利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强
利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强

专业:通信工程姓名:李厚福指导教师:王建华

摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。

图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论

1.1课题研究的意义

图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。

图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。

图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

1.2 国内外研究现状与发展

图像增强的方法有很多种,主要分为两类:空间域增强和变换域增强。空间域增强算法是对图像的空间点对应的像素进行直接的处理,大部分应用灰度映射变换函数操作。频域增强算法是得首先通过变换函数将图像的像素值变换到另外一种变换域内,第二步对变换后的值进行处理,最后通过反变换重建图像,结果得到增强的图像。

小波变换是当前数学中一个迅速发展的新领域,理论深刻,应用十分广泛。小波变换的概念是由法国地球物理学家J.Morlet在1984年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式。小波变换的数学基础是19世纪的傅里叶变换,随后理论物理学家A.Crossman采用平移和伸缩不变性建立了小波变换的理论体系。Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似于现在的小波基;1985年著名法国数学家Y.Meyer 偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同样方法及其多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、窗口Fourier变换(Gabor变换)相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。

小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技信息产业领域取得了令人瞩目的成就。电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图象和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图象处理可以统一看作是信号处理(图象可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。

第二章图像增强的基本原理和方法

2.1 传统的图像增强方法

2.1.1灰度变换

1、线性灰度拉伸

在图像获取的过程中,由于曝光不均匀(不足或过度),或者因为成像仪器的输出太窄,容易使图像的像素值集中在一个狭窄的区域,造成分辨率低,图像显示为太暗或是太亮,不能满足人类的视觉效果,为了改善这类图像的主观质量,可以将图像的灰度进行线性拉伸。假设原图像f(x,y)的灰度取值范围为[a, b],现要求将变换后图像的灰度取值范围扩展到[c, d],一般[c, d]包含[a, b],则可采用下面的简单线性变换函数来实现:

???????≤<<≤+-?--<≤=Mf

y x f b d b y x f a c a y x f a b c d a y x f c y x g ),(),()),((),(0),( (2.1) Mf 表示f (x,y)的最大值,这样就扩大了降质图像的取值范围,改善了图像的视觉效果。

2、分段线性灰度变换

在一些特定的应用领域,有时需要对图像中感兴趣的目标或者某些灰度区间增强,对那些不感兴趣的灰度区域进行抑制,则可采用分段线性法。下面是一个三段线性变换的例子。 ?????????≤<+---≤≤+---<≤=Mf

y x f b d b y x f b mf d mg b y x f a c a y x f a

b c d a y x f y x f a c y x g ),(]),([),(]),([),(0)

,()(),( (2.2) 上式(2.2)的符号的意义跟式(2.1)的意义是一致的,实现了对灰度区间[a, b]进行线性拉伸,而对灰度区间[0, a]和[b, Mf]进行了抑制,通过对(2.2)式的不同的参数调整,改变线段的斜率,可以实现对任一灰度区间进行拉伸或抑制,从而凸显出图像中感兴趣的区域。

2.1.2直方图均衡化 直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布,就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。就是把给定图像的直方图分布改变成“均匀”分布直方图分布。这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

具体的实现过程为:首先假设原图像的灰度级是连续的,并将灰度级归

一化到区间[0 1],通过一个变换T 将原图像的像素s 变换为r ,得到新图像。要求T 为单调递增。且0≤T(r)≤1,0≤r ≤1。逆变换为:r = T -1(s )。 设变换后图像的概率分布为Pr(r),原图像的概率分布为Ps(s),根据概率 理论公式有:

)()()(1s T r ds dr

r P s P r s -== (2.3)

考虑变换

ωωd P r t s r

r ?==0)()( (2.4) 上式为r 的累积概率分布,利用T 的定义求s 对r 的导数为:

)(r P dr

ds r = (2.5) 将(2.5)代入(2.3)得出

1)

(1)()(==r P r P s P r r s (2.6) 式(2.6)说明Ps(s)为均匀分布。

离散化处理:首先求出原图像的概率函数n

n r P k r =)( ,n k 表示第k 级灰度值像素的总数,n 表示总体图像的像素值的个数。上面的变换可以写成:

∑∑=====k i r r k

i i k k i P n n r T s 0)(0)( (2.7)

最后按照计算出来的映射关系,把原图的原始灰度值映射到经过均衡化的新灰度级上,从而实现图像的增强。 优缺点这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X 光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节。这种方法的一个主要优势是它是一个相当直观的技术并

且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。

这种方法的一个缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对比度并且降低有用信号的对比度;变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

2.1.3 灰度级校正

在图像的获取过程中,由于天气,摄像仪器的精度,光学系统等各种原因造成曝光不均匀,使图像表现为较暗或较亮。对于这种类型降质的图像可以使用灰度级拉伸,把原图像的灰度级进行重新分布,获得满足视觉效果的图像。可以按照下面的方法实现:

将原来的图像表示为f(x,y),亮度不均匀降质图像用g(x,y)表示,用函数 e(x, y)。表示乘性误差,用(2.8) 式表示降质过程:

x

f

e

y

y

g (2.8)

x

x

*)

(y

,

)

,

(

(

,

)

从(2.8)式可以看出,如果能够知道乘性误差函数e(x, y),原始图像f (x,y)可以由降质图像g(x,y)来复原。但函数e(x, y)一般是事先不知道的,需要想办法根据图像获取系统的特性来计算或估计。下面通过一个简单的例

子来介绍怎样推出e(x,y)。假设输入这个图像降质系统的原图像为常数,即f c (x,y) = C ,那么可获得其输出的降质图像为g c (x,y)。根据式(2.8)可得:

),(*),(y x f y x e g c c = (2.9) 由此即可获得,e(x, y)为:

c

y x g y x f y x g y x e c c c ),(),(),(),(== (2.10) 再将式(2.10)代入式(2.8)即可由降质图像g(x,y),求出原始图像f(x,y):

c y x g y x g y x e y x g y x f c ?==)

,(),(),(),(),( (2.11) 应用灰度级校正的方法有两个问题应该要注意:

(1)图像在数字化时,各像素灰度级都是离散的,上述交换用到的是连续变换,因此校正后的图像各像素值不一定刚好在这些规定的离散值上,因此必须对校正后的图像像素值按照一定的规则进行量化。

(2)按(2.11)式对降质图像进行每一点灰度级校正所获得的输出图像,有可能部分像素值超出了显示的范围,一般输出设备的显示范围为0到255,如果要真实地输出,必须要采用别的办法来修正,比如:对于小于0的值按0输出,对于大于255的值按照255计算,保证输出正确的图像。

2.1.4图像去噪增强

图像降噪是图像处理的常用技术,比如线性滤波方法中空间域线性滤波的邻域平均法是传统的图像去噪主要方法,空间域线性滤波主要是根据图像

的特点及噪声的类型,对图像的空间点的像素值做直接操作。

邻域平均法是一种局部空间域处理的算法,是对图像用各种平滑函数进行卷积操作,从而实现对噪声的去除。设一幅图像),(y x f 为N N ?的矩阵,平

滑后的图像为),(y x g ,它的每个像素的灰度级由包含在),(y x 的预定邻域的几个像素的灰度级平均值所决定,即用下式得到平均的图像。

∑∈=S j i j i f M y x g ),(),(1

),( (2.12)

式中的S N y x ,1,2,1,0,-= 是),(y x 点邻域中心点的坐标的集合[不包括点),(y x ] ,M 是S 内坐标点的总数。

图像邻域平均法算法简单,计算速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边沿和细节处。

第三章 小波变换的基本理论

3.1 小波变换的理论基础和傅里叶变换的比较

1、小波变换的理论基础

小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时间域和频率域都具有表征信号局部特征的能力,是一种窗口面积不变但窗口形状可以改变,即时间窗和频率窗的大小都可以改变的时频局部化分析方法。在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,正是这种特性使小波变换具有对信号的子适应性。

2、小波变换和傅里叶变换的比较

傅立叶变换传广泛应用于信号处理,它架起了时间域和频率域之间的桥梁。它对很多信号分析非常有用,因为它能给出信号里包含的各种频率成分,

但它有着明显的缺点:变换之后会使信号失去时间信息,不能告诉人们在某段时间里发生了什么变化,所以它只能较好地应用于平稳信号,只能提供信号的全局信息,缺少信号的局部信息。Gabor引入局部傅里叶变换,通过一个滑动窗,可以实现时频分析,这种方法虽具有局部化分析能力,但对于一个固定窗函数,它的分辨率也是固定的,只能应用于平稳信号的分析,对非平稳信号就无法分析。小波变换产生于传统傅立叶分析和短时傅立叶分析,能体现信号的局部信息,而且可以调整时间分辨率和频率分辨率的尺度,对非平稳信号的分析取得了较好的效果。

小波变换的理论基础来源于是傅立叶分析,与傅立叶变换紧密联系在一起,傅立叶变换是小波基的构造的主要理论依据,二者是相辅相成的,小波变换是对傅里叶变换的发展与提升。两者之间主要有如下差别:

(1)傅立叶变换以{e jwt}为正交基,然后把能量有限信号)(t f分解到正交基

对应的空间上去;小波变换以W

j

-(j=1,2,...,J)和V

j

-

所构成的空间,再把

能量有限信号)(t f分解到W

j

-(j=1,2,...,J)和V

j

-

构成的空间上。

(2)傅立叶变换的公式是固定的;小波分析中的小波函数具有多样性,在实际应用中,用不同的小波函数处理同一个问题时,其处理结果有时会大相庭径。因此怎么选择小波函数处理实际问题时小波变换在应用中的一个难题,现有的方法是通过反复经验,通过对实验结果的比较,选择效果好小波函数。

(3) 傅立叶变换在频域中,尤其是作用到一些较平稳的信号,取得了较好局部化效果,傅立叶变换中的ω

ωd

f)

(?表示频率为ω的谐波分量的振幅,)(t f

的全局特性决定了ω

ωd

f)

(?。

(4)小波分析中的尺度a相当于傅立叶变换中ω,a值越大对应ω的值越

小。

(5) STFT 的变换系数),(τωS 取决于区间 [τ-δ,τ+δ] 的信号,δ是由窗函数g(t)唯一确定,顾时间宽度固定为2δ。小波变换的变换系数W f (a,b)取决于区间[b-a ?ψ,b+a ?ψ]的信号情况,其时间宽度为2a ?ψ,该时间宽度由尺度a 决定,随a 变化而变化的,因此小波变换和傅里叶变换相比更具有灵活性。

3.2 小波变换基本理论

3.2.1 一维连续小波变换

在Fourier 变换F()()jx f t e dx ω+∞

--∞=?中,用小波基函数)(x ψ做平移和伸缩变换,得到函数)(a b x -ψ,用)(a b x -ψ代替傅里叶变换的基函数jx e 的伸缩函数x j e ω,得到的新变换就称为连续小波变换,具体定义如下:

函数)()(2R L x ∈ψ 称为小波函数(又叫基本小波或母小波),如果满足允许条件:

?∞

+∞-∞<=ωωωψ?d C |||)(?|2 (3.1 ) 其中)(?ωψ

为)(ωψ的Fourier 变换,则连续小波变换定义为: ?+∞

∞--=dx a

b x x f a b a f W )(*)(||1

),(ψψ (3.2) 式中:R b a ∈,且a ≠0

,a 为缩放因子(对应于频率信息);b 为平移参数(对应于时空信息);*()x ψ 表示)(x ψ 的复共轭。允许条件在)()(2R L x ∈ψ下可以等价地表示为:

?+∞∞-=0)(dt t ψ (3.3)

小波变换结果是为各种小波系数,这些系数由尺度和位移函数组成。

3.2.2 一维离散小波变换 ??-=2

)(),(1

)(,2R b a dadb x b a f W a C x f ψψψ (3.4) 令a=a 1,b=b 1,则

?=

R b a dt t t f b a f W )()(),(11,21ψψ ???+∞+∞∞-=R b a b a dt t dbda t b a f W a C )(])(),(1[111,,02ψψψψ dbda dt t t C b a f W a b a b a R ])()(1)[,(111,,02ψψψψ???+∞+∞

-= ??+∞∞-+∞=dbda b b a a k b a f W a

),,,(),(11120ψψ(3.5) 式中 ,dt t t C b b a a k b a R b a )()(1),,,(1,1,11ψψψψ?=

称之为再生核.显然,当)(,t b a ψ与)(1,1t b a ψ正交时,0),,,(11=b b a a k ψ,即这时),(b a f W ψ对)1,1(b a f W ψ “没有贡献”。 小波的尺度当j=0时,取00b a b j =,下面小波函数可以实现离散化且不丢失信

息:

),()()(002/0,Z k j kb t a a t j j k j ∈-=--ψω (3.6) 根据以上的讨论,离散小波变换的定义如下:

设)()(2,R L t b a ∈ψ,a 0>0是常数,)()(02/0,k t a a t j j k j -=--ψψ ),(Z k j ∈,则称 ?=R

k j a dt t t f k j f W )()(),(,ψ (3.7)

为)(t f 的离散小波变换.特别地,取a 0=2,则称以离散小波函数

)()(02/0,k t a a t j j k j -=--ψψ ),(Z k j ∈,该变换称为二进小波变换。

3.2.3 二维连续小波变换

若信号函数)(),(2R L y x f ∈,),(y x ψ为二维小波母函数,则其构造可由一维母小波的张量积形成。 0,,,),(||1),(,,≠∈--=a R c b a a c y a b x a y x c b a 且ψψ (3.8) 因为图像信号是一种二维信号,所以将一维小波扩展为二维情况,便于后续的使用和分析。 ??--=dxdy a

c y a b x y x f a c b a f W ),(),(||1),,(ψψ (3.9) 3.2.4 二维离散小波变换

我们只要把参数a,b,c 离散化0000020010,,,,,c b a a c k c a b k b a a j j j ---===为常

数,j ,k 1,k 2∈Z ,则有离散参数变换:

??--=dxdy c k y a b k x a y x f a k k j DPWT j j j ),(),(),,(020010021ψ (3.10) 将式 (2.16)中的空间变量x 和y 离散化,即得到离散空间小波变换: Z l l c k l a b k l a l l f j a k k j DSWT o j

j l l ∈--=∑∑2122001102121,),(),(0),,(21ψ (3.11) 令上式(2.16)中的常数a 0 =2,b 0=c 0=1,即得到离散小波变换,表示为:

∑∑

∈--=2212211211021,)2,2(),(),,(l j j l j Z l l k l k l l l f a k k j DWT ψ (3.12)

3.3 小波变换的多尺度分析

S. Mallat 在1989年引入的多尺度分析 (Multiresolution Analysis, MRA)也称为多分辨分析,是建立在函数空间概念上的理论,但其思想的形成源于工程。

多分辨分析是在)(2R L 函数空间内,将函数)(t f 描述为一系列近似函数的极限。每一个近似都是函数)(t f 的平滑逼近,而且具有越来越细的近似函数。空间)(2R L 中的一系列闭子空间{V j }(j ∈Z ),称为)(2R L 的一个多分辨率分析或逼近,如果下面的各条件满足:

(1)单调性:1-?j j V V 对于任意j ∈Z ;

(2)逼近性:}0{=∈ Z j j V ,

)(2R L V Z

j j =∈ ; (3)伸缩性:1)2()(-∈?∈j j V t f V t f ;

(4)平移不变性:()(2)j j j f t V f t k V ∈?-∈;

(5)Riesz 基的存在性:存在g ∈V 0,使|g (t-k )|k ∈Z 是V 0的Riesz 基。

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

基于小波变换的图像融合

基于小波变换的图像融合 摘要:图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一一幅新的图像的过程,其的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可靠性,通过对多幅图像间的互补信息的处理来提高图像的清晰度。本文的研究重点是基于小波变换实现图像的初步融合,完成将两幅不同的图像进行合并以形成一幅新的图像。关键词:图像融合,小波变换,融合算法,图像信息 Abstract The image fusi on is a procedure that comb ine more tha n two images in order to get a new image, and it ' s main purpose of image fusi on of multiple images is enhance the reliability of image through deal with the ultra data of the in itial image, and improve the defi niti on of the image through deal with the compleme ntary in formatio n of the images. The key point of this article is realized the image fusi on based on the wavelet tran sform and comb ines two images to get a new image. Key Words : image fusion, wavelet transform, fusion algorithm, image in formatio n 一、引言 图像融合是通过某种算法,将两幅或多幅不同的图像进行合并以形成一幅新的图像的过程。在众多的图像融合技术,基于小波变换的图像融合方法已成为现今的个热点,图像融合技术是数据融合技术的一种特定情形,它是以图像的形式来表达具 体的信息,它对人的视觉产生作用。图像融合具体来说是根据某一算法,将所获得的针对同一目标场景的多幅配准后的图像进行综合处理,从而得到一幅新的、满足某种条件的、对目标或场景的描述更为准确、更为全面、更为可靠的图像。融合后的图像应该比原始图像更加清晰可靠和易于分辨。图像融合充分利用了多个原始图像所包含的冗余信息和互补信息,能够起到扩大传感范围、提高系统可靠性和图像信息利用率的作用。 二、小波变换图像融合 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier变换进行各种 改进,小波分析由此产生了。小波分析是一种新兴的数学分支,它是泛函数、Fourier 分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又 一有效的时频分析方法。小波变换与Fourier变换相比,是一个时间和频域的局域 变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier变换不能解决的许多困难问题。 近些年来,小波变换倍受科技界的重视,它不仅在数学上已形成了一个新的分支,

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

小波变换的图像压缩

研究基于小波变换的图像压缩 摘要 图像压缩的关键技术是图像数据转换,转换后的数据进行数据量化和数据熵编码。基于小波变换的图像压缩是一种常见的图像压缩方法,本篇论文使用小波变换、多分辨率分析及不同规模的量化和编码实现图像压缩。在相同的条件下,本文采用两种不同的方法,第一种方法保留低频和放弃高频,第二种方法是阈值方法来实现图像压缩。 关键词:关键词——小波变换;小波图像系数;量化;编码 1.引言 图像压缩是指损失一部分比特率的技术或无损还原原始图像信息。在信息理论中,它的有效性,源编码的问题,即通过移除冗余即不必要的信息来实现这一目标。压缩的图像信息有两个方法,模拟和数字,因为数字压缩方法有大幅减少比特数量的优势,绝大多数的系统使用数字压缩方法。信号分析及处理的常用方法是傅里叶变换(FT),而且最广泛的分析工具应用于图像处理,但由于傅里叶变换不能满足局部的时间域和频率域的特点,小波变换具有傅立叶变换没有的两个特征,同时小波变换系数相同的空间位置描述在不同的尺度上有相似性,使得小波变换能进行量化编码。近年来,使用基于小波变换的图像压缩已取得了很大的进步,也变换算法充分利用小波系数的特性。 2.图像压缩编码的基本原理 图像编码研究侧重于如何压缩图像数据信息,允许一定程度的失真条件下的还原图像(包括主观视觉效果),称为图像压缩编码。然后使图像信号的信号源通过系统PCM编码器由线性PCM编码,压缩编码器压缩图像数据,然后摆脱码字的冗余数据。图像压缩编码的基本原理是图1。

图1 图像压缩编码的基本框图 因此,图像编码是使用统计特性的固有效果和视觉特征,从原始图像中提取有效信息,信息压缩编码和删除一些无用的冗余信息,从而允许高效传输的数字图像或数字存储。图像恢复时,恢复图像的不完全与原始图像相同,保留有效信息的图像。 3.小波分析的基本理论 小波变换具有良好的定位时间和频域的特征,充分利用非均匀分布的分辨率,对于高频信号,使用时域的小时间窗口,进行低频信号分析,使用一个大的时间窗口。这正值一个时频分布特征,高频信号持续很长时间,不易衰减,低频信号持续很长时间,正好适合图像处理。 4. 基于小波的图像压缩变换 小波变换用于图像压缩的基本思想,小波变换用于图像压缩:首先选择小波对原始图像进行小波变换,得到了一系列小波系数,然后对这些系数量化和编码。使用某些特征相同的相邻元素之间的子频带的小波系数和量化小波系数实现图像数据压缩的目的。二维图像信号多分辨率分析和Matlab算法是关键,需要引入二维多分辨率分析和Matlab算法。二维可分离的多分辨率分析和Matlab算法可以很容易地由一维离散小波变换得到。图3 Matlab分别为二维分解图和重建算法图。 图2二维Matlab分解图

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

第8章 小波变换在图像去噪与图像增强中的应用

是第8章小波变换在图像去噪与图像增强中的应用 本章集中讨论小波在图像去噪与图像增强中的应用,首先研究基于小波的图像去噪方法。 设原图像(即待恢复的图像)为 []{},:,,,f i j i j I N =,被噪声污杂的图像(即观察到的图像)为[]{},:,,,g i j i j I N =,并设 [][][],,,,,,,g i j f i j i j i j I N ε=+= (0.1) 其中[],i j ε是噪声分量,独立同分布于()20,N πσ,且与[],f i j 独立,去噪的目的 是得到[],f i j 的估计[]?,f i j ,使其均方误差(MSE )最小,其中 [][]()22,,11?,,N i j MSE f i j f i j N ==-∑ (0.2) 在小波域,利用正交小波变换,(8.1)式变换后既得 [][][],,,,,1,,Y i j X i j V i j i j N =+= (0.3) 其中Y [],i j 是有噪小波系数,X [],i j 是无噪小波系数,为简单记并考虑到实际问 题的需要,本章对噪声的讨论仅限于加性的高斯白噪声,即V [],i j 为互相独立、 与()20,N πσ同分布的噪声分量。 图像去噪在信号处理中是一个经典的问题,传统的去噪方法多采用平均或线性方常用的是Wiener 滤波,但是去噪效果不够好,随着小波理论日趋完善,它以其自身良好的时频特性在图像、信号去噪领域法进行,受到越来越多的关注,开辟了用非线性方法去噪的先河,具体来说,小波去噪的成功主要得益于小波变换有如下特点:低熵性。小波系数的稀疏分布,使图像变换后的熵降低;多分辩率特性,由于采用了多分辩率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等,可在不同分辩率下根据信号和噪声分布的特点去噪;去相关性。因小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪;选基灵活性。由于小波变换可以灵活选择基,也可根据信号特点和去噪要求选择多带小波、小波包、平移不变小波等,对不同场合,可以选择不同的小波母函数。 因此,本章重点讨论基于各种小波变换的去噪方法。 8.1信号的奇异性检测与小波模极大值 信号(或函数)的奇异性是指信号(或函数)在某处有间断或某阶导数不连续。显然,无限次可导的函数是光滑的或者说是没有奇异性,奇异点(即突变点)通常包含

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

一种基于小波变换的自适应图像增强算法

崔 冲 丁建华 (大连海事大学信号与图像处理研究所 大连 116026) E-mail cui_chong@https://www.360docs.net/doc/5817727968.html, ; huazai0135020@https://www.360docs.net/doc/5817727968.html, 摘 要:针对含有微弱纹状物或点状物的图像,提出一种基于小波变换的自适应图像增强算法,首先根据小波变换提取出图像中不同变化频率的微弱纹状物,再对这些微弱纹状物进行自适应放大,加大其对比度,从而达到增强的目的,实验结果表明,该算法有着良好的增强效果。 关键词: 图像增强;自适应;小波变换; 1 引言 由于受光照、设备等因素的制约,实际摄取的图像会含有较大的噪声,灰度对比度低,某些局部细节没有明显的灰度差别,使人眼或者机器难以识别,因此有必要进行图像增强,为后续处理做准备。 常用的图像增强算法,比如直方图变换、直方图均衡等都有很好的增强效果,但这些都是全局性算法,对某些灰度集中且对比度低的图像,如含有微弱纹状物或点状物的图像,应用这些算法反而会降低清晰度[1],本文根据此类图像的特点,在已有算法的基础上[2],利用小波变换,根据图像信号的变化频率自适应调整求均值的邻域窗口大小,从而使得慢变和快变的信号同时得到增强。 2 基本原理 先介绍一种简单的增强算法[2],为讨论方便,取出一副数字图像中某一行的像素数据形成一维数据信号,它表示数字图像中某一行的灰度变化信息。如图1所示。增强微弱 )(x f 变化就是增强波形中缓变部分,从而使得波形中微弱的波峰和波谷尽可能得到增强。为此,需要求出的慢变均值,再求出其差值)(x f )(x g )()(x g x f a ?=Δ,即可提取出波峰和波谷。下一步就是对这个差值信号进行自适应放大:a Δa A x p Δ?=)(,A 为放大系数,A 应能按照自适应变化,当大时,A 值小,当a Δa Δa Δ小时,A 值大。经自适应放大后的波形如图2所示,显然,中微弱的波峰和波谷都得到充分的放大。 )(x p )(x f 图1 原始信号f(x)波形 图2 增强后的信号p(x)波形 https://www.360docs.net/doc/5817727968.html,

基于图像的小波变换

基于图片的小波变换 研硕13-13张佳浩 0 引言 在经典的信号分析理论中,傅里叶理论是应用最广泛、效果最好的一种分析手段。但它只是一种纯频域的分析方法,不能提供局部时间段上的频率信息。随后的短时傅里叶变换STFT,虽然可以同时分析时域和频域信息,但是由于STFT的固定时窗,对于分析时变信号是不利的。这是因为时变信号中的高频一般持续时间很短,而低频持续时间比较长,所以都希望对高频信号采用大的时窗,对低频信号采用小的时窗进行分析。小波变换正是在这样的背景下发展起来的。近年来,小波变换作为一种变换域信号处理方法,得到了非常迅速的发展,在信号分析、图像处理、地震勘探和非线性科学等诸多领域得到了广泛的运用。小波理论为各种信号及图像处理方法提供了一种统一的分析框架,成为当前信号与图像处理等众多领域的研究热点。当前对数字图像进行多分辨率观察和处理时,离散小波变换(DWT)是首选的数学工具。除了具有有效、高度直观的描述框架以及多分辨率图像存储之外,DWT还有利于我们深入了解图像时域和频域特性。 1 小波变换 小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。 小波变换分为以下两种: 1.1 连续小波变换 引言中提到的短时傅里叶变换(STFT),其窗口函数是通过函数 时间轴的平移与频率限制得到的,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在 低频部分具有较好的频率分辨率特性。为此,特引入窗口函数,并定义平方可积分函数的连续小波变换为: (1) 式中:a称为尺度参数;b称为平移参数。很显然,并非所有函数都能保证式(1)中的变换对于所有均有意义;另外,在实际应用中,尤其是信号处理以及图像处理的应用中,变 换只是一种简化问题、处理问题的有效手段,最终目的需要回到对原问题的求解,因此还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰 减特性,经常要求函数具有如下性质: 式中:C为与x,ω无关的常数;ε>0。 1.2 离散小波变换

基于小波变换与阀值收缩法的图像增强去噪(精)

第 19卷第 2期四川理工学院学报 (自然科学版 V ol . 19 No. 2 JOURNAL OF SICHUAN UNIVERSITY OF 2006年 4月 SCIENCE & ENGINEERING (NATURAL SCIENCE EDITION Apr . 2006 文章编号:1673-1549(2006 02-0008-04 基于小波变换与阀值收缩法的图像增强去噪 高飞,杨平先,孙兴波 (四川理工学院电子与信息工程系,四川自贡 643000 摘要:提出了一种基于小波变换与阀值收缩法的图像增强去噪方法。图像经过小波分解后可以得到一系列不同尺度上的子带图像, 在不同尺度的子带图像上进行基于阈值收缩滤波的细节系数增强, 再进行小波重构,即可得到增强后的图像。该方法可以有效地去除噪声,增强图像的平均梯度,改善图像的视觉效果。 关键词:图像增强;小波变换;去噪;阀值收缩 中图分类号:TP391 文献标识码:A 前言 小波变换是传统傅里叶变换的继承和发展, 由于小波的多分辨率分析具有良好的空间域和频率域局部化特性, 对高频采用逐渐精细的时域或空域步长, 可以聚焦 到分析对象的任意细节, 因此特别适合于图像信号这一类非平稳信源的处理,已成为一种信号/ 图像处理的新手段。目前,小波分析已被成功地应用于信号处理、图象 处理、语音与图像编码、语音识别与合成、多尺度边缘提取和重建、分形及数字电视等科学领域 [1]。

图像增强是图像处理中一个非常重要的研究领域,已经有许多非常成熟和有效的方法如直方图均衡、高通滤波、反掩模锐化法等,但是这些传统的图像增强方法都存在着不足,如噪声放大、有时可能引入新的噪声结构等。目前已经有许多关于小波变换在图像处理方面的应用研究, 取得了非常不错的效 果。针对传统图像增强中存在的一些问题,如增强噪声、丢失细节等,本文提出了一种基于阈值收缩法 [2]的小波图像增强方法, 实验结果表明该方法能较好地解决图像增强中的噪声放大的问题, 并能非线性地增强图像的细节信息,保持图像的边缘特征,改善图像的视觉效果,是一种很有效的方法。 1 小波变换 小波变换的基本思想是用一族函数去表示或逼近一信号, 这一族函数称为小波函数系。它是通过一 小波母函数的伸缩和平移产生其“子波”来构成的,用其变换系数描述原来的信号 [3]。设相应的尺度函 数为 (x ?,小波函数为(x ψ,二维尺度函数 , (y x ?,是可分离的,即: ( ( , (y x y x ???=,即可以构造 3个二维基本小波函数: ( ( , (1y x y x ψ?ψ=, ( ( , (2y x y x ?ψψ=, ( ( , (3y x y x ψψψ= 那么,二维小波基可以通过以下伸缩平移实现: 2, 2(2 , (, , n y m x y x j j i j i n m j ??=???ψψ 3, 2, 1, , , =∈i Z n m j 这样,一个二维图像信号 , (y x f 在尺度 j 2下的平滑成分(低频分量可用二维序列 , (n m D j 表示为: , ( , ( , (, , y x y x f n m D n m j j ?=

图像融合

图像融合 实验目的 1.熟悉图像融合的意义和用途,理解图像融合的原理; 2.掌握图像融合的一般方法; 3.掌握运用MATLAB软件进行图像融合的操作。 实验原理 图像融合(Image Fusion)技术是指将多源信道所采集到的关于同一目标的图像经过一定的图像处理,提取各自信道的信息,最后综合成同一图像以供观察或进一步处理。 高效的图像融合方法可以根据需要综合处理多源通道的信息,从而有效地提高了图像信息的利用率、系统对目标探测识别地可靠性及系统的自动化程度。其目的是将单一传感器的多波段信息或不同类传感器所提供的信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,以增强影像中信息透明度,改善解译的精度、可靠性以及使用率,以形成对目标的清晰、完整、准确的信息描述。 这诸多方面的优点使得图像融合在医学、遥感、计算机视觉、气象预报及军事目标识别等方面的应用潜力得到充分认识、尤其在计算机视觉方面,图像融合被认为是克服目前某些难点的技术方向;在航天、航空多种运载平台上,各种遥感器所获得的大量光谱遥感图像(其中分辨率差别、灰度等级差别可能很大)的复合融合,为信息的高效提取提供了良好的处理手段,取得明显效益。 一般情况下,图像融合由低到高分为三个层次:数据级融合、特征级融合、决策级融合。数据级融合也称像素级融合,是指直接对传感器采集来得数据进行处理而获得融合图像的过程,它是高层次图像融合的基础,也是目前图像融合研究的重点之一。这种融合的优点是保持尽可能多得现场原始数据,提供其它融合层次所不能提供的细微信息。 图像融合最简单的理解就是两个(或多个)图像间的相加运算。这一技术广泛

应用于多频谱图像理解和医学图像处理等领域。主要分为空域和频域相加。 一、应用MATLAB软件进行两幅图像的融合的主要方法有: 1.图像直接融合; 2.图像傅立叶变换融合; 3.图像小波变换融合。 图像融合的MATLAB程序如下: (1)调入、显示两幅图像的程序语句 load A; X1=X;map1=map; load B; X2=X;map2=map; %打开图像 subplot(1,2,1) image(X1),colormap(map1); title(‘图像map1’) subplot(1,2,2) image(X2),colormap(map2); title(‘图像map2’) %显示两幅图像 (2)两幅图像直接融合的程序语句 figure,subplot(1,3,1) image((X1+X2)/2),colormap(map2); %在空域内直接融合 title(‘两图像直接相加融合’) %显示融合后的图像,并命名为“两图像直接相加融合” (3)两幅图像傅立叶变换融合的程序语句 F1=fft2(X1); F2=fft2(X2); %分别计算两幅图像的快速傅立叶变换

基于小波变换的图像增强研究

基于小波变换的图像增强研究 摘要 随着社会的不断进步,网络和计算机在人们日常生活中的迅速普及,人们对图像、视频、音频等多媒体文件的要求也愈来愈高。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为两大类:空间域增强和频率域增强.但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文针对图像对比度低、成像质量差的问题,提出一种基于小波变换的直方图均衡算法,用于图像对比度增强。 关键词:图像增强直方图均衡小波变换

Abstract With the development of the society the internet and computers are used widely in people’s everyday life.The transmit of images visions videos and so on have brought so many pleasures,at the same time the demand of such documents become more and more strongly.But the quality of images many decrease because during the course of gaining and transmitting images they are interfered with all kinds of causes .The paper is about how to deal with the enhancement of images. The image enhancement is an important part of digital image processing.There are many methods of image enhancement,image enhancement techniques can be divided into tow broad categories:Spatial domain methods and frequency domain methods.But the traditional methods will enhancement the image with block effect;this is not satisfied human viewer.The technology of wavelet analysis has special advantages to deal with images it can withdraw characters of signals in many directions and in freely scale.The technology can separated noises from signals in different scales.In this paper we discussed how the property of the wavelet basis affect the process of image noising.In view of image problems of low in contrast gradient and poor imaging quality,in this artical

实验五 基于小波变换的图像压缩

实验五小波变换在图像压缩中应用 一、实验内容 利用MATLAB小波工具箱,基于小波变换进行图像压缩处理。 二、实验目的及说明 所谓图像压缩就是去掉各种冗余,保留重要的信息。图像压缩的过程常称为编码,而图像的恢复则称为解码。图像数据之所以能够进行压缩,其数学机理有以下两点: (1)原始图像数据往往存在各种信息的冗余(如空间冗余、视觉冗余和结果冗余等),数据之间存在相关性,邻近像素的灰度(将其看成随机变量)往往是高度相关的。 (2)在多媒体应用领域中,人眼作为图像信息的接收端,其视觉对边缘的急剧变化敏感,以及人眼存在对图像的亮度信息敏感,而对颜色分辨率弱等,因此在高压缩比的情况下,解压缩后的图像信号仍有满意的主观质量。三、实验原理 小波压缩沿袭了变换编码的基本思想,即去相关性。小波变换、量化和熵编码等是构成小波编码的三个主要部分。其基本原理:将原始图像经小波变换后,转换成小波域上的小波系数,然后对小波系数进行量化编码。采用二维小波变换快速算法,小波变换就是以原始图像为基础,不断将上一级图像分为四个子带的过程。每次分解得到的四个子带图像,分别代表频率平面上不同的区域,他们分别含有上一级图像中的低频信息和垂直、水平及对角线方向的边缘信息,如下图所示: LL为低频子带,HL、LH、HH为高频子带 图像进行小波变换后,并没有实现压缩,是对图像的能量进行了重新分配。 四、核心函数介绍 Wavedec2()函数:多尺度二维小波分解

appcoef2()函数:提取二维小波分解低频系数wcodemat()函数:对矩阵进行量化编码 五、实验结果 实验结果: 表5-1 压缩图像的尺寸和字节数 压缩的图像结果显示: 原图像: 第一次压缩后的图像:

小波变换与PCNN在图像处理中的比较与结合

收稿日期:2005-10-25 基金项目:国家自然科学基金(60572011/f010204),“985”特色项目计划基金(LZ985-231-582627),甘肃省自然科学基金(YS021-A22-00910) 小波变换与PC NN 在图像处理中的比较与结合 田 勇,敦建征,马义德,夏春水,吴记群 (兰州大学信息科学与工程学院,甘肃兰州 730000) 摘 要: 主要介绍了小波变换和PCNN 的基本原理,结合它们在图像处理中的应用,比较说明了小波变换和PCNN 各自的优缺点.通过分析表明,将小波变换和PCNN 技术相结合在图像处理中会产生更好的效果. 关键词: 小波变换;脉冲耦合神经网络(PCNN);图像处理 中图分类号: TN 911.73 文献标识码: A 文章编号:1004-0366(2006)04-0053-03 The Comparison Between Wavelet Transform and PC NN in Image Processing and Their Combination TIAN Yo ng ,DUN Jian-zheng,M A Yi-de,X IA Chun-shui,W U J i-qun (School of Information Science &Engineering ,L anzhou University ,Lanzhou 730000,China ) Abstract : The ba sic principles of w av elet transfo rm and PCNN a re first https://www.360docs.net/doc/5817727968.html, bining their applicatio ns in the image processing ,w e analy ze their adva ntag es and draw backs respectiv ely.From the analysis ,it is co ncluded tha t w e will g et better effects if we co mbine the tw o techniques tog ether in the imag e processing . Key words : wav elet transform;pulse co upled neural netw o rk(PCNN);image processing 小波变换可对函数或信号进行多尺度的细化分析,解决了傅立叶变换不能解决的许多问题,被认为是时间——尺度分析和多分辨率分析的一种新技术[1] .目前,它已被广泛应用于分形、信号处理、图像处理、地震勘探、语音识别等应用领域[1~4].脉冲耦合神经网络PCNN (Pulse Co upled Neural Netw ork,PCNN)是一种不同于传统人工神经网络的新型神经网络.PCNN 有着生物学的背景,是根据对动物的大脑视觉皮层同步脉冲发放所获得的实验结果[5~8] ,建立起来的一种神经网络数学模型.PCNN 在图像处理中的应用已经取得巨大成果[9~12].PCNN 在旋转、平移、尺度不变性等方面起着重要的作用.而小波变换的长处在于它能够生成含有输入信息显著特征的系数并且能够对信号进行由粗及精的逐级多分辨率分析.我们发现小波变换和PCNN 有许多相似点,只是在性能和本质特征上有一些差别. 1 小波变换理论简介 [13~16] 小波(wav elet)即小区域的波.“小”是指在时域 具有紧支集或近似紧支集;“波”指小波具有正负交替的波动性.连续小波函数的确切定义为:设J (t )为一平方可积函数,即J (t )∈L 2(R ),若J (k )(其傅里叶变换)满足容许条件(Admissible Co nditio n) C J =∫ R |J (k )|2 |k |d k <∞(1) 则称J (t )为一个基本小波或母小波(M other Wav elet). 小波函数具有多样性,实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波.常用的小波有:Haar 小波,Daubechies (dbN )小波系,Bio rthog onal(biorN r.Nd)小波系,Coiflet(coifN )小波系,Sy mletsA (sym N )小波系,M orlet 小波,M exican Hat 小波,M eyer 小波,Battle-Lemarie 小 第18卷 第4期2006年12月 甘肃科学学报Journal of Gans u Sciences Vol.18 No.4 Dec.2006

基于小波理论的图像去噪和图像增强

基于小波理论的图像去噪和图像增强 1.3图像去噪技术 图像去嗓是信号处理中的一个经典的问题。传统的去噪方法多采用平均或线性方法,如Wiener滤波,但去嗓效果不令人满意。随着小波理论嚣趋完善,它以其自身良好的时频特性在图像信号去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。小波变换用于豳像去噪的理论基础始于S。Mallat把数学上的Lipschitz系数与小波变换的模极大值联系起来。随后Donohol8j提出了小波M值萎缩方法并从渐透意义上证明了其优越性。然而在实际应用中却往往效果不好,存在“过扼杀"系数的缺点。以后人们进一步研究小波相关去噪方法、比例萎缩方法等,并且在进一步提高辣法的局部适旋性、先验模型的准确性、边缘信息的傈留性等方西取得了巨大的进步。具体回顾小波去噪方法可以大致分成以下三个阶段:第~阶段,最初的去噪方法主要是利用小波变换去相关性。在小波分解后不同层次麴纲节子带,采用不同的阈值。代表方法有Visushrink(逶用软闺值去噪方法)和SureShrink(基于Stein's的无偏风险估计,可得出接近最优软阈值的佶计量)方法等。这期间硬阂值、.软阙值和半软闽值等阈值函数也楣继提出。第二阶段,人们开始根据小波系数的统计性质建立各种先验模型,对小波系数的萎缩自适应变化,也就是每个小波系数所采取的阈值都各不相同。小波系数模型主要可分为基于尺度内相关性的层内模型、基于尺度阗相关性的层闻模型和混合模型。最常用小波系数先验模型是广义高斯分布模型。原图像小波系数的方差估计采髑局部邻域估计,代表方法有数据驱动的爨适应BayesShrink 方法,LawmlShrink方法等。第三阶段,这~阶段入们主要关注如何利用小波系数层闻和层肉的楣关性,二元或多元的小波萎缩函数被提出。在去噪的同时如何尽可能地保留边缘、纹理等细节、如何使去噪后的图像更光滑、如何将小波变换去噪与其他方法结合等都处于不断地探索和研究中,代表方法有BivaShrink方法、小波的马尔可夫方法和复数小波去噪方法等。 1.4图像增强技术 数字图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,其主要目的是使处理后的图像对某种特定的应用来浼,比原始图像更适用。因此,这类处理是为了某种应用目的两去改 3 武汉理王大学硕士学位论文善图像矮量的。处理的结果锼图像更适合于人的视觉特性或机器的识别系统Il别。图像的增强技术主要分为两大类:~类是空域类处理法,一类是频域类处理法。空域法是指蛊接对图像孛的像素进行处理,基本上是以获度映射变换为基础的。频域法的基础是卷积定理,一般情况下采用修改傅立叶变换的方法来实现对图像进行增强处理。健在这里以延伸为其毽的变换翔DCT变换、Walsh 变换和小波变换等。小波算法的发展极大影响了信号与图像处理领域的研究。在图像处理领域,很多算法被痰用到罂像去嗓方面。相对来讲在图像增强这个领域研究工作做得稍微少了些,但还是出现了~些很重要的方法。图像增强中主要问题是噪声,许多通用、知名方法都存在下列瓣题:帮在增强细节信号豹同时,也放大了噪声。在诸如CCD这种低对比度、多噪声图像中,尤其需要改进算法,在增强微弱细节信号的困时抑制背景孛的离频噪声。传统图像增强方法,如直方腿均衡、高通滤波、反掩模锐化法等。但是,这些传统的图像增强方法都存在着不足,如噪声放大、有时可能弓l入新的噪声结擒等。知翁解决这些闯题一直是图像增强领域孛的~个难题。小波分

利用小波变换实现彩色图像增强

利用小波变换实现彩色图像增强 专业:通信工程姓名:李厚福指导教师:王建华 摘要:中国有句谚语“百闻不如一见”,可见视觉信息的重要性。图像是人们获得信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的最主要载体也是图像,因此图像的增强处理受到越来越多的人们关注。而图像在获取或传输过程中,由于各种原因,可能对图像造成破坏,使图像失真,为了满足人们的视觉效果,必须对这些降质的图像进行处理,满足实际需要,使用不同的方法进行图像增强处理,尽可能对图像进行还原。 图像增强技术是数字图像处理的一个重要分支,其方法有很多,主要可以分为空间域增强和频率域增强两大类。但是传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。小波变换是多尺度多分辨率的分解方式,可以将噪声和信号在不同尺度上分开,根据噪声分布的规律就可以达到图像增强的目的。本文对小波变换理论、小波阈值滤波和增强的方法,小波阈值滤波及增强中的阈值函数和阈值的选取做了理论上的研究,重点研究利用小波变换对图像进行增强处理。关键词:小波变换,图像增强,噪声,信号

第一章绪论 1.1课题研究的意义 图像是人们获取信息和传递信息的最重要的媒体,人类视觉信息的获取和传播的主要载体也是图像。对于生活中的指纹识别,视频监控,生活拍照,医学拍照等无不与图像有着紧密的关系。所以图像增强的目的是改善图像的视觉效果,这对人们的生活有着重要的意义。 图像增强作为基本的图像处理技术,其目的是要改善图像的视觉效果。针对给定图像的应用场合,通过处理设法有选择的突出便于人或机器分析有用的信息,将原来模糊的图像变得清晰,抑制一些没有的信息,得以改善图像质量,丰富信息量,加强图像判读和识别效果,以提高图像的使用价值。 图像增强有很多种方法,传统的方法在增强图像的同时,也会带来相应的块效应,不符合人们的视觉效果。对于其性质随实践是稳定不变的信号,傅立叶变换是理想的工具。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波变换。小波变换是傅立叶变换的发展与延拓,它对不同频率成分在时域上的取样步长具有调节性,高频则小,低频则大。具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。小波变换解决了傅立叶变换不能解决的许多困难问题,运用到图像增强方面有很重要的现实意义。

相关文档
最新文档