Workbench瞬态热分析

Workbench瞬态热分析
Workbench瞬态热分析

Workbench瞬态热分析

问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义

一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。热分析类型主要有稳态热分析和瞬态热分析。稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。在稳态热分析中,任意节点的温度不随时间的变化而变化。一般来说,在稳态热分析中所需要的唯一材料属性是热导率。在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空

隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。

二、分析思路及流程在分析中,我们忽略空气的流动。先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。分析流程如下图所示:

三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始

条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。对瞬态热分析分为2个时间步,两个时间步分别设置为60s,因此钢球散热共计120s。钢球在散热120s后的温度场如下图所示,从图中可以看出,钢球向空气散热120s后,钢球的最高温度为895.91摄氏度,靠近钢球侧的空气温度上升较为明显,基

本接近钢球温度。离钢球越远处空气温度越低,最外侧空气最低温度为55.811摄氏度。

t=120s时温度云图t=120s时空气温度分布

钢球散热效果图

从下图中可以看出,钢球在120s中,在每个两个时间步里散热量基本一致,钢球散热处于平稳状态,即每秒中的散热量基本相同。从空气外侧空气温度上升图表中可以看出,空气在前25秒内温度急剧上升到55.905摄氏度。由于对流的存在,空气温度基本保持不变,钢球温度随时间的增加而降低。

钢球温度随时间下降过程空气最外侧温度随时间上升

五、总结本例通过ANSYS workbench 讲解了钢球瞬态散热问题的方法和具体应用。在现实生活中,关于热的问题无处不在,比如我们烧热水,对事物的加热和冷却,保温等,复杂的热分析问题比如沸腾及冷凝等,涉及到相变,更为复杂。在这个例子中,我们需要注意的是:在进行瞬态热分析时,一般情况下要先进行稳态热分析,以获取瞬态分析的初始天剑,然后通过瞬态热分析的分析设置及边界条件设置,进行多载荷步的求解。

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换

Ansys12.0 Mechanical教程-5热分析

Workbench -Mechanical Introduction 第六章 热分析

概念 Training Manual ?本章练习稳态热分析的模拟,包括: A.几何模型 B B.组件-实体接触 C.热载荷 D.求解选项 E E.结果和后处理 F.作业6.1 本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了?本节描述的应用一般都能在ANSYS DesignSpace Entra ANSYS Structural 提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析 ?ANSYS

Training Manual 稳态热传导基础 ?对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: ()[]{}(){} T Q T T K =?假设: –在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数

稳态热传导基础 Training Manual ?上述方程基于傅里叶定律: ?固体内部的热流(Fourier’s Law)是[K]的基础; ?热通量、热流率、以及对流在{Q}为边界条件; ?对流被处理成边界条件,虽然对流换热系数可能与温度相关 ?在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型 Training Manual ?热分析里所有实体类都被约束: –体、面、线 ?线实体的截面和轴向在DesignModeler中定义 ?热分析里不可以使用点质量(Point Mass)的特性 ?壳体和线体假设: –壳体:没有厚度方向上的温度梯度 –线体:没有厚度变化,假设在截面上是一个常量温度 ?但在线实体的轴向仍有温度变化

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

ANSYS非稳态热分析及实例详解解析

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

基于ANSYSWORKBENCH的摩擦生热分析

本篇文章说明,如何在WORBENCH中通过改变单元的形式来做摩擦生热的耦合分析。 【问题描述】 在一个定块上,有一个滑块。在滑块顶顶面上施加一垂直于表面指向定块的10MPa的分布力系。现在滑块在定块表面上滑行3.75mm,要求摩擦而产生的热量,并计算滑块和定块内部的温度分布和应力分布。 定块的尺寸:宽5mm,高1.25mm,厚1mm 滑块的尺寸:宽1.25mm,高1.5mm,厚1mm 材料:弹性模量:7e10Pa;泊松比:0.3;密度:2700kg/m(3);热膨胀系数:23.86e-6/k;摩擦系数:0.2;热导率:150W/(M K);比热:900J/(kg K) (注)该问题来自于许京荆的《ANSYS13.0 WORKBNCH数值模拟技术》,中国水利水电出版社,2012,P381. 【问题分析】 关键技术分析: 此问题属于摩擦生热,不能够使用载荷传递法,而只能使用直接耦合法。这就是说,只能用一个耦合单元来计算摩擦生热问题。 解决该问题的基本思路如下: (1) 使用瞬态结构动力学分析系统 (2)在该系统中更改单元为PLANE223,它是一个耦合单元,可以完成多种耦合分析,这里使用其结构-热分析功能。 (3)定义两个载荷步,第一步将动块移动到指定位置,第二步保持最终位置,以获得平衡解。 (4)在求解设置中,关闭结构分析的惯性部分,而只做静力学结构分析,但是对于热分析仍旧做瞬态热分析。

(5)由于使用了瞬态动力学分析,结果中默认是没有温度可以直接从界面中得到的。需要自定义结果,提取温度。 (6)此问题要多处使用插入命令的方式,从而可以在WORKBENCH中使用APDL的功能。 (7)瞬态结构动力学分析系统的工程数据中,无法得到热分析的部分参数,所以需要先创建一个单独的工程数据系统,然后把它与瞬态结构动力学分析的工程数据单元格相关联。 (8)在DM中创建两个草图,然后根据草图得到面物体。再对这两个面物体进行平面 应力的分析。 (9)本博文的主要目的是要阐述:如何在WORKBENCH中使用耦合单元进行多物理场的耦合分析。 【求解过程】 1.进入ANSYS WORKBENCH14.5 2. 创建瞬态结构分析系统 3.设置材料属性。 双击engineering data,加入新材料,命名为al,设置属性如下。

ANSYSMaxwell瞬态分析案例解析

1.Maxwell 2D: 金属块涡流损耗 (一)启动W o r k b e n c h并保存 1.在windows系统下执行“开始”→“所有程序”→ANSYS 15.0→Workbench 15.0命令, 启动ANSYS Workbench 15.0,进入主界面。 2.进入Workbench后,单击工具栏中的 按钮,将文件保存。 (二)建立电磁分析 1.双击Workbench平台左侧的Toolbox→Analysis Systems→Maxwell 2D此时在Project Schematic中出现电磁分析流程图。 2.双击表A中的A2,进入Maxwell软件界面。在Maxwell软件界面可以完成有限元分析 的流程操作。 3.选择菜单栏中Maxwell 2D→Solution Type命令,弹出Solution Type对话框 (1)Geometry Mode:Cylinder about Z (2)Magnetic:Transient (3)单击OK按钮 4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成mm,并单 击OK按钮。 (三)建立几何模型和设置材料 1.选择菜单栏中Draw→Rectangle 命令,创建长方形 在绝对坐标栏中输入:X=500,Y=0,Z=0,并按Enter键 在相对坐标栏中输入:dX=20,dY=0,dZ=500,并按Enter键 2.选中长方形,选择菜单栏中Edit→Duplicate along line命令 在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键 在相对坐标栏中输入:dX=50,dY=0,dZ=0,并按Enter键 弹出Duplicate along line对话框,在对话框中Total Number:3,然后单击OK按钮。 3.选中3个长方形右击,在快捷菜单中选择Assign Material命令,在材料库中选择 Aluminum,然后单击OK按钮。 (四)设置求解域 选择菜单栏中Draw→Region命令,在弹出的Region对话框中输入Value=500,并单击OK按钮。 (五)添加激励 1.选中Rectangle1右击,在快捷菜单中选择Assign Excitations→Coil命令,弹出Coil Excitations对话框,在对话框中填入以下内容: (1)Name:CoilTerminal1 (2)Number of Conductors:100 (3)单击OK按钮 2.选中Rectangle1右击,在快捷菜单中选择Assign Excitations→Add Winding命令,弹出 Winding对话框,在对话框中填入以下内容: (1)Name:Winding_A (2)Type:Current (3)Stranded:?Checked (4)Current:50*sin(2*PI*50*Time)

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ANSYS热分析指南——ANSYS瞬态热分析

4.1瞬态传热的定义 ANSYS/Multiphysics , ANSYS/Mechanical, ANSYS/FLOTRAN ANSYS/Professional 这些产品支持瞬态热分析。瞬态热分析用于计算一个系统 的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场, 并将之作为热载荷进行应力分 析。许多传热应用一热处理问题,喷管,引擎堵塞, 管路系统,压力容器等,都包含瞬态热分析。 瞬态热分析的基本步骤与稳态热分析类似。 主要的区别是瞬态热分析中的载 荷是随时间变化的。为了表达随时间变化的载荷,可使用提供的函数工具描述载 荷?时间曲线并将该函数作为载荷施加(请参考《 ANSYS Basic Porcedures Guide 》中的“施加函数边界条件载荷”),或将载荷?时间曲线分为载荷步。 载荷?时间曲线中的每一个拐点为一个载荷步,如下图所示 : 图4-1用荷载步定义时变荷载 对于每一个载荷步,必须定义载荷值及时间值,同时还需定义其它载荷步选 项,如:载荷步为渐变或阶跃、自动时间步长等,定义完一个载荷步的所有信息 后,将其写为载荷步文件,最后利用载荷步文件统一求解。本章对一个铸件的分 析的实例对此有进一步说明。 4.2瞬态热分析中使用的单元和命令 瞬态热分析中使用的单元与稳态热分析相同,第三章对单元有简单的描述。 要了解每个单元的详细说明,请参阅《 ANSYS Eleme nt Refere nee 》。要了解每 个命令的详细功能,请参阅《ANSYS Comma nds Refere nce 。 4.3瞬态热分析的过程 瞬态热分析的过程为: 建模 施加荷载并求解 ANSYS 热分析指南(第四 章) 第四章瞬态热分析 Load ▲ Stepped (KBCJ) ■Stepped Steady

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

基于ANSYSWORKBENCH的保温桶的稳态热分析

【问题描述】 一个保温桶,由4层组成。从外到内依次是:钢,铝,复合材料,铝。桶内是热水,而桶外是空气。需要确定桶壁的温度场分布。已知:桶内半径是0.1米,桶长度为0.1米,从内到外,4层厚度分别是0.01米,0.02米,0.01米,0.005米,钢,复合材料,铝的导热系数分别是60.5(瓦/米度),0.055(瓦/米度),236(瓦/米度),水温80摄氏度,空气温度为摄氏度,空气对流系数是12.5(瓦/平方米度). (《注》该例子来自于许京荆编著的《ANSYS 13.0 WORKBENCH数值模拟技术》,2012年) 【建模分析】 1.这是一个稳态热分析问题,需要使用steady-state thermal模块。 2. 这是一个轴对称问题,只需要分析其一个径向截面,然后用2D分析的轴对称进行处理。 3.几何建模。在DM中创建四个草图,然后分别形成四个面体,再形成一个多体构件。 4.边界条件。对里层使用温度边界条件,对外层设置对流换热边界条件。 【求解过程】 1. 打开ANSYS WORKBNCH14.5。 2. 创建稳态热分析系统。

3. 设置三种材料的导热系数。 双击engineering data,打开工程数据,新创建三种材料,分别是STEEL,AL,compound,并分别设置其导热系数。 钢材的导热系数 铝的导热系数 复合材料的导热系数 创建完毕,退回到项目中。 4.创建几何模型。 双击geometry,进入到DM中。选择长度的单位是米。 在XOY面内创建四个草图。 这四个草图是四个相邻的矩形,其位置及尺寸如下图。

分别由这4个草图生成4个面。 其图形如下 将上述四个物体生成一个多体构件。

Workbench瞬态热分析

Workbench瞬态热分析 问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义 一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。热分析类型主要有稳态热分析和瞬态热分析。稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。在稳态热分析中,任意节点的温度不随时间的变化而变化。一般来说,在稳态热分析中所需要的唯一材料属性是热导率。在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空

隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。 二、分析思路及流程在分析中,我们忽略空气的流动。先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。分析流程如下图所示: 三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始 条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。对瞬态热分析分为2个时间步,两个时间步分别设置为60s,因此钢球散热共计120s。钢球在散热120s后的温度场如下图所示,从图中可以看出,钢球向空气散热120s后,钢球的最高温度为895.91摄氏度,靠近钢球侧的空气温度上升较为明显,基

ANSYS稳态和瞬态分析步骤简述..

ANSYS 稳态和瞬态热模拟基本步骤 基于ANSYS 9.0 一、 稳态分析 从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量: =0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。 基本步骤:(为简单起见,按照软件的菜单逐级介绍) 1、 选择分析类型 点击Preferences 菜单,出现对话框1。 对话框1 我们主要针对的是热分析的模拟,所以选择Thermal 。这样做的目的是为了使后面的菜单中只有热分析相关的选项。 2、 定义单元类型 GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框 2 对话框2 (3-1)

点击Add,出现对话框3 对话框3 在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。对于三维模型,多选择SLOID87:六节点四面体单元。 3、选择温度单位 默认一般都是国际单位制,温度为开尔文(K)。如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units 选择需要的温度单位。 4、定义材料属性 对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。 GUI: Preprocessor>Material Props> Material Models 出现对话框4 对话框4 一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5. 对话框5

ANSYS热分析指南

ANSYS热分析指南 第一章简介 1.1热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有: 温度的分布 热量的增加或损失 热梯度 热流密度 热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。 1.2ANSYS中的热分析 ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、 ANSYS/FLOTRAN四种产品中支持热分析功能。ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。 ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。1.2.1对流 热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。 1.2.2辐射 ANSYS提供了四种方法来解决非线性的辐射问题: 辐射杆单元(LINK31) 使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)

在AUX12中,生成辐射矩阵,作为超单元参与热分析 使用Radiosity求解器方法 有关辐射的详细描述请阅读本指南第四章。 1.2.3特殊的问题 除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。例如,可使用热质点单元MASS71模拟随温度变化的内部热生成。 1.3热分析的类型 ANSYS支持两种类型的热分析: 1.稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。 2.瞬态热分析则计算在随时间变化的条件下,温度的分布和热特性。 1.4耦合场分析 ANSYS中可与热分析进行耦合的方式有热—结构、热-电磁等。耦合场分析可以使用ANSYS中的矩阵耦合单元,或者在独立的物理环境中使用序惯荷载耦合。有关耦合场分析的详细描述,请参阅《ANSYS Coupled-Field Analysis Guide》。 1.5关于菜单路径和命令语法 在本指南中,您将会看到相关的ANSYS命令及其等效的菜单路径。这些参考的命令仅仅包括命令名,因为并不总是需要指定所有的参数,而且不同的参数组合会有不同的作用。有关ANSYS命令的更多的叙述,请参考《ANSYS Commands Reference》。 菜单路径将近可能完整得列出。对于多数情况,选择菜单就能够完成所需要的功能;但还有一些情况,选择文中所示菜单后会弹出一个菜单或是对话框,由此定义其他的选项来执行一些特定的任务。 第二章基础知识 2.1符号与单位

Workbench心得——行星齿轮瞬态动力学分析

然后我们就需要对模型添加约束和连接,主要包括有 看下面 详述。在这里首先将三角形的齿轮架给刚化, 因为整个分析中不考虑它的影响, 主要 首先拿到模型可以看出这里是个行星轮结构。 考虑 齿轮之间的作用。 joints 禾口 frictionl ess con tacts ,添加完的效果如图。添加过程请

首先添加三个类似的运动副,都是需要Body-Ground形式。第一个添加太阳轮的旋转副。revolute joint 。Body-ground。

再添加三角架的旋转副。revolute joint 。Body-ground。

CAEm Mttric Jmm, kq, "4,気 mV, nrA) Degrees 再添加内齿圈的固定副。 fixed joint 。Body-ground 。 Filr- Fdrt Vtew UniE Toe i Hetp Q 专皿砖甸tl 诡冏因?)▼ —t 1臂斤胃A IB O 1? ■胡▼ 二屮毀題■软匹q ci.罠-科 h 営how "i/rrticr 1! W^e+fBrw ■ Edg@ "応ring 寿 〒 X T J X * 1*1 HEldwn AnnetiiiciM E 品切 li lu^iiLL^r ?'urd 呼 备肚血 Sody * AR EudL 川5帕 h b 匸 ewv&tiym :| K * Qu0mc ji] PT?|?r R jSl Gffnffle4r/ ± "Au 匚□nrtrtaiE 1 S?fcT*ms U 丿谢 匚汕neetm-s 0# 麵 iwi b - 毎-寸夸 & ^du * ?-(jTDUTd Ta E 「29] (±--^3 R E .?cki ■* - Gi QLjnd Tn F [±3] 匹、坤 I 亠 JP and 1? A [40] 占"电 *3111 2 舟Y 爷 & -FT4U 兀亍PK 审I Ccnlacb ?* Fl*KJbElhlE£? 【勒 To SL+lj. Y X 1=低凶理毋?BI] web 1 r-a n-Meaiii [B5] t .亘 intel Ccriil 口r -卉di 也W 用卜Srlifch 弼 遵伞JcH *阴tabard 帕Pty 刁片垫 Solution LB6J …> _Ll 女Ld 即"n\ “上li* i ; 昨 Ew .-ilk i 【9b Conrect]?i Type Ecdy-2rcfan!Ttr Syrtffr- ;^ferr-ic? Ctwrd ~^e z-y^t-r?" 5-upir>g Method Geonwtn 甬KI 心pe J ism li d 訓%阿0 >Aich?rigvd Behavior Rigid Pin bail R 強 i” 初 StDp5 ? Qiomndl To R41| J 2Z3:17 :a r^i Fl icf He p 让0-|<9 亠一-lL^> ^r^iphc!& Arnotabcnsi G 2 Mes^gias Na Se-ectiDH ¥ Det a -s cf "Re-vciiJte - SrcMind T e Ff?4l]' Bedy □□□□ 「■0£D 壬D?D 1OD.CU (imm) 柑 mid '■ I r - ■ J MV. p ,< ri"i' i 1. J h- -Hl ■- II ■■ Vir^/T iii.ri -^j -In- i| H M '- T ' 订?儿 ,ir ■ ■'■-* n ; .- I - JI ;I ^4 ?'■rf hiim

相关文档
最新文档