成与发展,并分析了电气工程技术的发展趋势。 论文关键词:电气工程技术;电气学科;发展史 一、电气工程技术的发展史 电气工程(Electrical Engineering)是现代科技领域核心学科之一,传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。21世纪的电气工程概念已经远远超出这一范畴,如今电气工程涵盖了几乎所有与电子、光子有关的工程行为。电气工程的发展程度直接体现了国家的科技进步水平,因此,电气工程的教育和科研在发达国家大学中始终占据重要地位。 1.电磁学理论的建立及通讯技术的发展 大自然中的雷电使人类对电有了最早、最朴素的认识,天然磁石吸铁是人类对磁现象的最早观察,然而,人类对电磁现象的研究始于16世纪的英国,1663年德国科学家盖利克发明了摩擦起电的仪器,1729年英国科学家发现电荷可以通过金属传导等等,这是人类对电的早期实验,之后又出现了一系列具有里程碑意义的发现与发明。 (1)库仑定律。1785年法国物理学家库仑通过扭秤测量静电力和磁力总结出:两个电荷之间的作用力与它们间距离的平方成反比,与它们所带电荷量的乘积成正比,这就是著名的库仑定律。这一发现的历史意义在于它标志着人类对电磁现象的研究从定性阶段进入了定量阶段。 (2)“伏打电池”。1799年意大利物理学家伏特经过反复实验发现把任何潮湿物体放到两个不同金属之间都会产生电流,一年后伏特发明了世界上第一个电池,自此人类对电的研究由静电扩大到了动电,开辟了电学研究的新领域。(3)奥斯特发现电流的磁效应和安培右手定则。1820年奥斯特偶然发现通电铂丝周围的小磁针发生轻微晃动,之后他经过反复实验证实了这一发现。其后安培进行了更深入的研究,提出了右手定则,发现了电流方向与磁针转动方向之间的关系。安培还通过实验发现了两个通电导体和两个通电线圈之间相互作用的规

超融合:架构演变和技术发展

超融合:架构演变和技术发展 开篇推荐: ?如何学习微服务大规模设计? (点击文字链接可阅读) 1、超融合:软件定义一切趋势下的诱人组合 超融合是以虚拟化为核心,将计算、存储、网络等虚拟资源融合到一台标准x86 服务器中形成基本架构单元,通过一整套虚拟化软件,实现存储、计算、网络等基础功能的虚拟化,从而使购买者到手不需要进行任何硬件的配置就可以直接使用。 “超”特指虚拟化,对应虚拟化计算架构。这一概念最早源自Nutanix 等存储初创厂商将Google/Facebook 等互联网厂商采用的计算存储融合架构用于虚拟化环境,为企业客户提供一种基于X86 硬件平台的计算存储融合产品或解决方案。超融合架构中最根本的变化是存储,由原先的集中共享式存储(SAN、NAS)转向软件定义存储,特别是分布式存储(如Object、Block、File 存储)。 “融合”是指计算和存储部署在同一个节点上,相当于多个组件部署在一个系统中,同时提供计算和存储能力。物理

融合系统中,计算和存储仍然可以是两个独立的组件,没有直接的相互依赖关系。超融合则重点以虚拟化计算为中心,计算和存储紧密相关,存储由虚拟机而非物理机 CVM(Controller VM)来控制并将分散的存储资源形成统一的存储池,而后再提供给Hypervisor 用于创建应用虚拟机。 超融合已从1.0 阶段发展至3.0 阶段,服务云平台化趋势明显,应用场景不断丰富。超融合1.0,特点是简单的硬件堆砌,将服务器、存储、网络设备打包进一个“盒子” 中;超融合2.0,其特点则是软件堆砌,一般是机架式服务器+分布式文件系统+第三方虚拟化+第三方云平台,具有更多的软件功能。 在1.0 和2.0 阶段,超融合和云之间仍旧有着“一步之遥”,并不能称之为“开箱即用”的云就绪系统,超融合步入3.0 阶段,呈现以下两个特点:

惠普超融合一体机技术方案

惠普超融合一体机技术方案 白鸽学吧 惠普SS100超融合一体机 技术响应方案 第 1 页 白鸽学吧 1. 项目背景 由于业务发展客户需要对现有IT系统进行扩容,考虑到云计算可以大大提升IT 资源利用率,提高业务系统可用性,客户原来计划使用“2台X86服务器+MSA存储+VMware ”组建云平台,幵把域控,杀毒,补丁服务器,文件共享服务器,门锁系统,人事系统,会员系统等8-10个应用,均为win2008,迁移到云平台,系统架构如下: 第 2 页

白鸽学吧 该架构使用VMWare 搭建虚拟化平台,使用MSA存储设备作为共享存储。该架构有以下一些缺点: , 存储设备是整个系统癿单点,如果这个存储设备发生故障,那么整 个虚拟机环境就会完全瘫掉。 , 这个架构是“伪高可用”,vmware 采用主-从,master-slave,架 构,vcenter 是整个系统癿管理中心,当vcenter所在物理机宕机戒 vcenter自身发生故障时,用户将不能管理整个云环境,例如无法新 建/删除云主机等,,除非搭建vcenter HA,需要购买,. , 目前推荐使用癿是VMware vSphere 6 Essentials Plus Kit for 3 hosts(Max 2 processors per host) 最多支持3个节点,虽然当前价 格幵不是徆高,未来系统扩容如果超过3个节点,需要购买 vSphere 标准版,费用就会大大增加; , 使用MSA 存储阵列采购成本较高,未来需要维护X86服务器和存储 设备,扩容和运维成本较高; 该方案配置如下: 数量方案组件 HP ProLiant DL388 Gen9机架服务器; 2 HP DL380 Gen9 Intel Xeon E5-2620v3 (2.4GHz/6-core/15MB/85W) Processor Kit 2 HP 16GB (1x16GB) Dual Rank x4 DDR4-2133 CAS-15-15-15 Registered Memory Kit 6 HP DL380 Gen9 Universal Media Bay Kit 2 HP 9.5mm SATA DVD-ROM JackBlack Gen9 Optical Drive 2 HP 300GB 6G SAS 10K rpm SFF (2.5-inch) SC Enterprise 3yr Warranty Hard Drive 4 HP 800W Flex Slot Platinum Hot Plug Power Supply

微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望 论文概要: 本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。 一.微电子技术发展趋势 微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。 1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。 穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(Physical Limitations)。当芯片设计及工艺进入到原子级时就会出现问题。 DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。 至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。 从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到 0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。 二.微电子技术的发展趋势 几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致

基于超融合技术在煤矿工业平台的应用

基于超融合技术在煤矿工业平台的应用 摘要:随着矿井的信息化、自动化的不断发展,矿井的各个子系统增加越来越多, 各自为政相互兼容性差。机房服务器越来越多,形成了多个系统信息孤岛。里彦 煤矿根据矿井安全生产的需要,大数据建设形式的需求,适时构建井上下信息综合 传输平台、集中控制平台尤为重要。 关键词:超融合工业平台建设应用 一、项目背景 里彦煤矿生产调度机房原采用的是独立的服务器和工控机承载生产调度用的 系统,所有的工控机和服务器加起来一共有20台左右。随着机房使用年限的增大,设备老旧出现故障的概率不断增大。矿井的各子系统增加越来越多,相互兼 容及系统数据的集中显得尤其重要。 二、煤矿工业云平台建设的意义 基于超融合技术的全矿井综合智能化平台建设,为实现与集团公司大数据中 心的无缝对接,数据共享。实现全矿安全生产监督管理机械化、信息化、智能化。该“智能化平台”基于超融合技术,按照横向到边、纵向到底的安全监督管理方式 进行建设,横向覆盖到矿井主、副井提升、主井装卸载、压风系统、抽风系统、 洗煤厂、主运皮带、中央泵房等运转设备的智能化控制,纵向覆盖了井下生产环 境各种参数的监测、人员位置信息的实时监控。该工业化平台的应用,对于研究 机械化减人、自动化降人的新旧动能转换,实现新的工业平台集中控制各生产环节。 三、超融合架构选择与建设 1、超融合与传统架构选择 超融合基础架构(简称“HCI”)是指在同一套单元设备中不仅仅具备计算、网络、存储和服务器虚拟化等资源和技术,而且还包括备份软件、快照技术、重复 数据删除、在线数据压缩等元素,而多套单元设备可以通过网络聚合起来,实现 模块化的无缝横向扩展(scale-out),形成统一的资源池。HCI是实现“软件定义 数据中心”的终极技术途径。HCI类似Google、Facebook等互联网数据中心的大规模基础架构模式,可以为数据中心带来最优的效率、灵活性、规模、成本和数据 保护。 传统数据中心基础架构的特点: (1)性能:随着访问集中存储的服务器越来越多,性能瓶颈将日益凸显。 (2)横向扩展:由于架构限制,无法实现横向扩展。 (3)高可用性:通过raid技术实现高可用性,但面对硬件故障时,性能下降严重。 (4)整合比:虚拟机密度低 (5)安装配置:需要准备大量安装实施前的信息收集和整理工作,并且由专人进行安装部署,最少需要2天时间 (6)管理维护:需要专门存储管理软件,配置复杂。需要厂商支持。 (7)耗电:使用传统架构:8台服务器平均每台服务器耗电600W计算,存 储耗电1500w,总共耗电6300W,运行三年电费支出约为:16.8万元。 超融合架构的特点: (1)性能:尽可能提供本地吞吐,并使用SSD保证应用IO需求。不存在性 能瓶颈。

电子技术历史回顾与未来展望

电子技术历史回顾与未来展望 摘要:当今的世界已经迈入信息化社会,电子通信产品的更新速度也越来越快,科学技术日新月异,我们的生活也在发生前所未有的巨大改变。而这一切都离不开人类对电的开发和利用,大到工厂里面的生产流水线,小到只有不到一毫米的芯片,无一不渗透着人类对电子产品的研发智慧。回顾过去,我们看到了前辈们一路走来所付出的艰辛和努力,展望未来,现在科学家们的不懈努力又为我们勾画出了一幅美好的蓝图。本课题主要是通过对人类电子技术发展的历程的总览以及对一些里程碑式的巨大跨越的详述,结合当今时代最新的电子技术成果,来分析很展望人类未来电子技术的前景。 关键词:电子技术;历史发展;未来前景 1引言 电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。进入21世纪,人们面临的是以微电子技术(半导体与集成电路为代表)、电子计算机和因特网为标志的信息社会。高科技的广泛应用使社会生产和经济获得了空前的发展。现在电子技术在国防、科学、工业、医学、通讯(信息处理、传输和交流)及文化生活等各个领域中起着巨大的作用。现在的世界,电子技术无处不在:收音机、彩电、VCD、DVD、电子手表、数码相机、电脑、大规模生产的工业流水线、因特网、机器人、航天飞机、宇宙探测仪……可以说,人们现在生活在电子世界中,一天也离不开它。 从十九世纪末电报、电话和留声机的发明到现在电脑、液晶电视和超大规模计算机的应用,电子技术实现了飞跃式的发展。如今的电子产品已经不再是奢侈品,反而随着科技的发展,它的价格降得越来越低,就像摩尔定律(注:摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。其内容为:当价格不变时,积体电路(IC)上可容纳的电晶体数目,约每隔24个月(1975年摩尔将24个月更改为18个月)便会增加一倍,性能也将提升一倍;或者说,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的速度)说的那样。 2电子技术发展历史 1)发展初期(电子管、晶体管时代) 1895年,荷兰物理学家Hendrik Antoon Lorentz假定了电子的存在。1897年,著名英国物理学家Thomson,Joseph John用实验找出了电子。1883年,美国发明家爱迪生发现了热电子效应。1904年,弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用。弗莱明将制成的第一支电子管用来检测电波,标志着电子时代的到来。过了不久,美国的德福雷斯特(Lee de Forest)在灯丝和极板之间加人了栅极,从而发明了三极管,并于1906年申请了专利。比起二极管,三极管有更高的敏感度,而且集检波、放大和振荡三种功能于一体。1925年,苏格兰的贝尔德公开展示了他制造的电视,成功地传送了人的面部活动,分辨率为30线,重复频率为每秒5帧。

相关文档
最新文档