双曲线冷却塔规格性能表

双曲线冷却塔规格性能表

冷却塔的详细说明

冷却塔(The cooling tower)是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。 冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程。 基本信息 ?中文名称 冷却塔 ?外文名称 Cooling tower ?别名 凉水塔 ?作用 为凝汽器提供凉水源 基本简介 冷却塔[1]按水与空气相对流动状况不同,不同类型冷却塔优、劣,是冷却塔业界在学术上长期争论不休的问题,这种争论有力地促进了冷却塔的技术的发展,在争论中各自扬长避短,使冷却塔技术不断完善,向节能降耗,提高效率,降低投资等目标不断技术进步。 冷却塔热力性能好坏、噪声高低、耗电大小、漂水多少是衡量冷却塔品质优劣的关键,是用户及设计师在选用冷却塔时反复考察比较中最观注的焦点。 冷却塔是集空气动力学、热力学、流体学、化学、生物化学、材料学、静、动态结构力学,加工技术等多种学科为一体的综合产物。水质为多变量的函数,冷却更是多因素,多变量与多效应综合的过程。

冷却塔是利用空气同水的接触(直接或间接)来冷却水的设备。是以水为循环冷却剂,从一系统中吸收热量并排放至大气中,从而降低塔内循环水的温度,制造冷却水可循环使用的设备。随着冷却塔行业不断发展,越来越多的行业和企业运用到了冷却塔,也有很多企业进入到了冷却塔行业并发展。 设计参数 1.标准型:进塔水温37℃,出塔水温32℃ 2.中温型:进塔水温43℃,出塔水温33℃ 3.高温型:进塔水温60℃,出塔水温35℃ 4.超高温型:进塔水温90℃,出塔水温35℃ 5.大型塔:进塔水温42℃,出塔水温32℃ 主要应用 冷却塔主要应用于空调冷却系统、冷冻系列、注塑、制革、发泡、发电、汽轮机、铝型材加工、空压机、工业水冷却等领域,应用最多的为空调冷却、冷冻、塑胶化工行业。具体划分,如下: A、空气室温调节类:空调设备、冷库、冷藏室、冷冻、冷暖空调等; B、制造业及加工类:食品业、药业、金属铸造、塑胶业、橡胶业、纺织业、钢铁厂、化学品业、石化制品类等; C、机械运转降温类:发电机、汽轮机、空压机、油压机、引擎等; D、其他类行业…… 冷却塔的作用是将携带废热的冷却水在塔体内部与空气进行热交换,使废热传输给空气并散入大气中。 基本分类 按通风方式分为:①自然通风冷却塔;②机械通风冷却塔;③混合通风冷却塔。按水和空气的接触方式分:①湿式冷却塔;②干式冷却塔;③干湿式冷却塔。 按热水和空气的流动方向分:①逆流式冷却塔;②横流(直交流)式冷却塔;(3)混流式冷却塔

双曲线冷却塔

双曲线冷却塔结构优化计算与选型 (2008-12-14 22:20:52) 转载 分类:天力知识 标签: 杂谈 【Optimized Calculation and Model Selection of Double Curved Cooling Towers】 [摘要]目前,火电厂机组容量不断增大,其冷却塔亦向超大型方向发展。对冷却塔结构进行优化可保证冷却塔设计的安全性、经济性、合理性。冷却塔优化包含热力选型优化和结构本体优化,其中热力选型优化包括塔高与淋水面积的选配,塔高主要部位几何尺寸的相关比值等;结构本体优化包括在合适的荷载组合下,保证热力选型所确定的冷却塔主要尺寸、风筒几何尺寸比值、壳底斜率及壁厚等。通过优化计算,进行几个较优方案的技术经济性的比较,找出安全性、经济性、合理性最优的方案。 [关键词]冷却塔结构计算设计优化 0概论 双曲线逆流式自然通风冷却塔是火力发电厂循环水系统中应用最广泛的冷却设备。随着电厂机组容量的不断增大,冷却塔的淋水面积和塔高也不断增大、增高,冷却塔的结构优化计算和选型显得十分重要,它是冷却塔尤其是超大型冷却塔设计的经济性、合理性和安全性的基本保证。冷却塔主要由钢筋混凝土双曲线旋转薄壳通风筒、斜支柱、环型基础或倒“T”型基础(含贮水池)及塔芯淋水装置组成,详见图1。

冷却塔通风筒包括下环梁、筒壁、塔顶刚性环3部分。下环梁位于通风筒壳体的下端,风筒的自重及所承受的其他荷载都通过下环梁传递给斜支柱,再传到基础。筒壁是冷却塔通风筒的主体部分,它是承受以风荷载为主的高耸薄壳结构,对风十分敏感。其壳体的形状、壁厚,必须经过壳体优化计算和曲屈稳定来验算,是优化计算的重要内容。塔顶刚性环位于壳体顶端,是筒壳在顶部的加强箍,它加强了壳体顶部的刚度和稳定性。

双曲线冷却塔施工工法

双曲线冷却塔施工工法 一、特点及适用范围 本工法是双曲线冷却塔的倒模板施工工法,是目前我国火电厂多采用的3000㎡的钢筋砼双曲线冷却塔的最成熟施工方法,由于在倒模板结构中,采用自主设计的可变平行四边形模板支撑结构,能较好的解决收分难题,并且结构简单,易于操作,质量、安全有保证等特点,所以,本施工方法有广泛的运用前景,在施工中也能更好的节约成本,具有较好的经济效益。特别适合大中型双曲线冷却塔(3000㎡和5000㎡)的施工。 二、工艺原理 本工法是根据双曲线冷却塔的结构要求和倒模板施工特点,采用倒模板分层进行收分扩分钢筋砼施工,从而完成整个工程结构施工。 三、工艺流程及操作要点 (一)、冷却塔工程主要工作内容 该施工方法为设计面积为3000m2钢筋砼双曲线冷却塔,其主要结构形式为:钢筋砼环基、池底板、整体式池壁、圆柱形人字柱、刚性环梁、筒壁井、上环梁;塔内淋水装置为杯基淋水构架柱、中央竖井、主次梁、水泥淋水网格板、主配水槽、塑料喷溅装置、玻璃钢收水器、循环回水及压力钢管和循环水沟分别与中

央井及池壁连接。塔外另设上塔爬梯、进塔门、避雷装置、塔筒内壁及淋水构件均刷防腐涂料。 (二)、主要施工流程 场地平整——挖基坑——铺筑垫层——塔心杯形基础施工——环基施工-浇筑混凝土底板——池壁施工——回填土——安装塔吊——人字柱、中央竖井施工——筒壁、刷涂料、安装爬梯、塔芯构件预制——焊刚性环栏杆——塔吊拆除——塔芯结构吊装、做散水——竣工 (三)、主要操作要点 1、工程测量控制及沉降观测: (1)、首先,建立冷却塔工程定位放线控制网,控制网设在不受建筑物障碍的开阔地带,用混凝土和铁板建立控制点。 中心控制点的建立:在池底板塔中心位置预埋一块300×300铁板,重新依据塔外控制网将塔的中心投在铁板上,作好轴线十字线和中心点作为塔中心的控制点。 标高的控制也用水准仪投到中心铁板上,作为控制塔体标高和水平面的依据。 (2)、在施工水池壁,人字柱和环梁时。在塔中央设井字架,吊2.5kg锤球对准中心桩十字丝,作为中心控制线,用钢尺拉半径依次控制人字柱,环梁半径。标高也根据水准点用水准仪进行抄平。 (3)、筒壁的施工中心线找正采用对中线锤和找正盘组成悬

冷却塔技术规范

冷却塔技术规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

概述 通则 本技术要求是征询文件的重要组成部分,投标人所提供的设备应符合本技术要求。本技术要求提出的是最低要求,并未对一切细节做出规定,投标人应保证提供符合本技术规格及要求和有关最新工业标准的产品。 投标文件的技术要求内凡是发包人告知、介绍基本情况的条款,是供投标人参考、遵循的,应视为应答征询文件其他条款的基本条件。 投标人必须对本技术文件提出的技术要求做出实质性的应答,并如实填写所列技术规格表格,该表未列出及不便在表中做出应答的条款应另外补充有关资料逐条做出应答,如有偏离应将偏离情况填入“技术规格偏离/响应表”。任何不按此要求的投标文件将承担被拒绝接受的风险。中标后投标人在合同谈判中的任何偏离都不得超越偏离表中已经发包人确认的条款。 投标人必须注明所供产品的系列、型号,并须提供该产品的外型尺寸、基础尺寸、产品样本,详细说明产品的技术特点、性能指标、功能解释等。 如果没有特别说明,投标人在投标文件中所提供的所有设备、仪器、工具均视为包含在投标报价中。 所有应答均不得照抄、复制征询文件所列条款、指标和参数。非量化指标可以直接进行应答,量化指标必须应答具体数值。 所供设备应是近年来定型投产的该规格型号最新、成熟的、广泛使用的产品。投标人应提供所供产品的制造厂名称(全称)、产地及生产历史,并提供最新产品样本及说明。

按照本技术规范书的产品所涉及的专有或专利技术,发包人认为知识产权使用费已经包括在投标总价中,发包人不会因为任何理由而单独支付额外的费用。 投标人提供的设备须取得CQC节水型产品认证。投标人提供的设备必须符合国标,并为近2年内的检测报告,热力性能必须达到100%以上。获得CE认证的品牌优先考虑。 冲突 本技术规格书与其他技术规格书发生冲突时以本技术规格书为准。 技术要求不得低于国家标准或规范的,按照国家相关标准或规范执行,高于国家标准或规范的,按照本技术要求的要求执行。 本技术规格书与图纸(包括图纸说明)发生冲突时以图纸为准。. 审查与交付 投标人应在合同生效后一个月内免费提供四套技术资料(中文文本),一套随设备发放,其余三套后期提供。技术资料包括但不限于以下内容: 设备操作使用说明书及维修手册。 检验记录、试验报告及质量合格证等出厂报告。 设计、制造时所遵循的规范、标准和规定清单。 设备安装、运行、维护、检修所需的详尽图纸及技术资料, 设备安装、运行、维护、检修说明书 设备和备品发送的详细资料;产品安全合格证明等有关资料。设备运行2年所需备品备件总清单及检修专用工具一套。 送审产品资料,应提供所有仪表清单及样本(规格、型号及性能), 设备制造、使用条件

大型双曲线冷却塔施工中的几个质量通病与控制方法

大型双曲线冷却塔施工中的几个质量通病与控制方法 【摘要】作为火电厂的标志性建筑结构,钢筋混凝土双曲线冷却塔结构的观感质量直接影响整座电厂的形象。为取得较好的观感效果,对于冷却塔的施工方面,必须重点控制容易产生质量通病的施工操作。对于一座高耸、立面双曲线、平面尺寸大、薄壁结构的钢筋混凝土塔筒结构,质量通病要完全消除存在一定的困难。持续不断总结、改进施工方法和施工工艺,提升工程的质量,是我们每个工程建设者不断追求的目标。 【关键词】双曲线冷却塔观感效果质量通病 1 引言 目前,双曲线冷却塔的施工工艺比较成熟,大多采用爬模施工技术。爬模施工技术是80年代国外引进的具有先进技术的冷却塔施工工艺技术,为了解决传统的三脚架翻模施工技术对大型冷却塔施工不适合难题、加快施工进度,某工程一个6500m2冷却塔施工开始采用爬模施工技术。目前该技术在国内经过不断的改进、吸收,全部设备已经实现国产化,并且冷

却塔风筒施工质量也达到了较高水平。作为现代化火电厂的标志性建筑,双曲线冷却塔不仅要具有结构的整体质量外,其观感质量也变得日益重要,一般性要求:曲线流畅、接缝规则无缺陷、混凝土的表面颜色保持一致且光洁,整体达到良好效果。尽管双曲线冷却塔施工工艺在各方面已经取得了很大的提高,但是对于一些观感的质量通病以及形成原因,多数施工人员认识相对浅显,因此,防范施工不到位,往往引起一些观感问题。为消除观感问题,必须透彻认识问题形成的原因,采取有效可行的控制措施,提升冷却塔的观感质量。 2 工程简介 2.1 筒壁施工垂直运输方法 此种方法主要有下述施工工艺。井架脚手架体系,此工艺方法井架搭设、电梯安装、吊桥设置等工艺比较复杂,需要的劳动力成本较高,因此,此工艺方法已逐步被淘汰。以塔式起重机为主体辅以传统施工升降机的施工方法,该方法中塔式起重机主要承担钢筋等物料的运输,在传统工艺中,这些工作主要由施工人员运送,另外,混凝土可以通过塔吊或者升降机运送,也可以通过泵来完成。曲线电梯和折臂塔机的结合方法,该方法在塔内设有折臂机,可以完成

冷却塔性能的评价汇总

冷却塔性能的评价 摘要:通过冷却塔验收试验或性能试验整理出结果,应对该冷却塔的性能作出评价。评价的指标,决定于所采用的评价方法,有以冷却出水温度,或以冷却能力(实测经修正后的气水比与设计时气水比的比值)作为评价指标,也有用其它的评价指标。下面介绍几种目前国内外常用的冷却塔性能评价方法。 关键词:冷却塔评价指标性能评价 通过冷却塔验收试验或性能试验整理出结果,应对该冷却塔的性能作出评价。评价的指标,决定于所采用的评价方法,有以冷却出水温度,或以冷却能力(实测经修正后的气水比与设计时气水比的比值)作为评价指标,也有用其它的评价指标。下面介绍几种目前国内外常用的冷却塔性能评价方法。 1.按计算冷却水温评价 根据冷却数方程式表示的热力特性和阻力特性,可以综合计算得到设计或其它条件下的冷却水温。 根据设计条件及实测的热力、阻力特性,计算出冷却水温,与设计的进行比较,如前者的值等于或低于后者的值,则该冷却塔的冷却效果达到或优于设计值。 2.按实测冷却水温评价 通过验收试验,测得一组工况条件下的出塔冷却水温,由于试验条件与设计条件的差异,需通过换算方可比较,其比较的方法是:将实测的工况条件代入设计时提供的性能曲线或设计采用的计算方法和公式,计算出冷却水温,如果比实测的高,则说明新建或改建的冷却塔实际冷却效果要比设计的好,反之则说明冷却塔效果差。 这种用实测冷却水温的评价方法,计算简便,评价结果直感,试验时不需测量进塔风量,易保证测试结果的精度,但需设计单位提供一套性能曲线(操作曲线)或计算公式。 3.特性曲线评价法 3.1 性能评价应用公式

式中——实测冷却能力; ——修正到设计条件下的冷却水量(); ——设计冷却水量(); ——试验条件下的实测风量(); ——修正到设计工况条件下的气水比, 由于试验条件与设计条件存在差异,故需将试验条件下所测之数据,修正到设计条件下进行评价。 3.2 设计工况点的决定 在作设计时,根据选定的塔型及淋水填料,可获得该冷却塔的热力特性,在双对数坐标纸上便可获得一条的设计特性曲线,如下图中直线1。 根据给定的冷却任务()假设不同的气水比,可获得不同的,将其描绘在图上,便可得冷却塔的工作特性曲线,如上图中曲线2,直线1和曲线2的交点。即为满足设计要求的工况点。 3.3 试验条件的工况向设计条件修正 冷却塔进行验收试验或性能试验时,由于实测进塔空气量G,和设计空气量不可能完全相同,所以获得的直线和上图中的直线1不可能完全相同,而是另外一条和直线1平行的直线3。直线3和曲线2的交点c则表示修正到设计条件下的工作点,C点对应的气水比即为修正到设计工况条件下的气水比。 c点的获得,可由试验得到的冷却数和气水比点绘到冷却塔设计特性曲线图上,得试验点b,过b点作直线3平行于直线1,从而可得到直线3和曲线2交点c。 根据试验实测的空气量及修正后c点的气水比,便可得到修正后的冷却水量,即: 将上式代入便可求得实测冷却能力。如大于90%或95%,应视为达到设计要求;大于100%,应视为超过设计要求。 4.美国CTI机械通风冷却塔特性曲线评价法 此评价方法与上述的冷却塔性能评价方法基本相同,亦是以实测冷却能力表示的,即:

双曲线冷却塔施工方案

XXXXX生物质发电厂工程冷却塔 施工方案 审批:会签: 审核: 编制: XXXXXXXXXXXXX日月XX XXXX年XX 录目

37 / 1 1、工程概况 2、编制依据 3、管理目标及施工部署 4、各分部分项工程的施工方法 5、质量保证措施和创优计划 6、施工总进度计划及保证措施 7、安全生产措施 8、文明施工措施 9、施工场地治安保卫管理计划10、降低环境污染技术措施11、冬、雨季施工技术措施12、施工现场总平面布置 、工程概况11.1、本工程建设概况 工程名称:XX生物质发电厂工程1250m2自然通风冷却塔建设地点:XXXXXX。 37 / 2 建设规模:1250m2双曲线水塔。 建设单位:XXXX有限公司 设计单位:XXXX 施工单位:XXXXX

1.2、建筑概况: 本工程冷却塔淋水面积为1250平方米,塔高60.20m,喉部标高48.515m,钢筋采用HPB300、HRB400E。混凝土:垫层C15、淋水装置C30P8F150、水池底板C30P6F150、环形基础C30P6F150、塔筒及人字柱C40P8F200,水泥采用不低于42.5号的硅酸盐水泥。 2 、编制依据 2.1 国家有关法律、法规和条例 (1)《中华人民共和国建筑法》 (2)《中华人民共和国招标投标法》 (3)《建设工程质量管理条例》 (4)《建设工程安全生产管理条例》 2.2 本工程招标有关文件 施工图纸 2.3 主要规范规程、标准 地下防水工程施工质量验收规范(GB50208-2010) 混凝土结构工程施工质量验收规范(GB50204-2010) 砌体结构设计规范(GB50003-2011) 建筑抗震设计规范(GB50011-2010) 建筑结构荷载设计规范(GB50009-2012) 建筑地基基础设计规范(GB50007-2002) 钢结构设计规范(GB50017-2003) 工业建筑防腐蚀设计规范(GB50046-2008)

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 () dV h h dH t xv q 0"-=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; "t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

(完整版)冷却塔塑料填料主要技术参数

冷却塔S波型聚氯乙烯填料技术规格书 一、冷却塔聚氯乙烯填料主要技术参数: 设备台数3台 供货数量:1600 m3 二、主要技术要求DL/T742-2001 1、冷却塔填料 2、一般要求DL/T742-2001 (1)淋水填料原片材的物理力学性能要求按DL/T 742-2001 《冷却塔塑料部件技术条件》执行。冷却塔淋水填料的板型结构必须经电力部西安热工所或中国水利水电科学研究院冷却水研究所进行有关测试,并经部专业主管单位组织鉴定或评审通过,属电力规划设计总院推荐的填料原生产厂家。同时应具有国家权威检测机构出具的热力特性和阻力特性参数。 (2)淋水填料应具有热力特性好,通风阻力小,计算出塔水温低的基本性能。 (3)淋水填料平片应选用耐寒型填料平片。 (4)淋水填料应具有组装刚度好,承载能力强的基本性能。在设计荷载作用下不变形扭曲,不松散倒伏,能保持长年稳定的高效运行,使用寿命不少于10年。 (5)通道尺寸大,通畅性好,不易堵塞使填料能保持长期稳定的冷却特性。 3、聚氯乙烯填料平片片材 (1)平片应塑化均匀,无分散不良的辅料,外观色泽应一致,片平面不应附着配方或工艺产生的各类油污。 (2)平面表面应平整,无明显孔洞,皱折和气泡,不得有大于1.0mm的杂质,粒径0.6—1.0mm的杂质个数不超过20个/m2, 分散度不超过5个/10x10cm2.

片边应光滑平直等宽,无破裂,缺口。 (3)压制填料的塑料平片的设计厚度宜在0.35—0.45mm之间选用。平片片厚的允许偏差为±0.03mm。 (4)淋水填料原片材的物理力学性能应达到表4-1所列的各项指标,出厂产品应附有原入片材的物理力学性能检验报告及产品合格证,并按规定抽样检查。原片材的物理力学性能见表3-1 表3-1 原片材的物理力学性能 (5)淋水填料片材的规格要求 淋水填料片材的规格要求见表3-2 表3-2 原片材规格表 4、填料成型片 (1)成型片上0.3—2.0mm的孔眼不得超过5个/10x10cm2, 且破损孔径不超过2mm, 成型片片边不得有破裂或明显缺口。 (2)淋水填料成型片尺寸应符合设计要求,片平面长宽尺寸允许偏差分别为±10mm及±5mm, 片周轮廓呈规则矩形,成型片最薄处厚度不小于0.2mm。 (3)淋水填料成型片必须采用材质指标合格的塑料平片压制。。 (4)成型片在65℃热水浸泡,72h耐温试验后的高度变化率Mh≤5.0%。

冷却塔工作原理和分类

冷却塔工作原理和分类 冷却塔的工作原理 冷却塔是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的废热的一种设备。基本原理是:干燥(低焓值)的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽分压力大的高温水分子向压力低的空气流动,湿热(高焓值)的水自播水系统洒入塔内。当水滴和空气接触时,一方面由于空气与不的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,带到目前为走蒸发潜热,将水中的热量带走即蒸发传热,从而达到降温之目的。冷却塔的工作过程:圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降。从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。但是,水向空气中的蒸发不会无休止地进行下去。当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态。蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变。由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。 冷却塔的分类 一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。 二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。 三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。 四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。 五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。 六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。 冷却塔的适用范围 工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。例如:火电厂内,锅炉将水加热成高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。这一过程中乏汽的废热传给了冷却水,使水温度升高,挟带废热的冷却水,在冷却塔中将热量传递给空气,从风

冷却塔计算

冷却塔设计计算参考方法 本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。 一、简述 如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是: a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。 b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。 c 区——冷却塔高速排风区。 d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。 e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约

4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。 二、冷却塔的选型 1、设计条件 温度:38℃进水,32℃出水,27.9℃湿球; 水量:1430M3/H;水质:自来水; 耗电比:≤60Kw/台,≤0.04Kw/M3·h, 场地:23750mm×5750mm; 通风状况:一般。 2、冷却塔选型 符合以上条件的冷却塔为:LRCM-H-200SC8×1台。 (冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量) 其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M3/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M3/H。 冷却塔的外观尺寸为:22630×3980×4130。 冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M3·h。 三、校核计算 1、已知条件:

双曲线型冷却塔

双曲线型冷却塔 冷却塔俯拍图 hyperbolic cooling tower 火电厂、核电站的循环水自然通风冷却是一种大型薄壳型构筑物。建在水源不十分充足的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用。大型电厂采用的冷却构筑物多为双曲线型冷却塔。 英国最早使用这种冷却塔。20世纪30年代以来在各国广泛应用,40年代在中国东北抚顺电厂、阜新电厂先后建成双曲线型冷却塔群。冷却塔由集水池、支柱、塔身和淋水装置组成。集水池多为在地面下约2米深的圆形水池。塔身为有利于自然通风的双曲线形无肋无梁柱的薄壁空间结构,多用钢筋混凝土制造。冷却塔通风筒包括下环梁、筒壁、塔顶刚性环3部分。下环梁位于通风筒壳体的下端,风筒的自重及所承受的其他荷载都通过下环梁传递给斜支柱,再传到基础。筒壁是冷却塔通风筒的主体部分,它是承受以风荷载为主的高耸薄壳结构,对风十分敏感。其壳体的形状、壁厚,必须经过壳体优化计算和曲屈稳定来验算,是优化计算的重要内容。塔顶刚性环位于壳体顶端,是筒壳在顶部的加强箍,它加强了壳体顶部的刚度和稳定性。 斜支柱为通风筒的支撑结构,主要承受自重、风荷载和温度应力。斜支柱在空间是双向倾斜的,按其几何形状有“人”字形、“V”字形和“X”字形柱,截面通常有圆形、矩形、八边形等。基础主要承受斜支柱传来的全部荷载,按其结构形式分有环形基础(包括倒“T”型基础)和单独基础。基础的沉降对壳体应力的分布影响较大、敏感性强。故斜支柱和基础在冷却塔优化计算和设计中亦显得十分重要。 冷却塔高度一般为75~150米,底边直径65~120米。塔内上部为风筒,筒壁第一节(下环梁)以下为配水槽和淋水装置。淋水装置是使水蒸发散热的主要设备。运行时,水从配水槽向下流淋滴溅,空气从塔底侧面进入,与水充分接触后带着热量向上排出。冷却过程以蒸发散热为主,一小部分为对流散热。双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它又比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高。

双曲线型凉水塔拆除方案

双曲线型凉水塔拆除方案凉水塔为双曲线形构筑物,总高71m,底面最大半径28.479 m,标高56m 处半径最小为14.5m,顶部70m标高处半径为15.678 m,凉水塔为筒形结构,壁厚125~375mm,砼标号250#。筒体内9.05标高以上为中空,以下为淋水装置及砼支架,-1.4m~6m为人字柱,支承上部环梁及筒体,人字柱共40根。见图1: 二、施工技术难点 因电厂内生产不能停止,厂方将施工安全列为第一重要,特规定拆除方案必须遵守以下几条: 1、不允许采用爆破拆除。 2、施工中不允许上人搭设脚手架。 3、现场必须严格控制明火。 因此,如何将整体拆除变为分体(割)拆除是本工程施工的难点和关键。 三、施工布署及施工方法 (一)施工布署 根据凉水塔为双曲线型薄壁筒体结构特点,本着经济、安全、高效的原则,塔身主要采用液压长臂剪和破碎锤"由下及上"拆除,整个拆除过程按先后顺序布署为六个阶段: 第一阶段:拆除内部结构及设施(包括托架、淋水架沟、配水槽、竖井、砼梁柱等); 第二阶段:拆除标高7.2m~15.8m部分(该阶段为关键性阶段); 第三阶段:拆除标高7.2m~-1.4m部分; 第四阶段:拆除标高15.8m~52m部分(该阶段为主要阶段); 第五阶段:拆除标高52m~71m部分; 第六阶段:清运-1.4m以上废墟及基础拆除。 (二)施工方法 第一、六阶段(从略)。 1.第二阶段:标高7.2m~15.8m部分的拆除

该部分拆除目的是将标高为15.8m以上部分(筒壁为薄壁钢筋砼)整体缓慢落在水池底面,以便于地面作业,该部分拆除采用液压长臂剪和破碎锤"由下及上"拆除(详见"关键阶段施工方法")。标高7.2m~15.8m部分拆除后,标高15.8m以上部分被套在环梁内部,见图2示意: 2、第三阶段:标高7.2m~-1.4m部分 该部分拆除目的是将第二阶段落地(标高为-1.4m)部分的外围障碍拆除。外围障碍指人字柱及环梁。该部分拆除采用由上及下的方法,使用采用液压长臂剪和2台日本小松PC300液压破碎锤分段捣碎环梁后再分别捣碎人字柱。外围障碍拆除后成为图3实线所示筒体。 3、第四阶段:标高15.8m~52m部分 该部分是整个拆除工程的主要阶段,因为该部分经过第二、第三阶段的拆除后,实际成为一个由地面(-1.4m)"站立"的57.4m高的薄壁筒体,其拆除采用液压长臂剪和破碎锤3台套,沿筒周围均匀布置,同方向(顺时针或逆时针)、高度、匀速开凿(破碎筒壁砼),筒体缓慢下移到底,即"蚕食"型拆除完毕。 5.第五阶段:标高52m~71m部分 该部分是整个筒体拆除的最后阶段,因为该部分经过第二、第三、第四阶段的拆除后,实际成为一个由地面(-1.4m)"站立"的19m高的薄壁筒体(见图4),其高度满足液压长臂剪和破碎锤的拆除高度,所以该部分"由上及下"拆除筒壁砼,一拆到底。 图3 (三)关键部位拆除施工方法 方案中第二阶段(拆除标高7.2m~15.8m部分)为关键性阶段,施工方法详述如下: 1、15.8m以上部分筒体落地(池底-1.4m标高)防倾覆及定向设施布置: 经计算,该部分筒体总重量约为2380吨,选用20道三角钢支架,在环梁内侧沿周长均匀布置,平面布置(见图5)及支架形式(见图6)。(三角钢支架杆件选型计算书从略) 2、筒壁砼拆除:

冷却塔的热力计算

冷却塔的热力计算 冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。 为了便于计算,我们对冷却塔中的热力过程作如下简化假设: (1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看 作是常量,不随空气温度及水温变化。 (2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。 (3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。 (4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。 (5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。 冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦 克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。 麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一 个以焓差为动力的传热公式。在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。 ( ) dV h h dH t xv q 0" -=β (1) 式中:q dH —— 水散出热量; xv β —— 以含湿差为基准的容积散质系数()[] kg kg s m kg //3?? ; " t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。 将式(1)代入冷却塔内热平衡方程: n w w q tdQ c Qdt c dH += (2) 式中:q dH —— 水散出热量;

双曲线冷却塔施工方案

双曲线冷却塔施工方案 本期工程两台机组共配置两座双曲线钢筋混凝土自然通风冷却塔,塔高85m,淋水面积为3000m2,进风口标高5.8m,半径31.476m,壁厚500mm;喉部标高68m,半径17.9m,壁厚140mm;环基半径34.315m,底标高-2.5m,倒T型基础,底宽度4.5m。 1总体施工流程主要的施工顺序 环基施工→池壁→人字柱→筒壁 土方开挖→地基处理→→ 杯口基础及中央竖井→池底板→淋水构件预制 淋水构件吊装→淋水填料安装→竣工清理。 冷却塔筒壁采用SC200/200D型垂直升降机、YDQ26×25-7液压顶升平桥和附着式三角架翻模法施工方案,先施工#1冷却塔的筒壁,将垂直升降机从#1冷却塔拆除后,再移至#2冷却塔安装好,用于#2冷却塔的筒壁施工。布置于冷却塔内的垂直升降机揽风绳采用分层拉设,固定于冷却塔的筒壁上,筒壁施工前先将垂直升降机的揽风吊环进行详细计算,并在筒壁施工分节图中标注出来,施工时加以埋设。筒壁到顶后安装爬梯、电气、避雷装置等。 2土方开挖 施工降水采用轻型井点降水,辅助明沟排水。 土方开挖机械选用反铲式挖掘机,并用自卸汽车将土运至弃土场。土方采用大面积开挖,边坡系数一般为1:1,先用挖掘机开挖至基底设计标高以上30cm 处,余土采用人工清基,确保不扰动原土层。在水塔基坑外侧留设两条施工坡道,作为土方运输及基础施工材料的进出通道。 3 毛石地基处理 经地基验槽结束后方可进行毛石地基施工。砌筑石材须质地坚实,无风化剥落和裂纹。经实验室试验强度合格后方可砌筑。石块表面泥垢、水锈等杂质,砌筑前应清除干净。采用铺浆法砌筑,控制好砂浆稠度,随气候变化调整。严格控制砂浆标号,既应防止浪费,又要保证砌筑质量。轴线偏差小于20mm,标高

凉水塔内部结构简介

凉水塔内部结构简介 一、凉水塔配水装置 凉水塔采用双曲线形自然通风冷却塔。凉水塔由通风筒、配水装置、淋水装置、除水器、及集水池等部分组成。通风筒为双曲线形,钢筋混凝土结构,下面用钢筋混凝土人字柱支撑在环形基础上。 配水装置包括进水沟、竖井、水槽、配水管及喷嘴。进水沟在东、西、南、北方向上设有四个竖井,每个竖井两侧有连接水槽,每个水槽有很多配水管,配水管上装有带淋水盘的喷嘴,淋水盘设在配水装置的下方,交错布置并采用波形板面,增大散热面积,配水装置上部有除水器,布满整个水平截面。

机组运行时,循环水在冷却塔内放热、空气吸热,受热后的空气比重小于塔外的空气,空气向上流动并有一定的风速,循环水在凝汽器中受热后,经压力排水管到凉水塔进水沟,并沿各竖井流入水槽后,经配水管上的喷嘴喷出,均匀地流到淋水盘上,循环水沿波形淋水板流动时与空气进行热交换,冷却后的循环水落入集水池,由循泵打出送入凝汽器重复使用,冷却水蒸发的水蒸气及被带出的水珠经除水器时,沿除水器通道900转弯,除掉部分水后从凉水塔顶部排入大气。

二、凉水塔启闭器 凉水塔设有启闭器,通过开关启闭器可以改变凉水塔的淋水密度,适当调节凉水塔的冷却效果,控制循环水进水温度在一定范围内。 凉水塔的淋水密度为单位时间内,凉水塔淋水装置每平方米上通过的冷却水量。凉水塔淋水密度越大,热负荷越大,冷却效果越差。

通过开关凉水塔启闭器可以改变凉水塔的配水范围和淋水密度,适当调节循环水温度。每个凉水塔的启闭器有两个,南侧启闭器利用操作手柄操作时,顺时针关闭、逆时针开启;北侧启闭器利用操作手柄操作时,逆时针关闭、顺时针开启。 环境温度高时,打开启闭器,南、北侧竖井全部开启,循环水回水进水沟内水沿南、北侧竖井流入水槽,一部分循环水进入内围配水槽,实现全塔配水,这样在增加凉水塔淋水面积的同时减少了凉水塔外围区的淋水密度,在一定程度上降低了循环水温度。冬季环境温度低时,关闭启闭器,南、北侧竖井部分关闭,循环水回水进水沟内水沿南、北侧竖井流入水槽的水量减少,内围配水降低,实现外围配水,增加了凉水塔外围区淋水密度,减少了凉水塔淋水面积,在一定程度上提高了循环水温度。

冷却塔性能参数说明

冷却塔性能参数说明

1.设备组成 1.1设备原产地及制造厂家 广东省广州市/斯必克(广州)冷却技术有限公司。 1.2供货明细 NC玻璃钢冷却塔/NC8330F/4台 SR玻璃钢冷却塔/SR-200/2台 SR玻璃钢冷却塔/SR-40/2台 1.3其他 2.设备性能及技术参数 2.1设备性能 1)NC系列产品简介 A、NC型横流式冷却塔系统性设计 横流式冷却塔是马利公司工程师通过 冷却塔多年热工测试试验,引进世界上最大 的冷却塔生产商斯必克公司的先进技术和 设备,对测试数据进行全面综合处理,参照 美国冷却协会CTI标准和GB7190-1997等 依据计算机运算得出的淋水填料的容积散 质系数 xv,选择最佳的水气比,最佳截面 水负荷,截面气负荷和填料的高度范围以确 定填料体积,并以流体力学、空气动力学、 材料学、建筑学等多种学科观点,综合设计 塔的外型与结构,根据测试计算通风阻力, 参考风机特性曲线和对测试数据进行优化, 选择符合风量和噪音要求的风机和匹配的 电机,使冷效、能耗、噪音达到一个优化的 系统设计效果。 B、NC型横流式冷却塔淋水填料 马利NC方形横流式冷却塔采用的 MX-75型高级薄膜式复合波淋水填料, 堪

称世界上薄膜式淋水填料的佼佼者,此填料片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。 一般冷却塔产品填料均采用竖直放置,且无明显收水端。参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。那么按照一般冷却塔 起不了作用,而有水的G区却又没有填料。 马利的工程师们对这个问题进行了深入的 研究,在千百次的实验之后,提出了冷却塔 填料倾斜悬挂式安装的方案,在马利冷却塔 当中C、D、E、F、G区充满填料,A、B 两区无填料,而倾斜的角度又根据不同的塔 型有十分严格的要求,这种方法有效地解决 了进风面下端“无水区”问题,且填料带有 明显的收水端,克服了竖直放置填料的缺 点。因此,倾斜悬挂放置的填料比竖直放置 填料漂水损失小,水与空气接触充分,热工 性能好。 马利冷却塔填料片高度是根据填料片特性、进风宽度、布水状况及与之相匹配的风量、电机功率、风机等,进行分析计算而得出的。其设计高度可保证热湿交换效率达到极限值,同时,MX-75型填料集均匀布风、换热、收水于一体,其卓越的收水性和导风性使冷却塔无需安装百叶窗,经测试其漂水损失小于循环水量的0.001%。实践证明,MX-75型填料片的亲水性和抗冰性能好,耐温-50~+70?C,适合于北方严寒气候的地区使用,是理想的进口填料片。 该填料以抗紫外线和抗腐蚀的聚氯乙烯(PVC)经热塑真空加压成型,其表面亲水性好,散热面积大、冷效高,在使用环境空间受限制多的热交换过程中更能体现其优越性。从而使整个填料体积发挥最有效的冷却作用,该填料无须胶水粘接,防止了由于粘接对填料造成的损坏,便于清洗安装,延长了使用寿命。 C、NC型横流式冷却塔的进风装置 此塔由于使用马利MX-75填料,无需另配进风百叶窗,该型填料将进风口百叶部位与填料淋水部位模塑成一体,这种美国马利公司获得专利的装置可以防止溅水漂出塔外,在多变的气流条件下保证配水的均匀性,无需再增加安装进风百叶窗的麻烦。 D、NC型横流式冷却塔除水系统 高效蜂窝式除水器与填料膜塑成为一体,属于美国斯必克公司专利产品, 其收水率比老式的半弧型收水器高出许多倍,大大降低了漂水损失,使水耗费

双曲线冷却塔施工方案

XXXX生化有限公司 750m2自然通风冷却塔施工组织设计 1、工程概况: 1.1、工程概况: XXXX有限公司750m2自然通风冷却塔工程,为现浇钢筋砼薄壳结构。倒T 型环形基础,由48根3.5m长直径为300㎜的斜支柱支撑上部双曲线塔筒。淋水装置设置在筒体内4.75m~8.48m标高处,预制梁柱构件,现浇杯口基础坐落在水池底板上。淋水填料搁置在水泥网格板上,采用预制混凝土配水槽进行配水。水槽顶面及中央竖井顶设有走道及栏杆。筒壁外侧▽9.4m高处设有进塔椭圆形钢门,塔门向上至塔顶装有钢爬梯。塔顶装有钢管栏杆。筒体内壁刷冷却塔专用防腐涂料,水池内壁及底板抹防水砂浆,风筒外壁刷42.5#水泥浆。 1.2、主要结构尺寸: 1.3、主要工程量: 倒T型环形基础(C25D200S6):280m3 倒T型环形基础钢筋:28.7t 水池底砼(C25D200S6):204 m3 水池底钢筋:12.2t 斜支柱砼(C30D250S8):16.2 m3

斜支柱钢筋9.25t 风筒砼(C30D250S8):510.32m3 风筒钢筋:62.7t 风筒内壁防腐层:3620m2 杯口独立基础:52 m2 淋水装置构件砼:198m3 淋水装置预制构件钢筋:25t 2、施工依据: 2.1、《750m2自然通风冷却塔施工图纸》HS448DT11-1~3、土标10-1,3~23、土标11-1,3~12,14~18 2.2、《电力建设施工及验收技术规范》(SDJ69-87)第八章 2.3、《水工混凝土施工规范》SDJ207-82 2.4、《土方与爆破工程施工及验收规范》GBJ201-83 2.5、《电力建设安全工作规程》(火电发电厂部分)DL5009-1-92 2.6、有关设计变更单(包括设计变更单、图纸会审记录、施工措施或洽商记录等相关单位签署意见的有效文件) 3、施工平面布置:(详见本工程总施工布置图) 3.1、在冷水塔外侧设置1台QT80E塔吊,用于施工材料的垂直提升。塔吊基础为5m宽×5m长×2.5m高用C30砼浇筑,内配双层双向Ф20@200钢筋。 3.2、供水: 工程施工、机械、消防及生活用水,经计算用水量为Q=15L/S,给水管径选用Dg100,供水源由甲方提供,场内水管暗埋,埋置深度在自然地面以下600

相关文档
最新文档