勾股数的有趣特征

勾股数的有趣特征
勾股数的有趣特征

勾股数的有趣特征

刘昱

在学习和运用勾股定理时,如果深入了解一下勾股数的一些特征,不仅能十分方便地熟记勾股弦的相关数值并运用到三角和几何里,而且使我们对勾股数的认识和掌握更加方便、易记。

我们知道,在一个直角三角形中,斜边为弦,两直角边中短者为勾,长者为股。它们满足勾2+股2=弦2,当勾,股,弦都是整数时,比如当勾=5,股=12,弦=13时,我们称之为一组“勾股数”或“毕达哥拉斯数”。大家常说的“勾三股四弦五”就是一组勾股数。我们可以举出无穷多组的勾股数来,如:

62+82=102 72+242=252 82+152=172

92+402=412 172+1442=1452202+212=292…….、大家是否想到这些勾股数尚有不少有趣的特征呢。

特征1:任意一组勾股数中,必有一个数是3的倍数;必有一个数是4的倍数;必有一个数是5的倍数。

如:6,8,10是一组勾股数,其中6是3的倍数,8是4的倍数,10是5的倍数。又如9,40,41是一组勾股数,其中9是3的倍数,40既是4的倍数也是5的倍数。

特征2:在所有的勾股数中,其中没有一组的三个数都是奇数的。

下面我们采用“反证法”来证明。

假设一组勾股数都是奇数为:2X1+1,2X2+1,2X3+1(X1,X2,X3 皆为整数)

它们分别平方后得到:(2X1+1)2=4 X12 +4 X1 +1,(2X2+1)2=4 X22 +4 X2 +1,

(2X3+1)2=4 X32 +4 X3 +1

把这三个数中的任意两个加起来,如:(2X1+1)2+(2X2+1)2 =2(2X12 +2X22 +2X1 +2 X2+1)其和是一个偶数,而(2X3+1)2 却是一个奇数,二者显然不等。

由此可见三个都是奇数的勾股数是不存在的。

特征3 :若a,b,c是一组勾股数,则ka,kb,kc(k是任意自然数)也是一组勾股数。

这个特征的证明则更简单:由a2+b2=c2,有(ka)2+(kb)2=k2(a2+b2)=(kc)2。

从而得出(ka )2+(kb)2= (kc)2。

这个特征告诉我们,只要知道一组勾股数,便可得到无数多组的勾股数。尽管如此,我们却只能得到部分勾股数,其余的勾股数是否能用简单的代数公式给出呢?为此,我们再将一些勾股数进行归类考察:

3,4,5 7,24,25 5,12,13 9,40,41

6,8,10 10,24,26 8,15,17 12,35,37

从中可以发现这些勾股数的组成规律,即

特征4:象第一组,如果第一个数是奇数,那么第二个数是第一个数的平方减1再除以2,第三个数是第二个数加1。写成公式:若M 为奇数,则M ,

212-M ,212+M 就是一

组勾股数。

同样,我们可以写成第二组的勾股数公式: N ,122-??? ??N ,122

+??? ??N (N 是偶数)

了解勾股数的这些有趣特征,就对勾股数有了较深刻的认识,也就掌握了它们的组成规律。在学习数学、物理时灵活运用这些有趣的特征,可收事半功倍之效。

勾股数的规律

精选范本 所谓勾股数,就是当组成一个直角三角形的三边长都 为正整数时,我们就称这一组数为勾股数 那么,组成一组勾股数的三个正整数之间, 是否具有一定的规律 可寻呢?下面我们一起来观察几组勾股数: 规律一:在勾股数(3, 4, 5)、( 5,12,13)、( 7, 24, 25)( 9, 40,41)中,我们发现 由(3, 4, 5)有: 3 2=9=4+5 由(5, 12, 13)有: 5 =25=12+13 由(7, 24, 25)有: 7 =49=24+25 由(9, 40, 41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好 等于 另外两个连续的正整数之和。 因此,我们把它推广到一般,从而 可得出以下公式: 2 2 2 2 ???(2n+1) =4n+4n+仁(2n +2n ) + (2n+2n+1) 2 2 2 2 2 ???(2n+1) + (2n+2n ) = (2n+2n+1) (n 为正整数) 勾股数公式一:(2n+1, 2n 2+2n , 2n 2+2n+1)(n 为正整数) 等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式: 2 2 2 2 ???(2n ) =4n =2[ (n-1 ) + (n+1)] ???(2n ) + (n-1 ) = (n +1) (n 》2 且 n 为正整数) 勾股数公式二:(2n , n 2-1 , n 2+1)( n 》2且n 为正整 数) 禾U 用以上两个公式,我们可以快速写出各组勾股数。 规律二:在勾股数(6, 8, 26)中,我们发现 由(6, 8, 10)有: 由(8, 15, 17)有: 由(10, 24, 26)有: 即在 一组勾股数中, 10)、( 8, 15, 17)、( 10, 24, 2 6 =36=2X( 8+10) 82=64=2X( 15+17) 2 10 =100=2X( 24+26) 当最小边为偶数时,它的平方刚好

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边 a 、 b 、 c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x = 4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++() y x 212-+=-1, 又()()2121-+=-1,∴()122 1++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1 221+-n , 解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(4 1〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕). 四、后两数为连续奇数的勾股数 如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) . 五、其它的勾股数组公式: 1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数). 2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2 )(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数). 下面我们把100以内的勾股数组列出来,供同学们参考: 3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65 17 144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145

探究:关于勾股定理的那点事(勾股的历史、证明,勾股数探究等)

探究:关于勾股定理的证明的那点事 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”(Pythagoras Theorem)。 数学公式中常写作a2+b2=c2 勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。 勾股定理指出: 直角三角形两直角边(即“勾”“股”)边长平方和等于斜边(即“弦”)边长的平方。 也就是说, 设直角三角形两直角边为a和b,斜边为c,那么 a^2+b^2=c^2 (为了编辑省时,以下“a2”用“a^2”代替)

勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。 勾股定理其实是余弦定理的一种特殊形式。 我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。 勾股数组 满足勾股定理方程a^2+b^2=c^2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。 由于方程中含有3个未知数,故勾股数组有无数多组。 勾股数组的通式: a=m^2-n^2 b=2mn c=m^2+n^2 (m>n,m,n为正整数) 推广 1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。 2、勾股定理是余弦定理的特殊情况。

勾股定理 定理 如果直角三角形两直角边分别为a,b,斜边为c,那么a^2+b^ 2=c^2;;即直角三角形两直角边的平方和等于斜边的平方。 古埃及人利用打结作Rt 如果三角形的三条边a,b,c满足a^2+b^2=c^2;,还有变形公式:A B=根号(AC^2+BC^2),如:一条直角边是3,另一条直角边是4,斜边就是3×3+4×4=x×x,x=5。那么这个三角形是直角三角形。 (称勾股定理的逆定理) 勾股定理的来源

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

勾股数

勾股数 勾股数 勾股数又名毕氏三元数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 目录 常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a2+b2=c2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如:

n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... 公式证明 证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可)如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 现在往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2 从而有c+b = 2m^2, c-b = 2n^2,解得c=m^2+n^2, b=m^2-n^2, 从而a=2mn 局限 目前,关于勾股数的公式还是有局限的。勾股数公式可以得到所有的基本勾股数,但是不可能得到所有的派生勾股数。比如3,4,5;6,8,10;9,12,15...,就不能全部有公式计算出来。 完全公式

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.360docs.net/doc/5815921333.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.360docs.net/doc/5815921333.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

勾股数

勾股数免费编辑添加义项名 勾股数勾股数又名毕氏三元数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。为数学名词。 表达式 a^2+b^2=c^2,a,b,c∈N 别称 毕氏三元数 《周髀算经》 应用学科 几何 勾股数又名毕氏三元数。凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 编辑本段常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(例如a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17)

n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是第二经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... 编辑本段公式证明 证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可) 如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢 a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*)

勾股数的常用套路

勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... ========Edward补充======== 对于N 为质因数比较多的和数时还可以参照其质因数进行取相应的勾股数补充,即1个N会有多对的勾股数,例如: n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3* (3,4,5) n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4*(3,4,5) =========ShangJingbo补充======= 还有诸如此类的勾股数,20、21、29; 119、120、169;

勾股数规律的探究

勾股数的规律 能够组成一个直角三角形的三边长的正整数,叫做勾股数。如“勾三股四弦为五”(3,4,5)再如常见的(6,8,10)(5,12,13)、(7,24,25),熟记一些勾股数利于我们更快、更准的解决于直角三角形有关的实际问题。下面就勾股数的三个正整数之间的规律进行探究: 规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现 由(3,4,5)有: 32=9=4+5 由(5,12,13)有: 52=25=12+13 由(7,24,25)有: 72=49=24+25 由(9,40,41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。 其论证如下:数a为大于1的正数,则2a+1为奇数数,则有 ∵(2a+1)2=4a2+4a+1=(2a2+2a)+(2a2+2a+1) ∴(2a +1)2+(2a 2+2a)2=(2a2+2a+1)2 因此,我们把它推广到一般,从而可得出勾股数公式一: (2a+1,2a2+2a,2a2+2a+1)(a为正整数) 或整理为:对于一个大于1的整奇数m,构成的勾股数为(m,,)

规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现 由(6,8,10)有: 62=36=2×(8+10) 由(8,15,17)有: 82=64=2×(15+17) 由(10,24,26)有: 102=100=2×(24+26) 即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续且相差为2的整数之和的二倍。 其论证如下:数a为大于1的正数,则2a为偶数,则有 ∵(2a)2=4a2=2[(a2-1)+(a2+1)] ∴(2a)2+(a2-1)2=(a2+1)2(a≥2且a为正整数) 因此,我们把它推广到一般,从而可得出勾股数公式二: (2a,a2-1,a2+1)(a≥2且a为正整数) 或整理为:对于一个大于1的整偶数m,构成的勾股数为 (m,,)

三种常见的勾股数

三种常见的勾股数 我们知道,如果a 、b 、c 是直角三角形的三边,则由勾股定理,得222c b a =+,反之,若三角形的三边a 、b 、c 满足222c b a =+,则该三角形是直角三角形.与此相类似,如果三个正整数a 、b 、c 满足222c b a =+,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍三种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得()()2 2211+=+-x x x ,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5); 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? 设后两数为连续整数的勾股数组为(x ,y ,y +1),则 ()2 221+=+y y x , 整理,得122=-y x ,(*) 显然,x 不能是偶数,否则,当x 为偶数时,(*)式的左边是偶数,而右边是奇数,矛盾.故x 不能是偶数,因此, 取x =2m +1,则y =m m 222+(m ∈N), 故后两数为连续整数的勾股数组是 (2m +1,m m 222+,m m 222 ++1); 分别取m =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些前两数为连续整数的勾股数组是怎样构造出来的吗?下面我们仿照后两数为连续整数的勾股数组的导出老进行推导. 设前两数为连续整数的勾股数组为(x ,x +1,y ),则 ()2221y x x =++(*) 整理,得1222++x x =2 y ,化为 ()121222-=-+y x ,即

以内的勾股数

100以内的勾股数: i=3j=4k=5 i=5j=12k=13 i=6j=8k=10 i=7j=24k=25 i=8j=15k=17 i=9j=12k=15 i=9j=40k=41 i=10j=24k=26 i=11j=60k=61 i=12j=16k=20 i=12j=35k=37 i=13j=84k=85 i=14j=48k=50 i=15j=20k=25 i=15j=36k=39 i=16j=30k=34 i=16j=63k=65 i=18j=24k=30 i=18j=80k=82 i=20j=21k=29 i=20j=48k=52 i=21j=28k=35 i=21j=72k=75 i=24j=32k=40 i=24j=45k=51 i=24j=70k=74 i=25j=60k=65 i=27j=36k=45 i=28j=45k=53 i=30j=40k=50

i=30j=72k=78 i=32j=60k=68 i=33j=44k=55 i=33j=56k=65 i=35j=84k=91 i=36j=48k=60 i=36j=77k=85 i=39j=52k=65 i=39j=80k=89 i=40j=42k=58 i=40j=75k=85 i=42j=56k=70 i=45j=60k=75 i=48j=55k=73 i=48j=64k=80 i=51j=68k=85 i=54j=72k=90 i=57j=76k=95 i=60j=63k=87 i=65j=72k=97 勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n,c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5)

探究勾股数

探究勾股数两例 满足a 2+b 2=c 2的三个正整数,称为勾股数.对于给定的三个正整数,若能验证其中最大数的平方等于其他两数的平方和,这组数就一定是勾股数,否则不是.可以验证若a 、b 、c 是一组勾股数,则ka 、kb 、kc (k 为正整数)也是勾股数. 以下几个都可构成勾股数: 1.设n 为正整数,且n >1,a =2n ,b =n 2-1,c =n 2+1; 2.设n 为正整数,a =2n +1,b =2n 2+2n ,c =2n 2+2n +1; 3.设m 、n 为正整数,且m >n ,则a =m 2-n 2,b =2mn ,c =m 2+n 2; 例1 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五.后人概括为:“勾三、股四、弦五”. (1)观察:3、4、5;5、12、13;7、24、25;…发现这些勾股数的“勾”都是奇数,且从3起就没有间断过,计算 21(9-1),21(9+1)与21(25-1),2 1 (25+1),并根据你发现的规律,分别写出能(用勾)表示7、24、25的股和弦的算式; (2)根据(1)的规律,用n (n 为奇数且n ≥3)的代数式来表示所有这些勾股数的勾、股、弦.猜想它们之间的两种相等关系,并对其中一种猜想加以说明; (3)继续观察4、3、5;6、8、10;8、15、17;….可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用m (m 为偶数且m >4)的代数式来表示它们的股和弦. 分析:本题是一个勾股数的探索问题,考查观察、分析、类比、猜想和论证等能力.第(2)、(3)两小题都具有开放性,能较好地考查大家的创新意识和能力. 解:(1)因为 21(9-1)=21(32-1)=4, 21(9+1)=21(32+1)=5,21(25-1)=2 1 (52-1)=12, 21(25+1)=2 1 (52+1)=13, 对于3、4、5和5、12、13两组勾股数来说,可以表示为: 股= 21(勾2-1),弦=2 1 (勾2+1). 所以7、24、25的股24的算式为21(49-1)=21 (72-1), 7、24、25的弦25的算式为21(49+1)=2 1 (72+1);

勾股定理知识点的总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=? ,则 c ,b ,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两 边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形, 化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 二、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12. C B D A

100以内的勾股数

100以内的 勾股数 i=3j=4k=5 i=5j=12k=13 i=6j=8k=10 i=7j=24k=25 i=8j=15k=17 i=9j=12k=15 i=9j=40k=41 i=10j=24k=26 i=11j=60k=61 i=12j=16k=20 i=12j=35k=37 i=13j=84k=85 i=14j=48k=50 i=15j=20k=25 i=15j=36k=39 i=16j=30k=34 i=16j=63k=65

i=18j=24k=30 i=18j=80k=82

i=65j=72k=97勾股数的常用套路 所谓勾股数, 条边的三个正整数 (a,b,c)o 即 a A 2+b A 2=c A 2,a,b,c € N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数 n 得到的新 数组(n a, nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c 互质的勾股数组。 i=20j=21k=29 i=24j=45k=51 i=30j=40k=50 i=35j=84k=91 i=40j=42k=58 i=40j=75k=85 i=42j=56k=70 i=45j=60k=75 i=48j=55k=73 i=48j=64k=80 i=51j=68k=85 i=54j=72k=90 i=57j=76k=95 i=60j=63k=87 i=20j=48k=52 i=24j=70k=74 i=30j=72k=78 i=36j=48k=60 i=21j=28k=35 i=25j=60k=65 i=32j=60k=68 i=36j=77k=85 i=21j=72k=75 i=27j=36k=45 i=33j=44k=55 i=39j=52k=65 i=24j=32k=40 i=28j=45k=53 i=33j=56k=65 i=39j=80k=89 一般是指能够构成直角三角形三

勾股数填空选择及详解中考题

一、填空题(共20小题) 1、附加题:观察以下几组勾股数,并寻找规律: ①3,4,5; ②5,12,13; ③7,24,25; ④9,40,41;… 请你写出有以上规律的第⑤组勾股数:_________ . 2、观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= _________ ,c= _________ . 3、满足a2+b2=c2的三个正整数,称为_________ . 4、观察下列一类勾股数:3,4,5;5,12,13;7,24,25;…请你根据规律写出第4组勾股数为_________ . 5、观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:_________ ,第n组勾股数是_________ . 6、能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数_________ ,_________ . 7、在数3,5,12,13四个数中,构成勾股数的三个数是_________ . 8、将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我 们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数_________ ,_________ ,_________ . 9、有一组勾股数,最大的一个是37,最小的一个是12,则另一个是_________ . 10、观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你 发现的规律写出接下来的式子:_________ . 11、一个直角三角形的三边长是不大于10的偶数,则它的周长为_________ . 12、观察下面几组勾股数,并寻找规律: 市菁优网络科技

相关文档
最新文档