氧化锌纳米晶体的发光原理

氧化锌纳米晶体的发光原理
氧化锌纳米晶体的发光原理

The luminescence of nanocrystalline ZnO particles:

the mechanism of the ultraviolet and visible emission

氧化锌纳米晶体粒子的发光:紫外发光与可见发光机理

Abstract (摘要)

Results of steady-state luminescence measurements performed on suspensions of nanocrystalline ZnO particles of different sizes are presented. (本文提供了对不同粒径大小的氧化锌纳米晶体粒子悬浮液的稳态发光测量结果。) In all cases two emission bands are observed.(在所有的例子中,观测到两个发光带。) One is an exciton emission band in the UV and the second an intense and broad emission band in the visible, shifted by approximately 1.5 eV with respect to the absorption onset. (第一个是存在于紫外区的激子发光带;第二个是存在于可见光区的强烈且宽的发光带,这个发光带的吸收起始点以约1.5eV进行变换。) As the size of the particles increases, the intensity of the visible emission decreases, while that of the exciton emission increases. (随着粒子大小的增加,可见区发光的强度减弱,而激子发光强度增加。)

In accordance with previous results, a model is presented in which the visible emission is assigned to the radiative recombination of an electron from a level close to the conduction band edge and a deeply trapped hole in the bulk (Vo**) of the ZnO particle. (根据之前的结果,提出了一个模型,可见发光是接近导带边缘水平的电子与氧化锌粒子本体(V o**)的深陷阱空穴的辐射再结合。) The size dependence of the intensity ratio of the visible to exciton luminescence and the kinetics are explained by a model in which the photogenerated hole is transferred from the valence band to a V o* level in

the bulk of the particle in a two-step process. (可见发光和激子发光之强度比的尺寸依赖性及动力学原理可由这样一个模型解释:在这个模型中,光致空穴通过一个两步的过程从低能满价带迁移到粒子本体的V o*水平。) The first step of this process is an efficient surface-trapping, probably at an O2- site.(这个过程的第一步,是极可能在O2-处的有效表面俘获。)

Keywords: Semiconductors; Nanoparticles; Quantum size effects; ZnO ( 关键词:半导体;纳米粒子;量子尺寸效应;氧化锌)

1.Introduction (引言)

ZnO has been known as a luminescent material for a century and nowadays it is used for various applications such as vacuum fluorescent displays (VFD's). (氧化锌作为一种发光材料,已经在一个世纪前为人们所知悉。如今,它有着广泛应用,如真空荧光显示器(VFD’s)。) However, despite numerous studies, the mechanism behind the visible luminescence has still not been established. (尽管有着大量的研究,但其在可见光区的发光机理仍未确立。) Much of the research on the luminescence of ZnO is performed on single crystalline powders or single crystals. (大量氧化锌发光的研究是基于单结晶粉末或者单晶体。) Two emission bands are usually found. (人们通常可以观测到两个发光带。) A relatively weak and narrow UV emission band is observed around 380 nm (3.25 eV), just below the onset of absorption. (一个是在波长为380nm(3.25eV)附近的较弱和较窄的紫外发光带,仅在吸收起始点之下。) This band is due to the radiative annihilation of excitons. (这个发光带是由激子的辐射湮灭所产生。) The lifetime of this exciton emission is very short, of the order of several tens to hundreds of picoseconds [1]. (激子发光的寿命是非常

短的,量级在几十到几百皮秒。) A much stronger and broader emission band is situated in the green part of the visible spectrum, with a maximum between 500 and 530 nm (2.35~2.50 eV). (另一个强得多和宽得多的发光带,位于可见光谱的绿光区处,最大波长在500~530nm(2.35-2.50eV)之间。) In contrast to the exciton emission, the lifetime of the visible emission is much longer, viz. in the us range [2]. (相对于激子发光,可见发光的寿命要长得多,以微秒计。) For this report, quantum-sized ZnO particles are used. (在这份报告中,使用的是量子尺寸的氧化锌粒子。) The mean particle size can be varied and its influence on the emission properties can be used to obtain information on the nature of the visible emission. (平均粒子尺寸有所变化,粒子尺寸变化对发光性能的影响可用来获取关于可见发光本质的信息。) The similarity of the emission properties of macrocrystalline ZnO and nanocrystalline ZnO particles suggests that the origin of the visible emission is the same for all forms of ZnO. (粗晶体和纳米晶体氧化锌粒子发光性能的相似性意味着,所有形态下的氧化锌的可见发光起因是相同的。)However, the kinetics involved in the emission processes are expected to be very different for them. (但在发光过程中所涉及的动力学机理被认为是迥然不同的。)

3. Conclusion (结论)

Steady-state luminescence measurements were performed on suspensions in 2-propanol of nanocrystalline ZnO particles of different sizes. (稳态发光测量是在粒径大小不同的氧化锌纳米晶体的2-丙醇悬浮液中进行。)All suspensions show two emission bands: a relatively weak and sharp exciton emission

band and a more intense and broad trap emission band in the visible part of the spectrum. (所有悬浮液都呈现两个发光带:一个是较弱且狭窄的激子发光带,另一个是在可见光谱内的较强较宽的诱捕发光带。)A model for the kinetics of the radiative and non-radiative processes in nanocrystalline ZnO particles is proposed, based onthe assignment of the visible emission to a recombination of a shallowly trapped electron with a deeply trapped hole. (提出了关于氧化锌纳米晶体粒子内的辐射性及非辐射性的动力学机理的模型,该模型基于可见发光是浅陷阱俘获电子与深陷阱空穴的复合。) From the particle size dependence of the emission properties it is concluded that the photogenerated hole is trapped at a surface system (probably O2-/O-). (从发光性能的粒子尺寸依赖性,可以得出这样的结论,光致空穴俘获于表面体系(很可能是O2-/O-)。The surface-trapped hole can tunnel back into the particle where it recombines with an electron in an oxygen vacancy (Vo*) resulting in the creation of a Vo**center, the recombination center for the visible emission. (表面俘获的光致空穴可以隧穿回粒子内部,与氧空位(Vo*)的一个电子复合,产生V o**中心,即可见发光的复合中心。) The probability of dependence for this tunneling process on particle size is much stronger than that of the non-radiative processes. (这个隧穿过程对粒子大小的依赖性的可能性要远远大于非辐射过程。) This results in an increase of the visible emission intensity as the size of the ZnO particles decreases. (这就导致了随着氧化锌粒子尺寸的减小,可见发光强度有所增加。)

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

纳米氧化锌综述

纳米氧化锌综述 概述 纳米氧化锌是一种多功能性的新型无机材料,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点[1]。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。 纳米氧化锌的性质 纳米氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死[2]。 纳米氧化锌的制备 1.纳米氧化锌的液相化学制备技术 除了能够准确控制粒子的化学组成外,液相法与其它化学制备技术相比还具有设备简单、批量大、原料易得、相对来说粒子大小集中、晶相结构及形状容易控制、产物活性好、成本低等特点。液相法可以分为沉淀法、溶胶-凝胶法、微乳液法、水热合成法、溶剂蒸发法等。 1.1化学沉淀法 1.1.1直接沉淀法 直接沉淀法是直接混合制备氧化锌的锌盐与沉淀剂溶液的方法,特点是条件易于控制,操作简单,适于大批量制备粉体材料,其缺点是副产物离子的洗涤较困难,且产物粒径分布较宽,干燥过程中粒子易于团聚。郭志峰等[3]向乙酸锌溶液滴加草酸,同时搅拌,伴有草酸锌沉淀生成。将沉淀物送入烘箱烘干,烘干的草酸锌粉末置洗净坩埚中,在箱式电阻炉中反应,制得氧化锌晶体。 1.1.2 均匀沉淀法 均匀沉淀法是将反应物之一通过化学反应缓慢释放出来并导致沉淀反应发生的技术,因此混合反应物溶液沉淀反应并不立即发生。其特点是避免了直接沉淀法中的局部过浓,从而大大降低沉淀反应的过饱和度。洪若瑜等[4]采用连续微波加热用硫酸锌和尿素制备了粒径为8~30nm的纳米氧化锌。 1.2溶胶-凝胶法 溶胶-凝胶法是以无机盐或金属醇盐为前驱物,经水解缩聚过程逐渐胶化,然后作相应处理得到所需纳米粉体,方法多采用有机溶剂。该方法合成的粉体纯度高,化学成分均匀,颗粒度小且分布范围窄。溶液的pH值、浓度、反应时间及温度均是影响溶胶-凝胶质量的主要因素。 Tianbao Du等[5]采用溶胶-凝胶浸渍涂布技术制备了氧化锌半导体薄膜,他 们以耐热玻璃为模板,在不断搅拌中把模板加入Zn( CH 3C00) 2 /乙醇溶液中,取出

ZnO及其纳米结构的性质与应用

ZnO及其纳米结构的性质与应用 本文将综述ZnO及其纳米结构的性质与应用等方面的内容。 1.ZnO的形貌与晶体结构 按形貌来分,有单晶ZnO,薄膜ZnO、纳米结构ZnO,纳米结构又分为纳米点、纳米颗粒、纳米线、纳米棒(纳米柱)、纳米管、纳米花、纳米片(纳米带)、纳米弹簧、纳米环、纳米梳、纳米钉(纳米针)、纳米笼、纳米四足体、塔状纳米结构、盘状纳米结构、星状纳米结构、支状纳米结构、中空纳米微球、纳米阵列等。 按晶体结构来分,ZnO又有六方对称铅锌矿结构、四方岩盐矿结构和闪锌矿结构,其中六方对称铅锌矿结构为稳定相结构。 在不同的环境下制备出的ZnO的结构与形貌都不尽相同,而不同的结构与形貌又表现出不同的性质,有不同的应用。 2.ZnO的性质及应用 纳米氧化锌材料具有诸多优良的性质,总的来说,可分为三个方面,一是作为半导体材料所具有的性质,二是作为纳米材料而具有的性质,三是其自身独有的性质。 2.1作为半导体材料的ZnO 在半导体产业中,一般将Si、Ge称为第一代半导体材料;将GaAs(砷化镓) 、InP(磷化铟) 、GaP(磷化镓)等称为第二代半导体材料;而将宽禁带( Eg >2. 3eV) 的SiC(碳化硅) 、GaN(氮化镓)和金刚石等称为第三代半导体材料。[1]通常状态下,ZnO是直接宽带隙n型半导体材料,室温下的禁带宽度是3.3eV,是第三代半导体材料中的典型代表。因而其具有第三代半导体材料所具有的诸多优良性质,比如发光特性、光电特性、电学性质、压阻特性、铁磁性质等。 2.1.1发光特性 在半导体中,处于激发态的电子可以向较低的能级跃迁,以光辐射的形式释放出能量,这就是半导体的发光现象。[2]LED产业中比较有代表性的半导体材料是GaN、SiC、ZnO和金刚石,虽然GaN 与SiC的工艺已经比较成熟,但SiC发光效率低,而ZnO在某些方面具有比GaN更优越的性能,如:熔点、激子束缚能和激子增益更高、外延生长温度低、成本低、易刻蚀而使后继工艺加工更方便等。[1]此外,ZnO还具有紫外激光发射行为,因而可用作紫外激光器,由于其波长比GaN所发蓝光更短,因而更受青睐。 2.1.2光电特性 ZnO 薄膜中掺Al使其禁带宽度显著增大,具有较高的光透过率。在可见光区,光透过率达90%。高的光透过率和大的禁带宽度使其可作为太阳能电池窗口材料、低损耗光波导器件及紫外光探测器。[3] 2.1.3电学性质 目前已经可以合成质量好的ZnO单晶,在这种单晶中一般存在较低的本底杂质、点缺陷及位错浓度,从而显示出较好的电学性质。[4]此外,尽管ZnO的迁移率低于GaN,但ZnO的饱和速率却高于GaN,这表明ZnO适于高频器件。[5] 2.1.4压阻特性 对半导体施加应力时,除产生形变外,能带结构也要相应地发生变化,因而材料的电阻率就要改变。[2]ZnO压敏材料受到外加电压时,存在一个阈值电压,当外加电压高于该值时即进入击穿区,此时电压的微小变化即会引起电流的迅速增大。由于具有这种特征,ZnO压敏材料在各种电器设备的电压保护、稳压和浪涌电压吸收等方面都起着重要作用。[3] 2.1.5铁磁性质 Dietl预言在p型ZnO通过Mn掺杂将可以实现室温下载流子控制的铁磁性,通过控制半导体中自旋可以生产相关的器件:如自旋光发射二极管、自旋场效应管及量子计算机的自旋量子位等。[4]

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

纳米氧化锌

纳米氧化锌材料 摘要:综述了纳米氧化锌的性能。描述了纳米氧化锌的制备研究, 随着科技的发展, 许多新的手段引入到了纳米氧化锌的合成工艺中弥补相互之间的不足。 关键词:纳米氧化锌,性能,制备,应用 1.纳米氧化锌的性能 1.1紫外线屏蔽 在整个紫外光区( 200~ 400 nm) ,氧化锌对光的吸收能力比氧化钛强。纳米氧化锌的有效作用时间长, 对紫外屏蔽的波段长, 对长波紫外线和中波紫外线均有屏蔽作用, 能透过可见光, 有很高的化学稳定性和热稳定性。它可用于制备抗紫外线、耐光老化性能好的涂料及其它的高分子材料。在乳胶漆中使用纳米氧化锌可以增大乳胶漆对紫外线辐射的抵抗力, 减弱乳胶漆对潮湿环境条件的敏感性,提高耐老化性。同时,氧化锌能够散射光线,使乳胶漆的遮盖力得到一定程度的改善。1.2补强性 一般的无机填料填充于聚合物中时具有如下缺点: 使用量大, 不能兼顾刚性、耐热性、尺寸稳定性和韧性同时提高。而在聚合物中添加少量的纳米粒子, 就可以使基体树脂的力学性能( 拉伸强度、弯曲强度、冲击强度、断裂伸长率等) 得到显著的提高, 并克服了以上提及的一般无机材料的缺点。 1.3抗菌、除臭性 氧化锌是传统无机抗菌材料, 在与细菌接触时, 锌离子缓慢释放出来。由于锌离子具有氧化还原性, 它能与细胞膜及膜蛋白结合, 并与其结构中有机物的巯基、羧基、羟基反应, 破坏其结构, 进入细胞后破坏电子传递系统的酶, 并与- SH 基反应, 达到抗菌的目的。在杀灭细菌之后, 锌离子可以从细胞内游离出来, 重复上述过程。氧化锌纳米粉末因为粒径小, 表面原子数量大大超过传统粒子, 表面原子由于缺少邻近的配位原子而具有很高的能量, 所以可增强氧化锌的亲和力, 提高抗菌效率。 1.4阻燃性 氧化锌可作为一种阻燃增效剂。它多数是和其它的增效剂或阻燃剂协同使用, 其增效作用与硼酸锌类似。ZnO 一般可作为PVC 的紫外吸收剂, 但其对PVC 的热稳定性有不利的影响, 因此在配方中一般采用的含量不高。在电缆涂层中使用纳米

ZnO纳米结构制备及其器件研究1

ZnO纳米结构制备及其器件研究1 冯怡,袁忠勇 南开大学新催化材料科学研究所,天津 (300017) E-mail:zyyuan@https://www.360docs.net/doc/57925380.html, 摘要:该文综述了氧化锌纳米材料制备技术和器件应用的研究进展,着重介绍了氧化锌的气相和液相合成方法,并讨论了一些重要的生长条件控制因素,同时总结了纳米氧化锌作为一种新型功能材料在场效应晶体管、肖特基二极管、紫外光探测器、气敏传感器、纳米发电机等领域的应用及发展前景。 关键词:氧化锌;纳米结构;纳米器件 0. 引言 ZnO是一种重要的Ⅱ-Ⅳ族直接带隙宽禁带半导体材料。室温下能带带隙为3.37eV,激子束缚能高达60meV(GaN:25meV, ZnSe:22meV),能有效工作于室温(26meV)及更高温度,且光增益系数(300 cm-1)高于GaN(100cm-1)[1],这使ZnO迅速成为继GaN后短波半导体激光器件材料研究新的国际热点。而当其尺寸达到纳米数量级时,与普通ZnO相比,纳米ZnO展现出许多优异和特殊的性能,如压电性能、近紫外发射、透明导电性、生物安全性和适应性等,使得其在压电材料、紫外光探测器、场效应管、表面声波、太阳能电池、气体传感器、生物传感器等领域拥有广阔的应用前景[2]。 由于氧化锌独特的结构特点决定了ZnO在众多氧化物半导体中是一种形态极为丰富的材料。目前,各种形貌、维数的ZnO纳米结构的制备和表征已在世界范围内受到人们的极大关注。ZnO纳米点、纳米线、纳米棒、纳米管、纳米花、纳米弹簧、纳米环、纳米梳、纳米钉等多种结构已被成功制备出来,这些丰富的形貌使其具有一些独特的优异性能并有望在纳米器件及微电子设备等方面发挥重要作用。 本文综述了近年来关于纳米氧化锌的制备方法、控制因素及其在各领域内的最新应用。 1. 氧化锌的结构及物理特性 1.1 氧化锌的晶体结构 ZnO有3种不同的晶体结构。如图1所示,在自然条件下,ZnO以单一的六方纤锌矿结构稳定存在,晶体空间群为C46v-P63mc。室温下,当压强达9GPa时,纤锌矿结构ZnO转变为四方岩盐矿结构,体积相应缩小17%[3]。闪锌矿结构ZnO只在立方相衬底上才可稳定存在。Jeffee等[4]根据第一性原理计算得出ZnO各晶体结构的总能量分别为纤锌矿结构-5.658 eV,闪锌矿结构-5.606 eV,岩盐矿结构-5.416 eV。 1本课题得到教育部高等学校博士学科点专项科研基金(20070055014)、国家自然科学基金(20673060)、天津市自然科学基金(08JCZDJC21500)和教育部新世纪优秀人才支持计划(NCET-06-0215)的资助。

纳米氧化锌的部分特性

纳米氧化锌的部分特性 薛元凤051002231 摘要:纳米材料的物理化学性能与其颗粒的形状、尺寸有着密切的关系。因此,单分散纳米材料的制备及其与尺寸相关的性能研究成为近几年人们研究的热点之一。ZnO作为一种宽禁带半导体具有独特的性质,在纳米光电器件、光催化剂、橡胶、陶瓷及化妆品领域有着广阔的应用前景,随着对不同形状的纳米ZnO的制备及其相关的性能研究不断升温,对其应用方面的研究进展不断深入,单分散纳米ZnO材料已经引起了人们越来越广泛的关注。ZnO作为一种宽禁带,高激子结合能的氧化物半导体,以其优越的磁、光、电以及环境敏感等特性而广泛地应用于透明电子元件、UV 光发射器、压电器件、气敏元件以及传感器等领域。ZnO 本身晶格结 构特点决定了在众多的氧化物半导体中是一种晶粒形态最丰富的材料。本文主讲纳米氧化锌紫外屏蔽、光电催化、气敏、磁性等特性,及纳米氧化锌在生活中、工厂作业中的用途。 关键词:紫外屏蔽光电催化气敏导电性磁性 1 引言 随着纳米科学的发展,人类对自然的认识进入到一个新的层次。材料的新性质被逐渐发掘!认识,新的理论模型被提出"著名学者钱学森院士预言:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是二十一世纪的又一次产业革命”。 纳米ZnO具有优异的光、电、磁性能,在当今一些材料研究热点领域表现活跃。与普通ZnO相比,纳米ZnO颗粒尺寸小,微观量子效应显著,展现出许多材料科学家渴望的优异性质,如压电性,荧光性,非迁移性,吸收和散射电磁波能力等。大量科研工作集中于纳米ZnO材料的制备、掺杂和应用等方面。制备均匀、稳定的纳米ZnO是首要任务,获得不同形貌的纳米结构,如纳米球、纳米棒、纳米线、纳米笼、纳米螺旋、纳米环等,将这些新颖的纳米结构材料所具有的独特性能,应用到光电、传导、传感,以及生化等领域,取得了可喜的成绩。世界各国相继大量投入,开发和利用纳米ZnO材料,使其在国防,电子,化工,冶金,航空,生物,医学和环境等方面具发挥更大的作用。 2简介 纳米氧化锌(ZnO)问世于20世纪80年代,其晶体结构为六方晶系P63mc空间群,纤锌矿结构,白色或浅黄色的晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中易吸收二氧化碳和水,尤其是活性氧化锌。

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

纳米氧化锌的制备综述

纳米氧化锌的制备综述 应091-2

纳米氧化锌的制备综述 前言: 纳米氧化锌粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。 关键词: 纳米氧化锌制备生产生活应用 一:纳米氧化锌的制备主要有物理法和化学法,其中以化学法为主。 1 物理法: 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立式振动磨制备纳米粉体,得到了α-Al2O3,ZnO、MgSiO3等超微粉,最细粒度达到0.1μm此法虽然工艺简单,但却具有能耗大,产品纯度低,粒度分布不均匀,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm的粉体,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变,使材料的尺寸细化到纳米量级。这种独

特的方法最初是由Islamgaliev等人于1994年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来,物理法制备纳米氧化锌存在着耗能大,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2 化学法 化学法具有成本低,设备简单,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于20世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR)2为原料,在有机介质中对其进行水解、缩聚反应,使溶液经溶胶化得到凝胶,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低400—500℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵,排放物对环境有污染,有待改善。 水解反应: Zn(OR)2+ 2H2O→Zn(OH)2+2ROH 缩聚反应:Zn(OH)2→ZnO+ H2O 2.2醇盐水解法 醇盐水解法是利用金属醇盐在水中快速水解,形成氢氧化物沉淀,沉淀再经水洗、干燥、煅烧而得到纳米粉体的方法。该法突出的优点是反应条件温和,操作简单。缺点是反应中易形成不均匀成核,且原料成

氧化锌纳米材料简介

目录 摘要 (1) 1.ZnO材料简介 (1) 2.ZnO材料的制备 (1) 2.1 ZnO晶体材料的制备 (1) 2.2 ZnO纳米材料的制备 (2) 3. ZnO材料的应用 (3) 3.1 ZnO晶体材料的应用 (3) 3.2 ZnO纳米材料的应用 (5) 4.结论 (7) 参考文献 (9)

氧化锌材料的研究进展 摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 关键词:ZnO;晶体材料;纳米材料 1.ZnO材料简介 氧化锌材料是一种优秀的半导体材料。难溶于水,可溶于酸和强碱。作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。 2.ZnO材料的制备 2.1 ZnO晶体材料的制备 生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。除了用于同质外延,ZnO晶体

实验7--沉淀法制备纳米氧化锌粉体

实验七沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸

锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -++→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3) 形成前驱物碱式碳酸锌的反应: ()↓??→+++--+O H OH Zn ZnCO O H OH CO Zn 2232232243 (4) 热处理后得产物ZnO : ()O H CO ZnO O H OH Zn ZnCO 22223232+↑+→?? (5) 本实验通过Zn(NO 3)2和NaOH 之间反应得到的Zn(OH)42-进行热分解反应制备了氧化锌纳米晶体。用NaOH 作沉淀剂一步法直接制备纳米氧化锌的反应式如下: ↓→+-+22)(2OH Zn OH Zn (6) --→+2 42)(2)(OH Zn OH OH Zn (7) --++↓→OH O H ZnO OH Zn 2)(224 (8) 该实验方法过程简单,不需要后煅烧处理就可得到氧化锌晶体,而且可以通过调控Zn 2+/OH  ̄的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

纳米ZnO的制备

纳米ZnO的制备、表征及应用 摘要:本文比较和综述了纳米ZnO的各种制备方法,并对纳米ZnO的广泛应用进 行了分析和阐述。使用热重分析、扫描电镜分析(SEM)、透射电镜分析(TEM)、粒度分析、X射线衍射仪(XRD)、对所制得纳米ZnO的成分、晶型和形貌进行了表征, 并举例说明了纳米ZnO的一些实际应用。 关键词:ZnO 制备表征应用 纳米ZnO是一种新型的多功能的精细无机材料,出于其颗粒尺寸细小,比表面积较大,所以具有普通ZnO所无法比拟的特殊性能,如表面效应、量子尺寸效应和宏观量子隧道效应等。同时纳米ZnO也是一种自激活的半导体材料,室温下禁带宽度为3.27eV,激子束缚能为60meV,这就使得纳米ZnO材料从理论上具备了从紫外光至可见光稳定的发射本领。因此,纳米ZnO材料在光电转换、光催化及气体传感器等领域有着广阔的应用前景。 1 纳米ZnO的结构与性质 氧化锌晶体有三种结构:六边纤锌矿结构、立方闪锌矿结构,以及比较罕见的氯化钠式八面体结构。纤锌矿结构在三者中稳定性最高,因而最常见。立方闪锌矿结构可由逐渐在表面生成氧化锌的方式获得。在两种晶体中,每个锌或氧原子都与相邻原子组成以其为中心的正四面体结构。八面体结构则只曾在100亿帕斯卡的高压条件下被观察到。纤锌矿结构、闪锌矿结构有中心对称性,但都没有轴对称性。晶体的对称性质使得纤锌矿结构具有压电效应和焦热点效应,闪锌矿结构具有压电效应。纤锌矿结构的点群为6mm(国际符号表示),空间群是P63mc。晶格常量中,a = 3.25 埃,c = 5.2 埃;c/a比率约为1.60,接近1.633的理想六边形比例。在半导体材料中,锌、氧多以离子键结合,是其压电性高的原因之一。 由于纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子分数远远大于晶态材料表面原子所占的百分数,导致了纳米材料具有传统固体所不具备的许多特殊。基本性质,如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等,从而使纳米材料具有微波吸收性能、高表面活性、强氧化性、超顺磁性及吸收光谱表现明显的蓝移或红移现象等。除上述的基本特性,纳米材料还具有特殊的光学性质、催化性质、光催化性质、光电化学性质、化学反应性质、化学反应动力学性质和特殊的物理机械性质。 2纳米zno的制备方法 纳米ZnO的制备方法随着对ZnO性能研究的深入应运而生,概括起来一般分直接法和间接法。 2.1直接法 反应方程式: C+O2=CO2

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:222015316210016同组人:向泽灵 一、预习部分 1.1氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 3.1共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其

相关文档
最新文档