数学模型中预测模型的应用及比较分析

数学模型中预测模型的应用及比较分析
数学模型中预测模型的应用及比较分析

数学模型应用问题(三)(含答案)

学生做题前请先回答以下问题 问题1:应用题的一般处理思路是什么? 问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些? 数学模型应用问题(三) 一、单选题(共5道,每道20分) 1.今年我市水果大丰收,A,B两个水果基地分别收获水果380箱、320箱,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每箱40元和20元,从B基地运往甲、乙两销售点的费用分别为每箱15元和30元,现甲销售点需要水果400箱,乙销售点需要水果300箱. (1)设从A基地运往甲销售点x箱水果,总运费为W元,请用含x的代数式表示W,并写出x的取值范围.( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:一次函数的应用 2.(上接第1题)若总运费不超过18300元,且A地运往甲销售点的水果不低于200箱,试求出最低运费.( ) A.6000 B.7600 C.18200 D.11200 答案:C 解题思路: 试题难度:三颗星知识点:一次函数的应用 3.在“十一”期间,某公司组织318名员工外出旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租用甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)旅行社的租车方案有( ) A.1种 B.2种 C.3种 D.4种 答案:B 解题思路:

试题难度:三颗星知识点:一元一次不等式组的应用 4.(上接第3题)(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,则在租车方案中最少的租金为( ) A.5800元 B.6000元 C.6200元 D.3400元 答案:B 解题思路: 试题难度:三颗星知识点:一次函数的应用 5.(上接第3,4题)(3)旅行前,一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车恰好坐满,则旅行社的租车方案是( ) A.65座的1辆,45座的5辆,30座的1辆 B.65座的2辆,45座的3辆,30座的2辆 C.65座的3辆,45座的1辆,30座的3辆 D.65座的1辆,45座的4辆,30座的2辆 答案:B 解题思路:

数学建模知识及常用方法

数学建模知识——之新手上路 一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。将此结果代入原题进行验证可知所求结果正确。根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。一般都有一个

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

浅谈数学模型在各个领域中的应用

浅谈数学模型在各个领域中的应用 发表时间:2018-05-02T11:10:12.163Z 来源:《科技中国》2017年11期作者:丁文[导读] 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 关键词:数学模型;数学建模;应用引言 数学是一种研究空间形式和数量关系的科学,它学科历史悠久,文化底蕴博大精深,如今发展迅速,在生产生活中发挥着重要的作用。然而,当今社会对数学的需求不只局限在数学理论,而更多是要求数学在实际应用中的作用,数学模型正是将理论知识与实践应用联系起来的桥梁。数学模型是通过运用数学理论和适当的数学工具、将复杂的实际问题不断简化的解题工具。数学建模的主要手段便是通过数学模型这一工具来快速解决实际问题。如今数学模型被应用于医学、生物、经济、金融等各个领域,取得了较好的经济效益和社会效益。 1.数学模型简介 1.1数学模型的定义 数学模型(Mathematical Model)是一种以解决实际问题为目的,运用数学语言和数学方法刻画出的数学结构。它利用数学的理论和方法分析和研究实际问题,并对实际的研究对象进行抽象、简化,进而利用数学知识解决现实生活中的问题。从另一种意义上来讲,它是一种将理论与实践紧密结合、并借此来解决各种复杂问题的最便捷的工具,对社会各个领域的发展都有重要意义。图1为数学建模流程图。 图1 数学建模流程 1.2模型分类 由于数学应用广泛,各领域对数学模型的要求各不相同,可根据不同的分类方法将数学模型分作许多种类。根据系统各量是否随时间的变化而变化可分为静态模型和动态模型,前者一般用代数方程式表达,后者则采用微分方程。分布参数模型和集中参数模型均用来描述动态特性,前者主要用偏微分方程表达,后者通过常微分方程来表达。上述各类用微分方程描述的模型都是连续时间模型,即模型中的时间变量是在一定区间内连续变化,与之相对的是离散时间模型,这是一种用差分方程描述的将时间变量离散化的数学模型。此外,还有根据变量间的关系是否确定区分的随机性模型和确定性模型;根据是否含有参数区分的参数模型和非参数模型;根据变量间的关系是否满足线性关系,是否满足叠加原理区分的线性模型和非线性模型,其中非线性模型中各量之间的关系不是线性的,不满足叠加原理,在某种情况下可转化为线性模型。 1.3数学建模 将实际问题进行抽象、简化,得到数学模型,然后对模型进行求解,再对模型的合理性进行分析、检验,最后将合理的模型应用到实际问题中,这便是数学建模。建立数学模型的过程,大体分为分析问题构建模型、运用数学方法数学工具求解、根据实际问题代入检验、应用于解决实际问题四个步骤,其中由于种种原因前三个步骤常常多次重复已求得最优解决方案。如今数学建模的应用很广,无论是在医学、军事、交通、经济、金融等较大课题,还是在日常计划、工作规划等较小事物中,都取得了较大的成就。 2.数学模型在各领域的应用 2.1数学模型在医学领域的应用

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

数学模型应用问题(讲义和习题)含答案

数学模型应用问题(讲义) ? 课前预习 1. 填写下列表格,并回忆相关概 念. 2. 解下列方程 [](10)38010(12)1750x x ---= 10(8)200106400.5x x -?? --?= ??? ? 知识点睛 应用题的处理思路 1. 理解题意,梳理信息 通过列表或画线段图等方式,对信息分类整理. 2. 辨识类型,建立模型 根据所属类型,围绕关键词、隐含的数学关系,建立数学

类型常考虑: ①所属的数学模型(方程不等式问题、函数问题、测量问题); ②实际生活的背景(工程问题、行程问题、经济问题). 常见关键词: ①共需、同时、刚好、恰好、相同……,考虑方程; ②不超过、不多于、少于、至少……,考虑不等式(组); ③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数), 根据函数性质求取最值. 隐含的数学关系: ①原材料供应型(使用量≤供应量) ②容器容量型(载重量≥货物量) 3.求解验证,回归实际 ①结果是否符合题目要求; ②结果是否符合实际意义. ?精讲精练 1.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建帐篷的帆布5 600 m2和撑杆2 210 m. (1)该厂现有帆布4 600 m2和撑杆810 m,不足部分计划安排110人进行生产.若每人每天能生产帆布50 m2或撑杆 40 m,则应分别安排多少人生产帆布和撑杆,才能确保同时完成各自的生产任务? (2)计划用这些材料在某安置点搭建甲、乙两种规格的帐篷共100顶,若搭建一顶甲型帐篷和一顶乙型帐篷所需帆布与撑杆的数量及安置人数如下表所示,则这100顶帐篷最多能安置多少灾

数学建模之灰色预测模型

、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性 和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1.1模型的应用 ① 销售额预测 ② 交通事故次数的预测 ③ 某地区火灾发生次数的预测 ④ 灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报 (百度文库) ⑤ 基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥ 网络舆情危机预警(下载的文档) 1.2步骤 ① 级比检验与判断 由原始数据列x (0) =(x (o ) (1),x (o ) (2),…,x (0)(n))计算得序列的级比为 2 2 若序列的级比(k) -(e^ '.e 0 2),贝U 可用x (0)作令人满意的GM(1,1)建模。 光滑比为 P (k )= k x <0) ( k) \- (0) x (I) i 珀 若序列满足 p(k 1) ::1,k =2,3,…,n-1; p(k) p(k)〔0,T,k=3,4, ,n; 「:: 0.5. ■ (k)二 x (0)(k -1) x (0) (k) ,k - 2,3, , n.

则序列为准光滑序列。 否则,选取常数c 对序列x (0)做如下平移变换 y (o )(k)=x (o ) (k) c,k=1,2「, n, 序列y (0)的级比 、 y 0(k-1) 一 'y (k) (0) ,k = 2,3, , n ? y(k) ② 对原始数据x (0)作一次累加得 x ⑴=(x ⑴(1),X (1)(2),…,x (1)(n)) =(x (0)(1,x (0)(1 +x (0) (2),…,x (0)⑴+…+x (0)(n)). 建立模型: dx ( 1 ) ——ax ⑴=b,( 1) dt ③ 构造数据矩阵B 及数据向量丫 ■ -z (1) ⑵ 1 1 f x (0) (2)1 B = -z ⑴⑶1 9 亍 ,丫二 x (0)(3) a -z ⑴(n) 1_ x (0) (n)J 其中:z ⑴(k) =0.5x ⑴(k) 0.5x ⑴(k -1),k =2,3, ,n. ④ 由 求得估计值召=b?= ⑤ 由微分方程(1)得生成序列预测值为 ( b?) b? x>(1)(k+1)= :x (0)(1)—三 ,k=0,1,…,n —V, l 召丿 召 则模型还原值为 00)(k 1)=0)化 1)-0),k =1,2, ,n-1,. ⑥ 精度检验和预测 残差 ;(k) =x (0)(k)-?(0)(k),k=1,2, ,n, -(B T B)4B T Y u?=

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学模型实验商人过河

《数学模型实验》实验报告 姓名:王佳蕾学院:数学与信息科 学学院 地点:主楼402 学号:055专业:数学类时间:2017年4 月16日 实验名称: 商人和仆人安全渡河问题的matlab实现 实验目的: 1.熟悉matlab基础知识,初步了解matlab程序设计; 2.研究多步决策过程的程序设计方法; 3.(允许)状态集合、(允许)决策集合以及状态转移公式的matlab表示;实验任务: 只有一艘船,三个商人三个仆人过河,每一次船仅且能坐1-2个人,而且任何一边河岸上仆人比商人多的时候,仆人会杀人越货。怎么在保证商人安全的情况下,六个人都到河对岸去,建模并matlab实现。 要求:代码运行流畅,结果正确,为关键语句加详细注释。 实验步骤: 1.模型构成 2.求决策 3.设计程序 4.得出结论(最佳解决方案) 实验内容: (一)构造模型并求决策

设第k次渡河前此岸的商人数为xk,随从数为yk,k=1,2,...,xk,yk=0,1,2,3.将二维向量sk=(xk,yk)定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S,S 对此岸和彼岸都是安全的。 S={(x,y)|x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2} 设第k次渡船上的商人数为uk,随从数vk,将二维变量dk=(uk,vk)定义为决策,允许决策集合记为D,由小船的容量可知, D={(u,v)|1<=u+v<=2,u,v=0,1,2} k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,状态sk随决策变量dk的变化规律为sk+1=sk+(-1)^k*dk(状态转移律) 这样制定安全渡河方案归结为如下的多步决策模型: 求决策dk∈D(k=1,2,...,n),使状态sk∈S,按照转移律,由初始状态s1=(3,3)经有限步n到达状态sn+1=(0,0)。 (二)程序设计

数学模型应用题

数学模型应用题 一.选择题(共14小题) 1.(2011?恩施州)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下: 时刻12:0013:0014:30 碑上的数是一个两位数,数字 之和为6 十位及个位数字及12:00时所看 到的正好颠倒了 比12:00时看到的两位数 中间多了个0 则12:00时看到的两位数是() A.24B.42C.51D.15 2.(2012?百色)某县政府2011年投资0.5亿元用于保障性房建设,计划到2013年投资保障性房建设的资金为0.98亿元.如果从2011年到2013年投资此项目资金的年增长率相同,那么年增长率是() A.30%B.40%C.50%D.60% 3.(2011?台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方公分,则此方格纸的面积为多少平方公分?() A.11B.12C.13D.14 4.(2013?资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是

A.10人B.11人C.12人D.13人 5.(2013?潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是() A.40B.45C.51D.56 6.(2012?武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)及乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是() A.①②③B.仅有①②C.仅有①③D.仅有②③7.(2012?牡丹江)已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是() A.B.C.D. 8.(2013?绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)及开机后用时(min)

数学建模方法模型

数学建模方法模型 一、统计学方法 1 多元回归 1、方法概述: 在研究变量之间的相互影响关系模型时候用到。具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。 2、分类 分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。 3、注意事项 在做回归的时候,一定要注意两件事: (1) 回归方程的显著性检验(可以通过 sas 和 spss 来解决) (2) 回归系数的显著性检验(可以通过 sas 和 spss 来解决) 检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。 4、使用步骤: (1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程; (3)拟合回归参数; (4)回归方程显著性检验及回归系数显著性检验 (5)进行后继研究(如:预测等)

2 聚类分析 1、方法概述 该方法说的通俗一点就是,将 n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取 m 聚类中心,通过研究各样本和各个聚类中心的距离 Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者 spss 软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。 2、分类 聚类有两种类型: (1) Q型聚类:即对样本聚类; (2) R型聚类:即对变量聚类; 通常聚类中衡量标准的选取有两种: (1) 相似系数法 (2) 距离法 聚类方法: (1) 最短距离法 (2) 最长距离法 (3) 中间距离法 (4) 重心法 (5) 类平均法 (6) 可变类平均法 (7) 可变法

数学建模 人口模型 人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究 【摘要】 本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。 首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历 史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。 然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。 对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。并做出了拟合函数 0.0419775(1)17255.816531.2t X t e ?+=?-。 对于新政策的实施,我们做出了两个假设。在假设只有出生率改变的情况,人口呈现一次函数线性增加。并拟合出一次函数0.032735617965.017372.5t Y e ?=?-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。 关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

相关文档
最新文档