第六章 轴心受压构件

第4章轴心受力构件的性能思考题参考答案

第4章思考题参考答案 【4-1】为什么轴心受拉构件开裂后,当裂缝增至一定数量时,不再出现新的裂缝? 在裂缝处的混凝土不再承受拉力,所有拉力均由钢筋来承担,钢筋通过粘结力将拉力再传给混凝土。随着荷载的增加,裂缝不断增加,裂缝处混凝土不断退出工作,钢筋不断通过粘结力将拉力传给相邻的混凝土。当相邻裂缝之间距离不足以使混凝土开裂的拉力传递给混凝土时,构件中不再出现新裂缝。 【4-2】如何确定受拉构件的开裂荷载和极限荷载? (1)当时,混凝土开裂,这时构件达到的开裂荷载为: (2)钢筋达到屈服强度时,构件即进入第Ⅲ阶段,荷载基本维持不变,但变形急剧增加,这时构件达到其极限承载力为: 【4-3】在轴心受压短柱荷载试验中,随着荷载的增加,钢筋的应力增长速度和混凝土的应力增长速度哪个快?为什么? (1)第Ⅰ阶段,开始加载到钢筋屈服。钢筋增长速度较快。此时若忽略混凝土材料应力与应变关系之间的非线性关系,则钢筋与混凝土的应力分别为和,由于,因此钢筋增长的速度较快,若考虑混凝土非线性的影响,此时混凝土应力与荷载关系呈一条上凸的曲线,则钢筋增长的速度相对混凝土更快。 (2)第Ⅱ阶段,钢筋屈服到混凝土被压碎。混凝土增长速度较快。当达到钢筋屈服后,此时钢筋的应力保持不变,增加的荷载全部由混凝土承担,混凝土的应力加速增加,应力与荷载关系由原来的上凸变成上凹。(图4-9) 【4-4】如何确定轴心受压短柱的极限承载力?为什么在轴压构件中不宜采用高强钢筋? (1)当时,混凝土压碎,短柱达到极限承载力 (2)由于当轴压构件达到极限承载力时,相应的纵筋应力值为: 由此可知,当钢筋的强度超过时,其强度得不到充分发挥,因此不宜采用

钢结构第四章答案

第四章 4.10验算图示焊接工字形截面轴心受压构件的稳定性。钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。已知构件承受的轴心压力为N =1500kN 。 解:由支承条件可知0x 12m l =,0y 4m l = 2 3364 x 1150012850025012225012476.610mm 12122I +??=??+??+???=? ??? 3364y 5001821225031.310mm 1212 I =?+???=? 2225012500810000mm A =??+?= x 21.8cm i === ,y 5.6cm i === 0x x x 12005521.8l i λ===,0y y y 400 71.45.6 l i λ===, 翼缘为火焰切割边的焊接工字钢对两个主轴均为b 类截面,故按y λ查表得=0.747? 整体稳定验算: 3 150010200.8MPa 215MPa 0.74710000 N f A ??==<=?,稳定性满足要求。

4.13图示一轴心受压缀条柱,两端铰接,柱高为7m 。承受轴心力设计荷载值N =1300kN ,钢材为Q235。已知截面采用2[28a ,单个槽钢的几何性质:A =40cm 2,i y =10.9cm ,i x1=2.33cm ,I x1=218cm 4,y 0=2.1cm ,缀条采用∟45×5,每个角钢的截面积:A 1=4.29cm 2。试验算该柱的整体稳定性是否满足? 解:柱为两端铰接,因此柱绕x 、y 轴的计算长度为:0x 0y 7m l l == 22 4x x10262221840 2.19940.8cm 22b I I A y ???? ????=+-=+-=???? ? ???????????? ? x 11.1cm i = == 0x x x 70063.111.1l i λ=== 0y y y 70064.210.9 l i λ=== 0x 65.1λ=== 格构柱截面对两轴均为b 类截面,按长细比较大者验算整体稳定既可。 由0x 65.1λ=,b 类截面,查附表得0.779?=, 整体稳定验算: 3 2 130010208.6MPa 215MPa 0.77924010N f A ??==<=??? 所以该轴心受压的格构柱整体稳定性满足要求。 4.15某压弯格构式缀条柱如图所示,两端铰接,柱高为8m 。承受压力设计荷载值N =600kN ,弯矩100kN m M =?,缀条采用∟45×5,倾角为45°,钢材为Q235,试验算该柱的整体稳定性是否满足? 已知:I22a A=42cm 2,I x =3400cm 4,I y1=225cm 4; [22a A=31.8cm 2,I x =2394cm 4,I y2=158cm 4; ∟45×5 A 1=4.29cm 2。

第三章轴心受力构件承载力问答题参考答案

第三章轴心受力构件承载力 问答题参考答案 1.简述结构工程中轴心受力构件应用在什么地方? 答:当纵向外力N的作用线与构件截面的形心线重合时,称为轴心受力构件。房屋工程和一般构筑物中,桁架中的受拉腹杆和下弦杆以及圆形储水池的池壁,近似地按轴心受拉构件来设计,以恒载为主的多层建筑的内柱以及屋架的受压腹杆等构件,可近似地按轴心受压构件来设计。在桥梁工程内中桁架桥中的某些受压腹杆可以按轴心受压构件设计;桁架拱桥的拉杆、桁架桥梁的拉杆和系杆拱桥的系杆等按轴心受拉构件设计。 2.轴心受压构件设计时,如果用高强度钢筋,其设计强度应如何取值? 答:纵向受力钢筋一般采用HRB400级、HRB335级和RRB400级,不宜采用高强度钢筋,因为与混凝土共同受压时,不能充分发挥其高强度的作用。混凝土破坏时的压应变0.002,此时相应的纵筋应力值бs’=E sεs’=200×103×0.002=400 N/mm2;对于HRB400级、HRB335级、HPB235级和RRB400级热扎钢筋已达到屈服强度,对于Ⅳ级和热处理钢筋在计算f y’ 值时只能取400 N/mm2。 3.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么? 答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。 4.受压构件设计时,《规范》规定最小配筋率和最大配筋率的意义是什么? 答:《规范》规定受压构件最小配筋率的目的是改善其脆性特征,避免混凝土突然压溃,能够承受收缩和温度引起的拉应力,并使受压构件具有必要的刚度和抗偶然偏心作用的能力。考虑到材料对混凝土破坏行为的影响,《规范》规定受压构件最大配筋率的目的为了防止混凝土徐变引起应力重分布产生拉应力和防止施工时钢筋过于拥挤。 5.简述轴心受压构件的受力过程和破坏过程? 答:第Ⅰ阶段——加载到钢筋屈服前0<ε≤εy 此阶段钢筋和混凝土共同工作,应力与应变大致成正比。在相同的荷载增量下,钢筋的压应力比混凝土的压应力增加得快而先进入屈服阶段。 第Ⅱ阶段——钢筋屈服到混凝土压应力达到应力峰值εy<ε≤ε0 钢筋进入屈服,对于有明显屈服台阶的钢筋,其应力保持屈服强度不变,而构件的应变值不断增加,混凝土的应力也随应变的增加而继续增长。《混凝土结构设计规范》(GB50010-2002)取最大压应变为0.002。 第Ⅲ阶段——混凝土应力达到峰值到混凝土应变达到极限压应变,构件产生破坏ε0<ε≤εcu 当构件压应变超过混凝土压应力达到峰值所对应的应变值ε0时,受力过程进入了第Ⅲ阶段,此时施加于构件的外荷载不再增加,而构件的压缩变形继续增加,一直到变形达到混凝土极限压应变,这时轴心受压构件出现的纵向裂缝继续发展,箍筋间的纵筋发生压屈向外

第7章轴心受力构件设计解析

第7章轴心受力构件的结构及设计 7.1 构件的类型和截面型式 轴心受力构件是工程机械金属结构基本构件之一,应用极为广泛。为更好的选择构件结构型式和截面型式,应该了解轴心受压构件的分类和常用的截面形式。 轴心受力构件按其受力性质不同,可分为轴心受拉构件(或称拉杆)和轴心受压构件(或称压杆);按其沿杆件的全长截面变化情况,可分为等截面构件和变截面构件;按截面组成是否连续情况,可分为实腹式受力构件和格构式受力构件。 轴心受力构件一般由轧制型钢制成,常采用角钢、工字钢、T字型钢、圆钢管、方形钢管等(图7-1a)。对受力较大的轴心受压构件,可用轧制型钢或钢板焊接成工字型、圆管型、箱形等组合截面 (图7-1b)。 (a) (b) 图7-1 实腹式轴心受力构件的截面型式 图7-2 格构式轴心受力构件的截面型式图7-3 双角钢或双槽钢组合截面型式起重机械钢结构中,存在大量压力不大,而所需长度较大的轴心受压构件,即构件所需要的截面积较小,长度较大。为使构件取得较大的稳定承载力,应尽可能使截面分开,采用格构式结构。格构式构件的截面组成部分是分离的,常以角钢、槽钢、工字型钢作为肢件,肢件间由缀材相连(图7-2)。通常把穿过肢件腹板的截面主轴称为实轴,穿过缀材的截面主轴称为虚轴。根据肢件数目,又可分为双肢式(图7-2a,b)、四肢式(图 163

164 7-2c)和三肢式(图7-2d)。其中双肢式外观平整,易连接,多用于大型桁架的拉、压杆或受压柱;四肢式由于在两个主轴方向能达到等强度、等刚度和等稳定性,广泛用于履带起重机的塔身、轮胎起重机的臂架等,以减轻重量。根据缀材形式不同,分为缀条式和缀板式。缀条采用角钢或钢管,在大型构件上用槽钢;缀板采用钢板。 对于小型桁架的拉、压构件,有时采用由垫板连接的双角钢或双槽钢组合截面型式(图7-3)。这种构件的角钢或槽钢之间用钢垫板将型钢连接成一个整体,相当于间距很小的缀板式双肢构件,因此视为缀板式格构式构件,为了使构件较好地整体工作,垫板的距离1l 不宜过大。 7.2 实腹式轴心受压构件设计 构件满足正常使用和承载能力的要求是设计的基本要求,高性价比是设计追求的目标。在轴心受压构件的设计时,通过强度公式可以容易求出构件所需要的截面面积;为获得相同截面面积有较大的刚性和稳定性,轴心受压构件截面的面积分布尽可能远离轴线即板的宽厚比尽可能大;而板的宽厚比过大,构件的局部稳定容易失去其稳定,设计时要综合考虑。为方便设计下面讨论轴心受压构件强度、整体稳定性和局部稳定性,推导出翼缘和腹板的高厚比与长细比之间的关系,为轴心受压构件板件设计和加劲肋的布置提供设计参考。 局部稳定性的设计准则:确保结构的局部稳定性不影响构件的承载能力即:(1)、屈曲临界应力不小于系数k 乘材料的屈服强度,确保构件在构件在达到其承载能力以前结构不会失去局部稳定性;(2)、屈曲临界应力不小于结构整体稳定的临界应力,确保结构在整体失稳破坏前不会失去局部稳定性。起重机械钢结构的受力构件多承受交变载荷作用,为确保构件材料处于弹性阶段,取0.8k =。也就是说当时整体稳定系数8.0>?时,以屈曲临界应力不小于0.8的屈服强度为原则即s cr σσ8.0≥;当整体稳定系数8.0≤?时,以屈曲临界应力不小于整体稳定临界应力的原则即cr s σ?σ≥。 7.2.1 翼缘板宽 (1) 三边简支、一边自由翼缘板的宽厚比 工字形及箱型构件的外伸翼缘可视为三边简支、一边自由、受均匀压应力作用的薄板(图4-20a),其临界应力按式(4-50)计算,式中屈曲系数: 2 )( 425.0a b K e +=σ 式中:e b —受压翼缘的外伸宽度,mm ; a —当无构造措施时,为翼缘长度,mm 。 2 22 2)100(62.18)()1(12e e E b b E δδμπσ=-= 式中:δ—受压翼缘的厚度,mm ; 由于翼缘外伸部分e b a >>,故屈曲系数0.425K σ≈。又由于翼缘板边无嵌固,嵌固系

钢结构第四章答案

第四章 4. 1有哪些因素影响轴心受压杆件的稳定系数? 答:①残余应力对稳定系数的影响; ②构件的除弯曲对轴心受压构件稳定性的影响; ③构件初偏心对轴心轴心受压构件稳定性的影响; ④杆端约束对轴心受压构件稳定性的影响; 4.3影响梁整体稳定性的因素有哪些?提高梁稳定性的措施有哪些? 答:主要影响因素: ①梁的侧向抗弯刚度y EI 、抗扭刚度t GI 和抗翘曲刚度w EI 愈大,梁越稳定; ②梁的跨度l 愈小,梁的整体稳定越好; ③对工字形截面,当荷载作用在上翼缘是易失稳,作用在下翼缘是不易失稳; ④梁支撑对位移约束程度越大,越不易失稳; 采取措施: ①增大梁的侧向抗弯刚度,抗扭刚度和抗翘曲刚度; ②增加梁的侧向支撑点,以减小跨度; ③放宽梁的受压上翼缘,或者使上翼缘与其他构件相互连接。 4.6简述压弯构件中等效弯矩系数mx β的意义。 答:在平面内稳定的计算中,等效弯矩系数mx β可以把各种荷载作用的弯矩分布形式转换为均匀守弯来看待。 4.10验算图示焊接工字形截面轴心受压构件的稳定性。钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。已知构件承受的轴心压力为N =1500kN 。 解:由支承条件可知0x 12m l =,0y 4m l = 2 3364x 1150012850025012225012476.610mm 12122I +??=??+??+???=? ??? 3364y 5001821225031.310mm 1212 I =?+???=? 2225012500810000mm A =??+?= x 21.8cm i === ,y 5.6cm i === 0x x x 12005521.8l i λ===,0y y y 400 71.45.6 l i λ===, 翼缘为火焰切割边的焊接工字钢对两个主轴均为b 类截面,故按y λ查表得=0.747? 整体稳定验算: 3 150010200.8MPa 215MPa 0.74710000 N f A ??==<=?,稳定性满足要求。

轴心受压构件概念题

轴心受压构件概念题 一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。每小题1分。) 1.轴心受压构件纵向受压钢筋配置越多越好。() 2.轴心受压构件中的箍筋应作成封闭式的。() 3.实际工程中没有真正的轴心受压构件。() 4.轴心受压构件的长细比越大,稳定系数值越高。() 5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2 N。() 400mm / 6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。()×√√××× 二、单选题(请把正确选项的字母代号填入题中括号内,每题2分。) 1.钢筋混凝土轴心受压构件,稳定系数是考虑了()。 A.初始偏心距的影响; B.荷载长期作用的影响; C.两端约束情况的影响; D.附加弯矩的影响。 2.对于高度、截面尺寸、配筋完全相同的柱,以支承条件为() 时,其轴心受压承载力最大。 A.两端嵌固; B.一端嵌固,一端不动铰支; C.两端不动铰支; D.一端嵌固,一端自由; 3.钢筋混凝土轴心受压构件,两端约束情况越好,则稳定系数 ()。 A.越大;B.越小;C.不变;D.变化趋势不定。 4.一般来讲,其它条件相同的情况下,配有螺旋箍筋的钢筋混凝土柱 同配有普通箍筋的钢筋混凝土柱相比,前者的承载力比后者的承载力 ()。 A.低;B.高;C.相等;D.不确定。 5.对长细比大于12的柱不宜采用螺旋箍筋,其原因是()。 A.这种柱的承载力较高; B.施工难度大; C.抗震性能不好;

D.这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥;6.轴心受压短柱,在钢筋屈服前,随着压力而增加,混凝土压应力的 增长速率()。 A.比钢筋快;B.线性增长;C.比钢筋慢;D.与钢筋相等。 7.两个仅配筋率不同的轴压柱,若混凝土的徐变值相同,柱A配筋率 大于柱B,则引起的应力重分布程度是()。 A.柱A=柱B;B.柱A>柱B;C.柱A<柱B;D.不确定。 8.与普通箍筋的柱相比,有间接钢筋的柱主要破坏特征是()。 A.混凝土压碎,纵筋屈服; B.混凝土压碎,钢筋不屈服; C.保护层混凝土剥落; D.间接钢筋屈服,柱子才破坏。 是因为()。 9.螺旋筋柱的核心区混凝土抗压强度高于f c A.螺旋筋参与受压; B.螺旋筋使核心区混凝土密实; C.螺旋筋约束了核心区混凝土的横向变形; D.螺旋筋使核心区混凝土中不出现内裂缝。 10.为了提高钢筋混凝土轴心受压构件的极限应变,应该()。 A.采用高强混凝土; B.采用高强钢筋; C.采用螺旋配筋; D.加大构件截面尺寸。 11.规范规定:按螺旋箍筋柱计算的承载力不得超过普通柱的1.5倍, 这是为()。 A.在正常使用阶段外层混凝土不致脱落 B.不发生脆性破坏; C.限制截面尺寸; D.保证构件的延性A。 12.一圆形截面螺旋箍筋柱,若按普通钢筋混凝土柱计算,其承载力为 300KN,若按螺旋箍筋柱计算,其承载力为500KN,则该柱的承载力应示为()。 A.400KN;B.300KN;C.500KN;D.450KN。 13.配有普通箍筋的钢筋混凝土轴心受压构件中,箍筋的作用主要是 ()。 A.抵抗剪力; B.约束核心混凝土; C.形成钢筋骨架,约束纵筋,防止纵筋压曲外凸; D.以上三项作用均有。 D A A B D C B D C C A D C

轴心受压构件

一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的内容有______。 强度强度和整体稳定性强度、局部稳定和整体稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。

6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。 X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性范围内屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。

轴心受力构件习题及答案

轴心受力构件习题及答案 一、选择题 1. 一根截面面积为A,净截面面积为A n的构件,在拉力N作用下的强度计算公式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的内容有______。 强度强度和整体稳定性强度、局部稳定和整体 稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。

6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。 X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性范围内屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上 的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。 完全相同 仅稳定系数取值不同 仅面积取值不同

第3章-计算题-答案

第三章 轴心受力构件承载力 计算题参考答案 1. 某多层现浇框架结构的底层内柱,轴向力设计值N=2650kN ,计算长度, 混凝土强度等级为C30(f c =14.3N/mm 2) ,钢筋用HRB400级(),环境类别为一类。确定柱截面积尺寸及纵筋面积。 m H l 6.30==2'/360mm N f y =解:根据构造要求,先假定柱截面尺寸为400mm ×400mm 由,查表得9400/3600/0==b l 99.0=? 根据轴心受压承载力公式确定 's A 23 ''1906)4004003.1499.09.0102650(3601)9.0(1mm A f N f A c y s =××?××=?=? %6.0%2.14004001906'min '' =>=×==ρρA A s ,对称配筋截面每一侧配筋率也满足0.2%的构造要求。 选 , 2'1964mm A s =设计面积与计算面积误差%0.31906 19061964=?<5%,满足要求。 2.某多层现浇框架厂房结构标准层中柱,轴向压力设计值N=2100kN,楼层高H=5.60m ,计算长度l 0=1.25H ,混凝土用C30(f c =14.3N/mm 2),钢筋用HRB335级(), 环境类别为一类。确定该柱截面尺寸及纵筋面积。 2'/300mm N f y =[解] 根据构造要求,先假定柱截面尺寸为400mm ×400mm 长细比5.17400 560025.10=×=b l ,查表825.0=? 根据轴心受压承载力公式确定 's A 2''1801)4004003.14825.09.02100000(3001)9.0(1mm A f N f A c y s =××?×=?= ? %6.0%1.1400 4001801'min ''=?=×==ρρA A s ,对称配筋截面每一侧配筋率也满足0.2%的构造要求。 2'1884mm s =设计面积与计算面积误差%6.41801 18011884=?<5%,满足要求。

第四章轴心受力构件

第四章轴心受力构件 1.选择题 (1)实腹式轴心受拉构件计算的内容包括。 A. 强度 B. 强度和整体稳定性 C. 强度、局部稳定和整体稳定 D. 强度、刚度(长细比) (2)实腹式轴心受压构件应进行。 A. 强度计算 B. 强度、整体稳定性、局部稳定性和长细比计算 C. 强度、整体稳定和长细比计算 D. 强度和长细比计算 (3)对有孔眼等削弱的轴心拉杆承载力,《钢结构设计规范》采用的准则为净截面。 A. 最大应力达到钢材屈服点 B. 平均应力达到钢材屈服点 C. 最大应力达到钢材抗拉强度 D. 平均应力达到钢材抗拉强度 (4)下列轴心受拉构件,可不验算正常使用极限状态的为。 A. 屋架下弦 B. 托架受拉腹杆 C. 受拉支撑杆 D. 预应力拉杆 (5)普通轴心钢构件的承载力经常取决于。 A. 扭转屈曲 B. 强度 C. 弯曲屈曲 D.弯扭屈曲 (6)在下列因素中,对轴心压构件的弹性屈曲承载力影响不大。 A. 压杆的残余应力分布 B. 构件的初始几何形状偏差 C. 材料的屈曲点变化 D.荷载的偏心大小 (7)为提高轴心压构件的整体稳定,在杆件截面面积不变的情况下,杆件截面的形式应使其面积分布。 A. 尽可能集中于截面的形心处 B. 尽可能远离形心 C. 任意分布,无影响 D. 尽可能集中于截面的剪切中心 (8)轴心受压构件的整体稳定系数?与等因素有关。 A. 构件截面类别、两端连接构造、长细比 B. 构件截面类别、钢号、长细比 C. 构件截面类别、计算长度系数、长细比 D. 构件截面类别、两个方向的长度、长细比 (9)a类截面的轴心压杆稳定系数?值最高是由于。

A. 截面是轧制截面 B. 截面的刚度最大 C. 初弯矩的影响最小 D. 残余应力影响的最小 (10)轴心受压构件腹板局部稳定的保证条件是h 0/t w 不大于某一限值,此限值 。 A. 与钢材强度和柱的长细比无关 B. 与钢材强度有关,而与柱的长细比无关 C. 与钢材强度无关,而与柱的长细比有关 D. 与钢材强度和柱的长细比均有关 (11)提高轴心受压构件局部稳定常用的合理方法是 。 A. 增加板件宽厚比 B. 增加板件厚度 C. 增加板件宽度 D.设置横向加劲肋 (12)为了 ,确定轴心受压实腹式柱的截面形式时,应使两个主轴方向的长细比尽可能接近。 A. 便于与其他构件连接 B. 构造简单、制造方便 C. 达到经济效果 D.便于运输、安装和减少节点类型 (13)双肢缀条式轴心受压构件绕实轴和绕虚轴等稳定的要求是 。 A.y y λλ=0 B. 1 2 27A A x y +=λλ C.1 2 027A A y y +=λλ D. y x λλ= (14)计算格构式压杆对虚轴x 轴的整体稳定时,其稳定系数应根据 查表确定。 A. x λ B. ox λ C. y λ D. oy λ (15)当缀条采用单角钢时,按轴心压杆验算其承载力,但必须将设计强度按《钢结构设计规范》中的规定乘以折减系数,原因是 。 A. 格构式柱所给的剪力值是近似的 B. 缀条很重要,应提高其安全性 C. 缀条破坏将引起绕虚轴的整体失稳 D. 单角钢缀条实际为偏心受压构件 (16)与节点板单面连接的等边角钢轴心受压构件,100=λ,计算稳定时,钢材强度设计值应采 用的折减系数是 。 A. 0.65 B. 0.70

钢结构第四章答案

第四章 验算图示焊接工字形截面轴心受压构件的稳定性。钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。已知构件承受的轴心压力为N=1500kN。 解:由支承条件可知 0x 12m l=, 0y 4m l= x 21.8cm i=== , y 5.6cm i=== 0x x x 1200 55 21.8 l i λ===,0y y y 400 71.4 5.6 l i λ===, 翼缘为火焰切割边的焊接工字钢对两个主轴均为b类截面,故按 y λ查表得=0.747 ? 整体稳定验算: 3 150010 200.8MPa215MPa 0.74710000 N f A ? ? ==<= ? ,稳定性满足要求。 图示一轴心受压缀条柱,两端铰接,柱高为7m。承受轴心力设计荷载值N=1300kN,钢材为Q235。已知截面采用2[28a,单个槽钢的几何性质:A=40cm2,i y=,i x1=,I x1=218cm4,y0=, x

缀条采用∟45×5,每个角钢的截面积:A 1=。试验算该柱的整体稳定性是否满足? 解:柱为两端铰接,因此柱绕x 、y 轴的计算长度为:0x 0y 7m l l == 格构柱截面对两轴均为b 类截面,按长细比较大者验算整体稳定既可。 由0x 65.1λ=,b 类截面,查附表得0.779?=, 整体稳定验算:3 2130010208.6MPa 215MPa 0.77924010 N f A ??==<=??? 所以该轴心受压的格构柱整体稳定性满足要求。 某压弯格构式缀条柱如图所示,两端铰接,柱高为8m 。承受压力设计荷载值N =600kN ,弯矩100kN m M =?,缀条采用∟45×5,倾角为45°,钢材为Q235,试验算该柱的整体稳定性是否满足? 已知:I22a A=42cm 2,I x =3400cm 4,I y1=225cm 4; [22a A=,I x =2394cm 4,I y2=158cm 4 ; ∟45×5 A 1=。 解:①求截面特征参数 截面形心位置: 该压弯柱两端铰接因此柱绕x 、y 轴的计算长度为:0x 0y 8m l l == x x 57948.86cm 73.8I i A ===,y y 12616.952 13.08cm 73.8 I i A === 0x x x 80090.38.86l i λ===,0y y y 800 61.213.08 l i λ=== ②弯矩作用平面内稳定验算(弯矩绕虚轴作用) 由0y 63.1λ=,b 类截面,查附表得0.791?= 说明分肢1受压,分肢2受拉, 由图知,M 2=0,1100kN m M =?,等效弯矩系数my 210.650.350.65M M β=+= 因此柱在弯矩作用平面内的稳定性满足要求。 ③弯矩作用平面外的稳定性验算 弯矩绕虚轴作用外平面的稳定性验算通过单肢稳定来保证,因此对单肢稳定性进行验算: 只需对分肢1进行稳定验算。 y x y 1 260 x y 2 x 1 x 2 45°

第六章 轴向受力构件和柱

第六章 轴向受力构件和柱 6-1 选择轴心受压柱的焊接工字形截面,并验算其整体和局部稳定性,轴向力N =2000kN ,柱高l =8m ,柱为两端铰支,材料为Q 235,许用应力[]175MPa σ=,柱的截面形式如图6—5所示。 6-2 选择由四个相同的角钢组成柱肢的缀条式格构柱的截面,并设计缀条及焊缝连接。截面为正方形,如图6—6所示。已知数据为:轴向力N =1200kN ,柱高l =12m ,柱的上端自由,下端固定,材料为Q 235,许用应力[]175MPa σ=,[]100h MPa τ=, 许用长细比[]120λ=。 6-3 验算变截面焊接格构柱的强度和稳定性。轴向力N =1400kN ,柱高l =16m ,柱为两端铰支,柱肢由∟125mm 125mm 10mm ??的角钢组成,缀条用∟50mm 50mm 5mm ??的角钢,截面如图6-7所示。材料均为Q 235,许用应力[]175MPa σ=,许用长细比[]120λ=。 图6-5 图6-6

6-4 选择轴心受压格构柱的截面,并设计缀板及焊缝连接。截面型式如图6-8所示。已知轴向力N =1000k N ,柱高l=6m,柱为两端铰支,材料为Q235,焊条采用E43,许用应力[]175a σ=MP ,[][]100,120h a τλ=MP =许用长细比。 6-5 轴心受压柱由4∟mm mm mm 1090140??的角钢和一块mm mm 30010?的钢板组成工字形截面,柱两端铰支,柱高l=5m ,铆钉孔直径d=23.5mm,钢材为Q235,许用应力 []175a,160a,350,m m a στσ????=MP =MP =MP ????许用长细比[],120=λ试求柱的最大许用载荷N ,计 算简图及截面型式如图6-9所示。 图 6-7 图 6-8

第三章 轴受力构件

第三章 轴心受力构件 本章的意义和内容:在设计以承受恒荷载为主的多层房屋的内柱及桁架的腹杆等构件时,可近似地按轴心受力构件计算。轴心受力构件有轴心受压构件和轴心受拉构件。本章主要讲述轴心受压构件的正截面受压承载力计算、构造要求,以及轴心受拉构件的受拉承载力计算等问题。 本章习题内容主要涉及: 轴心受压构件——荷载作用下混凝土和钢筋的应力变化规律;稳定系数?的确定;配有纵筋及普通箍筋柱的强度计算;配有纵筋及螺旋形箍筋柱的强度计算;构造要求。 轴心受拉构件——荷载作用下构件的破坏形态;构件的强度计算。 一、概 念 题 (一)填空题 1. 钢筋混凝土轴心受压构件计算中,?是 系数,它是用来考虑 对柱的承载力的影响。 2. 配普通箍筋的轴心受压构件的承载力为u N = 。 3. 一普通箍筋柱,若提高混凝土强度等级、增加纵筋数量都不足以承受轴心压力时,可采用 或 方法来提高其承载力。 4. 矩形截面柱的截面尺寸不宜小于 mm 。为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,常取≤l 0 ,≤h l 0 (0l 为柱的计算长度,b 为矩形截面短边边长,h 为长边边长)。 5.《混凝土结构设计规范》规定,受压构件的全部纵筋的配筋率不应小于 ,且不宜超过 ;一侧纵筋的配筋率不应小于 。 6.配螺旋箍筋的钢筋混凝土轴心受压构件的正截面受压承载力为 sso y s y cor c u 2(9.0A f A f A f N α+''+=),其中,α是 系数。 (二)选择题 1. 一钢筋混凝土轴心受压短柱,由混凝土徐变引起的塑性应力重分布现象与纵筋配筋率ρ'的关系是:[ ] a 、ρ'越大,塑性应力重分布越不明显 b 、ρ'越大,塑性应力重分布越明显 c 、ρ'与塑性应力重分布无关 d 、开始,ρ'越大,塑性应力重分布越明显,但ρ'超过一定值后,塑性应力重分布反

第6章 轴心受压构件的正截面承载能力计算

第6章轴心受压构件的正截面承载力计算 当构件【仅】受到位于截面形心的轴向压力作用时,称为轴心受压构件。在实际结构中,严格的轴心受压构件是很少的,通常由于实际存在的结构节点构造、混凝土组成的非均匀性、纵向钢筋的布置以及施工中的误差等原因,轴心受压构件截面都或多或少存在弯矩的作用。但是,在实际工程中,例如钢筋混凝土桁架拱中的某些杆件(如受压腹杆)是可以按轴心受压构件设计的;同时,由于轴心受压构件计算简便,故可作为受压构件初步估算截面、复核承载力的手段。 钢筋混凝土轴心受压构件按照箍筋的功能和配置方式的不同可分为两种: 1)配有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱),如图6-1a)所示; 2)配有纵向钢筋和螺旋箍筋的轴心受压构件(螺旋箍筋柱),如图6-1b)所示。 普通箍筋柱的截面形状多为正方形、矩形和圆形等。纵向钢筋为对称布置,沿构件高度设置等间距的箍筋。轴心受压构件的承载力主要由混凝土提供,设置纵向钢筋的目的是为了(1)协助混凝土承受压力,可减少构件截面尺寸;(2)承受可能存在的不大的弯矩;(3)防止构件的突然脆性破坏。普通箍筋作用是,防止纵向钢筋局部压屈,并与纵向钢筋形成钢筋骨架,便于施工。 螺旋箍筋柱的截面形状多为圆形或正多边形,纵向钢筋外围设有连续环绕的间距较密的螺旋箍筋(或间距较密的焊接环形箍筋)。螺旋箍筋的作用是使截面中间部分(核心)混凝土成为约束混凝土,从而提高构件的承载力和延性。

6.1 配有纵向钢筋和普通箍筋的轴心受压构件 6.1.1 破坏形态 按照构件的长细比不同,轴心受压构件可分为短柱和长柱两种,受力后的侧向变形它们和破坏形态各不相同。下面结合有关试验研究来分别介绍。 在轴心受压构件试验中,试件的材料强度级别、截面尺寸和配筋均相同,但柱长度不同(图6-2)。轴心力P 用油压千斤顶施加,并用电子秤量测压力大小。由平衡条件可知,压力P 的读数就等于试验柱截面所受到的轴心压力N 值。同时,在柱长度一半处设置百分表,测量其横向挠度u 。通过对比试验的方法,观察长细比不同的轴心受压构件的破坏形态。 1)短柱 当轴向力P 逐渐增加时,试件A 柱(图6-2)也随之缩短,测量结果证明混凝土全截面和纵向钢筋均发生压缩变形。 当轴向力P 达到破坏荷载的90%左右时,柱中部四周混凝土表面出现纵向裂缝,部分混凝土保护层剥落,最后是箍筋间的纵向钢筋发生屈曲,向外鼓出,混凝土被压碎而整个试验 柱破坏(图6-3)。破坏时,测得的混凝土压应变大于1.8×10-3,而柱中部的横向挠度很小。 钢筋混凝土短柱的破坏是一种材料破坏,即混凝土压碎破坏。 A B 图6-2 轴心受压构件试件(尺寸单位:mm ) 图6-3 轴心受压短柱的破坏形态 a)短柱的破坏 b)局部放大图 许多试验证明,钢筋混凝土短柱破坏时混凝土的压应变均在2×10-3附近,由混凝土受压时的应力应变曲线(图1-10)可知,混凝土已达到其轴心抗压强度;同时,采用普通热轧的纵向钢筋,均能达到抗压屈服强度。对于高强度钢筋,混凝土应变到达2×10-3时,钢筋可能尚未达到屈服强度,在设计时如果采用这样的钢材,则它的抗压强度设计值仅为400MPa 100.2002.0002.05=??=s E ,即必须小于其抗拉强度设计值来取用。 根据轴向力平衡,就可求得短柱破坏时的轴心力s P ,它应由钢筋和混凝土共同负担: 's 's A f A f P s c += (6-1) 2)长柱 试件B 柱在压力P 不大时,也是全截面受压,但随着压力增大,长柱不仅发生压缩变形, s P a) 短柱的混凝土破坏 b)局部方大图 s P

轴心受力构件例题

【题目】某工作平台柱高2.6m ,按两端铰接的轴心受压柱考虑。如果柱采用I 16,试经计算解答: 1. 钢材用Q235-A ?F 时,承载力设计值为多少? 2. 改用Q345钢时,承载力设计值能否提高? 3. 如果轴心压力为330KN (设计值),I 16能否满足要求?如不满足,从构造上采取什么 措施能满足要求? 【解答】 分析:根据已知条件,该柱无截面削弱,则其承载力设计值应由整体稳定性决定。且其为两端铰接,故计算长度等于几何长度,若无侧向支撑,则l l l ==oy ox 。但工字钢两方向的回转半径相差较大,即y i <

第9章 轴心受力构件设计

第九章 轴心受力构件设计 第一节 概述 轴心受力构件包括轴心受拉构件和轴心受压构件。在房屋建筑结构中,轴心受压柱、屋架、托架、网架、塔架等均属于轴心受力构件。 轴心受力构件按其截面形式可分为实腹式和格构式两种。实腹式构件构造简单,制造方便,整体受力和抗剪性能好,但截面尺寸大时用钢量大,见P141图5-2(a)。格构式构件则由两个或多个分肢用缀板或缀条连接而成,见P141图5-2(b)、(c)。缀条常采用单角钢,缀板常采用钢板。 第二节 轴心受力构件的强度和刚度 轴心受力构件的设计必须满足承载力极限状态和正常使用极限状态,包括强度、刚度,轴心受压构件还必须满足整体稳定性和局部稳定性。本节回顾一下轴心受力构件的强度和刚度。 一、强度计算 有孔洞削弱的轴心受拉和轴心受压构件,要求满足下面的计算公式: f A N n ≤=/σ 其中N 为构件轴力设计值;A n 为构件的毛截面积;f 为钢材强度设计值。 无孔洞削弱的轴心受拉和轴心受压构件,要求满足下面的计算公式: f A N ≤=/σ 其中A 为构件的毛截面积。 对摩擦型高强度螺栓连接的构件,计算净截面强度时应考虑孔前传力系数 对轴力的折减及螺栓孔的削弱,计算公式应为: f A n n N n ≤-=/)/5.01(1σ 其中:n 1为第一列螺栓数;n 为构件节点上或接头一边的螺栓总数;A n 为第一净截面积。

注意单面连接的单角钢轴心受力构件在计算强度时,钢材的强度设计值应乘以0.85。这是因为连接偏心会引起弯矩,使角钢受附加应力,安全度降低。 二、刚度计算 长细比是构件的计算长度与截面回转半径的比值,即i l /0=λ,λ 越大,构件 刚度越大,反之则刚度越小。 验算构件的刚度时,应对两个主轴方向的长系比均进行计算: ] [/][/λλλλ≤=≤=y oy y x ox x i l i l 其中:x λ、y λ为x 轴长细比和y 轴长细比;ox l 、oy l 、i x 、i y 分别为x 轴和y 轴的 计算长度和回转半径。 第三节 轴心受压构件的整体稳定 我国规范规定:轴心受压构件考虑残余应力、l /1000的初弯曲等因素,采用极限承载力理论,给出了三组λ?-曲线,这样轴心受压构件的整体稳定必须满足: f A N ≤=)/(?σ 其中:?-轴心受压杆件的整体稳定系数,可根据截面形式(分别属于a 、b 、c 三类)及长细比λ、钢材查P496开始的附表5-1、5-2、5-3、5-4、5-5、5-6。 第四节 轴心受压构件的局部稳定 我国规定轴压构件的局部稳定通过限制板间宽(高)厚比来保证。 确定板件宽厚比或高厚比的原则是:局部屈曲临界力大于或等于整体临界应力得等稳定原则,我国规范规定: 工字形轴心受压构件的板件宽厚比限值: 翼缘: y f t b /235)1.010(/λ+≤' 腹板: y w f t h /235)5.025(/0λ+≤ 其中:λ-构件的长细比;当30 ≤λ 时取30=λ;当100 ≥λ时取100=λ;

第6章 轴心受压构件的正截面承载能力计算

第6章 轴心受压构件的正截面承载力计算 当构件受到位于截面形心的轴向压力作用时,称为轴心受压构件。在实际结构中,严格的轴心受压构件是很少的,通常由于实际存在的结构节点构造、混凝土组成的非均匀性、纵向钢筋的布置以及施工中的误差等原因,轴心受压构件截面都或多或少存在弯矩的作用。但是,在实际工程中,例如钢筋混凝土桁架拱中的某些杆件(如受压腹杆)是可以按轴心受压构件设计的;同时,由于轴心受压构件计算简便,故可作为受压构件初步估算截面、复核承载力的手段。 钢筋混凝土轴心受压构件按照箍筋的功能和配置方式的不同可分为两种: 1)配有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱),如图6-1a )所示; 2)配有纵向钢筋和螺旋箍筋的轴心受压构件(螺旋箍筋柱),如图6-1b )所示。 普通箍筋柱的截面形状多为正方形、矩形和圆形等。纵向钢筋为对称布置,沿构件高度设置等间距的箍筋。轴心受压构件的承载力主要由混凝土提供,设置纵向钢筋的目的是为了(1)协助混凝土承受压力,可减少构件截面尺寸;(2)承受可能存在的不大的弯矩;(3)防止构件的突然脆性破坏。普通箍筋作用是,防止纵向钢筋局部压屈,并与纵向钢筋形成钢筋骨架,便于施工。 α) β) 30%50%图6-1 两种钢筋混凝土轴受压构件 a)普通箍筋柱 b)螺旋箍筋柱 螺旋箍筋柱的截面形状多为圆形或正多边形,纵向钢筋外围设有连续环绕的间距较密的螺旋箍筋(或间距较密的焊接环形箍筋)。螺旋箍筋的作用是使截面中间部分(核心)混凝土成为约束混凝土,从而提高构件的承载力和延性。 6.1 配有纵向钢筋和普通箍筋的轴心受压构件 6.1.1 破坏形态 按照构件的长细比不同,轴心受压构件可分为短柱和长柱两种,它们受力后的侧向变形和破坏形态各不相同。下面结合有关试验研究来分别介绍。 在轴心受压构件试验中,试件的材料强度级别、截面尺寸和配筋均相同,但柱长度不同(图6-2)。轴心力P 用油压千斤顶施加,并用电子秤量测压力大小。由平衡条件可知,压力P 的读数就等于试验柱截面所受到的轴心压力N 值。同时,在柱长度一半处设置百分表,

相关文档
最新文档