免疫球蛋白分子的结构与功能

免疫球蛋白分子的结构与功能
免疫球蛋白分子的结构与功能

、免疫球蛋白分子的基本结构

Porter等对血清IgG

抗体的研究证明,lg分子的基本结构是由四肽链组成的。即由二条

相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为lg分子的单体,是构成免疫球蛋白分子的基

本结构。lg单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。

图2-3免疫球蛋白分子的基本结构示意图

(一)轻链和重链

由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是lg分子的

L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较

分析,从而为lg分子氨基酸序列分析提供了良好的材料。

1. 轻链(light chain,L )轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(与lambda(入)同一个天然lg分子上L链的型总是相同的。正常人血清中的K入约为2:1。

2. 重链(heavy chain,H链)重链大小约为轻链的2倍,含450?550个氨基酸残基,分子量约为55或75kD。每条H链含有4?5个链内二硫键所组成的环肽。不同的H链由于

?戰水化合韧

氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:卩链、丫链、a链、3链和£链,不同H链与L链

(K或入链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。Y a和3链上含有4个肽,□和&链含有5个环肽。

(二)可变区和恒定区

通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-

末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。

1. 可变区(variable region,V区)位于L链靠近N端的1/2 (约含108?111个氨基酸残基)和H链靠近N端的1/5或1/4 (约含118个氨基酸残基)。每个V 区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67?75个氨基酸残基。V区氨基酸的组成和排列

随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万

化,故可形成许多种具有不同结合抗原特异性的抗体。

L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR )。在V区

中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion )。VL 中的高变区有三个,通常分别位于第24?34、50?65、95?102位氨基酸。VL和VH的这

三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(compleme ntarity-determi ning

regi-on,CDR)o VL 和VH 的HVR1、HVR2 和HVR3 又可分另U称为CDR1、CDR2 和CDR3 , 一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determ inants 主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

图2-4与表位结合高变区示意图(G表示相对保守的甘氨酸)

2. 恒定区(constant region,C区)位于L链靠近C端的1/2(约含105个氨基酸残基)和H链靠近C端的3/4区域或4/5区域(约从119位氨基酸至C末端)。H链每个功能区约含110多个氨基酸残基,含有一个由二锍键连接的50?60个氨基酸残基组成的肽环。这

个区域氨基酸的组成和排列在同一种属动物lg同型L链和同一类H链中都比较恒定,如人

抗白喉外毒素IgG与人抗破伤风外毒素的抗毒素IgG,它们的V区不相同,只能与相应的

抗原发生特异性的结合,但其C区的结构是相同的,即具有相同的抗原性,应用马抗人IgG 第二体(或称抗抗体)均能与这两种抗不同外毒素的抗体(IgG )发生结合反应。这是制备第二抗体,应用荧光、酶、同位毒等标记抗体的重要基础。

(三)功能区

Ig分子的H链与L链可通过链内二硫键折叠成若干球形功能区,每一功能区(domain)

约由110个氨基酸组成。在功能区中氨基酸序列有高度同源性。

1. L链功能区分为L链可变区(VL )和L链恒定区(CL)两功能区。

2. H链功能区IgG、IgA和IgD 的H链各有一个可变区(VH )和三个恒定区(CH1、CH2和CH3 )共四个功能区。IgM和IgE的H链各有一个可变区(VH )和四个恒定区(CH1、CH2、CH3和CH4)共五个功能区。如要表示某一类免疫蛋白H链恒定区,可在 C (表示

恒定区)后加上相应重链名称(希腊字母)和恒定区的位置(阿拉伯数字),例如IgG重链CH1、CH2和CH3可分另用C Y I、C Y2和C Y3来表示。

IgL链和H链中V区或C区每个功能区各形成一个免疫球蛋白折叠(immu no globulin

fold,lg fold ),每个Ig折叠含有两个大致平行、由二硫连接的B片层结构(betapleated sheet?, 每个B片层结构由3至5股反平行的多肽链组成。可变区中的高变区在Ig折叠的一侧形成高变区环(hypervariable loops ),是与抗原结合的位置。

3. 功能区的作用

(1)VL和VH是与抗原结合的部位,其中HVR (CDR )是V区中与抗原决定簇(或

表位)互补结合的部位。VH和VL通过非共价相互作用,组成一个FV区。单位Ig分子具

有2个抗原结合位点(antigen-binding site ),二聚体分泌型IgA具有4个抗原结合位点,五聚体IgM可有10个抗原结合位点。

(2)CL和CH上具有部分同种异型的遗传标记。

(3)CH2 : IgGCH具有补体Clq结合点,能活化补体的经典活化途径。母体IgG借助CH2部分可通过胎盘主动传递到胎体内。

(4)CH3 : IgGCH3具有结合单核细胞、巨噬细胞、粒细胞、B细胞和NK细胞Fc段受体的功能。lgMCH3 (或CH3因部分CH4)具有补体结合位点。IgE的6 2和6 3功能区与结合肥大

细胞和嗜碱性粒细胞FC& RI有关。

4. 铰链区(hinge region )铰链区不是一个独立的功能区,但它与其客观存在功能区有

关。铰链区位于CH1和CH2之间。不同H链铰链区含氨基酸数目不等, a 1 a2 丫1 丫2

和丫4链的铰链区较短,只有10多个氨基酸残基;丫3和3链的铰链区较长,约含60多个氨基酸残基,其中丫3铰链区含有14个半胱氨酸残基。铰链区包括H链间二硫键,该区富含

脯氨酸,不形成a螺旋,易发生伸展及一定程度的转动,当VL、VH与抗原结合时此氏发

生扭曲,使抗体分子上两个抗原结合点更好地与两个抗原决定簇发生互补。由于CH2和CH3

构型变化,显示出活化补体、结合组织细胞等生物学活性。铰链区对木瓜蛋白酶、胃蛋白酶敏感,当用这些蛋白酶水解免疫球蛋白分子时常此区发生裂解。IgM和IgE缺乏铰链区。

(四)J链和分泌成分

1. J链(joining chain ) 存在于二聚体分泌型IgA和五聚体IgM中。J链分子量约为15kD ,由于124个氨基酸组成的酸性糖蛋白,含有8个半胱氨酸残基,通过二硫键连接到卩

链或a链的羧基端的半胱氨酸。J链可能在Ig二聚体、五聚体或多聚体的组成以及在体内转运中的具有一定的作用。

2. 分泌成分(secretory component,SC) 又称分泌片(secretory piece),是分泌型IgA

上的一个辅助成分,分子量约为75kD,糖蛋白,由上皮细胞合成,以共价形式结合到Ig分子,并一起被分泌到粘膜表面。SC的存在对于抵抗外分泌液中蛋白水解酶的降解具有重要

作用。

(五)单体、双体和五聚体

1. 单体由一对L链和一对H链组成的基本结构,如IgG、IgD、IgE血清型IgA。

2. 双体由J链连接的两个单体,如分泌型IgA (secretory IgA,SIgA)二聚体(或多聚体) IgA结合抗原的亲合力(avidity )要比单体IgA高。

图2-5分泌型IgA结构示意图

3. 五聚体由J链和二硫键连接五个单体,如IgM。□链Cys414 (C^3)和Cys575(C 端的尾部)对于IgM的多聚化极为重要。在J链存在下,通过两个邻近单体IgM y链Cys之间以及J链与邻□链Cys575之间形成二硫键组成五聚体。由粘膜下浆细胞所合成和分泌的

IgM五聚体,与粘膜上皮细胞表面plgR(poly-lg receptor,plgR)结合,穿过粘膜上皮细胞到粘

膜表面成为分泌型lgM(secretory IgM)。

(六)酶解片段

1. 本瓜蛋白酶的水解片段Porter等最早用木瓜蛋白酶(papain)水解兔IgG,从而区划

获知了lg四肽链的基本结构和功能。

(1)裂解部位:IgG铰链区H链链间二硫键近N端侧切断。

(2)裂解片段:共裂解为三个片段:①两个Fab段(抗原结合段,fragment of antigen binding ),每个Fab段由一条完整的L链和一条约为1/2的H链组成,Fab段分子量为54kD。一个完整的Fab段可与抗原结合,表现为单价,但不能形成凝集或沉淀反应。Fab中约1/2H 链部分称为Fd段,约含225个氨基酸残基,包括VH、CH1和部分铰链区。②一个Fc段(可结晶段,fragment crystallizable ),由连接H链二硫键和近羧基端两条约1/2的H链所组成,分子量约50kD。lg在异种间免疫所具有的抗原性主要存在于Fc段。

A 1

匚霄陰分潴嘲分

A占一苗寓煎体療结會sc

(2)裂解片段:

1) F (ab') 2:包括一对完整的 称为Fd',约含235个氨基酸残基, 与抗原结合可发生凝集和沉淀反应。 由于应用F (ab') 2时保持了结合相应抗原的生物学活性,又减少或避免了

能引起的副作用,因而在生物制品中有较大的实际应用价值。虽然 性方

面同完整的lg 分子一样,但由于缺乏lg 中部分,因此不具备固定补体以及与细胞膜表 面Fc 受体结合的功能。F (ab') 2经还原等处理后,H 链间的二硫可发生断裂而形成两个相 同的Fab 片段。

2) Fc'可继续被胃蛋白酶水解成更小的片段,失去其生物学活性。

2?胃蛋白酶的水解片段 Nisonof 等最早用胃蛋白酶(pepsin )裂解免疫球蛋白。 (1)裂解部位:铰链区 H 链链间二硫键近 C 端切断。

L 链和由链间二硫键相连一对略大于

Fab 中Fd 的H 链,

包括VH 、VH1和铰链区。F (ab') 2具有双价抗体活性,

双价的F( ab') 2与抗原结合的亲合力要大于单价的 Fab 。 Fc 段抗原性可

F (ab') 2与抗原结合特

图2-6人分泌型IgA 和分泌型IgM 的局部产生示意图

图2-7 IgM 结构示意图

免疫球蛋白的试题及答案

第四章免疫球蛋白 名词解释: 1.抗体(antibody) 2.Fab(fragment antigen binding) 3.Fc(fragment crytallizable) 4.免疫球蛋白(Immunoglobulin Ig) 5.超变区(hypervariable region,HVR) 6.可变区(variable region,V区) 7.单克隆抗体(Monoclonal antibody,mAb) 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity) 9.调理作用(opsonization) 10.J链(joining chain) 11.分泌片(secretory piece) 12.Ig功能区(Ig domain) 13.Ig折叠(Ig folding) 14.CDR(complementary-determining region) 问答题 1.简述抗体与免疫球蛋白的区别和联系。 2.试述免疫球蛋白的主要生物学功能。 3.简述免疫球蛋白的结构、功能区及其功能。 4.简述单克隆抗体技术的基本原理。 参考答案 名词解释 1.抗体(Antibody) :是B 细胞特异性识别Ag后,增殖分化成为浆细胞,所合成分泌的一类能与相应抗原特异性结合的、具有免疫功能的球蛋白。 2.Fab(Fragment antigen binding):即抗原结合片段,每个Fab段由一条完整的轻链和重链的VH和CH1功能区构成,可以与抗原表位发生特异性结合。 3.Fc片段(fragment crytallizable):即可结晶片段,相当于IgG的CH2和CH3功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。 4. 免疫球蛋白(Immunoglobulin,Ig):是指具有抗体活性或化学结构与抗体相似的球蛋白。可分为分泌型和膜型两类。 5.高变区(hypervariable region ,HVR):在Ig分子VL和VH内,某些区域的氨基酸组成、排列顺序与构型更易变化,这些区域为超变区。 6.可变区(V区):在Ig多肽链氨基端(N端),L链1/2与H链1/4区域内,氨基酸的种类、排列顺序与构型变化很大,故称为可变区。 7.单克隆抗体(Monoclonal antibody ,mAb):是由识别一个抗原决定簇的B淋巴细胞杂交瘤分裂而成的单一克隆细胞所产生的高度均一、高度专一性的抗体。 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity):即抗体依赖的细胞介导的细胞毒作用。是指表达Fc受体细胞通过识别抗体的Fc段直接杀伤被抗体包被的靶细胞。NK细胞是介导ADCC的主要细胞。 9.调理作用(Opsonization):是指IgG抗体(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用。 10.J链(joining chain):是由浆细胞合成的富含半胱氨酸的一条多肽链。J链可以连接Ig单体形成二聚体、五聚体或多聚体。

抗体的基本结构(精制甲类)

免疫球蛋白目录 1. 拼音 2. 英文参考 3. 概述 4. 免疫球蛋白分子的基本结构 1. 轻链和重链 2. 可变区和恒定区 3. 功能区 4. J链和分泌成分 5. 单体、双体和五聚体 6. 酶解片段 5. 免疫球蛋白分子的功能 1. 特异性结合抗原 2. 活化补体 3. 结合Fc受体 4. 通过胎盘 6. 免疫球蛋白分子的抗原性 1. 同种型 2. 同种异型 3. 独特型 7. 免疫球蛋白分子的超家族 1. 免疫球蛋白超家族的组成 2. 免疫球蛋白超家族的特点 8. 各类免疫球蛋白的生物学活性 1. IgG 2. IgA 3. IgM 4. IgD 5. IgE 9. 免疫球蛋白基因的结构和抗体多样性 1. Ig重链基因的结构和重排 2. Ig轻链基因的结构和重排 3. 抗体多样性的遗传学基础

10. 药理作用 11. 药品说明书 1. 适应症 2. 用量用法 12. 相关文献 具有抗体活性的血清蛋白称为免疫球蛋白,又称为抗体。是由机体的B淋巴细胞在抗原的刺激下分化、分裂而成的一组特殊球蛋白。人和动物的免疫血清中的免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白的20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)。 免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig单体分子的基本结构是由四条肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 轻链和重链

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。 实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 一免疫球蛋白的基本结构 The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

常用免疫学检验技术的基本原理

常用免疫学检验技术的基本原理 免疫学检测即是根据抗原、抗体反应的原理,利用已知的抗原检测未知的抗体或利用已知的抗体检测未知的抗原。由于外源性和内源性抗原均可通过不同的抗原递呈途径诱导生物机体的免疫应答,在生物体内产生特异性和非特异性T 细胞的克隆扩增,并分泌特异性的免疫球蛋白(抗体)。由于抗体-抗原的结合具有特异性和专一性的特点,这种检测可以定性、定位和定量地检测某一特异的蛋白(抗原或抗体)。免疫学检测技术的用途非常广泛,它们可用于各种疾病的诊断、疗效评价及发病机制的研究。 最初的免疫检测方法是将抗原或抗体的一方或双方在某种介质中进行扩散,通过观察抗原-抗体相遇时产生的沉淀反应,检测抗原或抗体,最终达到诊断的目的。这种扩散可以是蛋白的自然扩散,例如环状沉淀试验、单向免疫扩散试验、双向免疫扩散实验。单向免疫扩散试验就是在凝胶中混入抗体,制成含有抗体的凝胶板,而将抗原加入凝胶板预先打好的小孔内,让抗原从小孔向四周的凝胶自然扩散,当一定浓度的抗原和凝胶中的抗体相遇时便能形成免疫复合物,出现以小孔为中心的圆形沉淀圈,沉淀圈的直径与加入的抗原浓度成正比。 利用蛋白在不同酸碱度下带不同电荷的特性,可以利用人为的电场将抗原、抗体扩散,例如免疫电泳试验和双向免疫电泳。免疫电泳首先将抗原加入凝胶中电泳,将抗原各成分依次分散开。然后沿电泳方向平行挖一直线形槽,于槽内加入含有针对各种抗原的混合抗体,让各抗原成分与相应抗体进行自然扩散,形成沉淀线。然后利用标准的抗原-抗体沉淀线进行抗原蛋白(或抗体)的鉴别。上述的方法都是利用肉眼观察抗原-抗体反应产生的沉淀,因此灵敏度有很大的局限。比浊法引入沉淀检测产生的免疫比浊法就是利用浊度计测量液体中抗原-抗体反应产生的浊度,根据标准曲线来计算抗原(或抗体)的含量。该方法不但大大提高了检测的灵敏度,且可对抗原、抗体进行定量的检测。

免疫球蛋白的结构

第一节免疫球蛋白的结构 (The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋 白,这类免疫球蛋白被称为抗体( an tibody, Ab )。 1937年,Tiselius 用电泳方法将血清蛋白分为白蛋白、a 1、a 2、B及丫球蛋白等组分,其后又证明抗体的活性部分是在丫球蛋白部分。因此,相当长一段时间内,抗体又被称为丫 球蛋白(丙种球蛋白)。 实际上,抗体的活性除丫球蛋白外,还存在于a和B球蛋白处。1968年和1972年的两次 国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin , Ig )。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Be nee Jon es, BJ )蛋白等。 免疫球蛋白可分为分泌型(secreted lg,Slg )和膜型(membrane Ig, mIg )。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别 受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 I 丨总血清 -------- igG -------- IgA --------- IgM 一电泳迁移率十 (igES极少、不能定曲表示) 正常人血清电泳分离图 一免疫球蛋白的基本结构The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链( heavy chain , H链)和两条相同的轻链(light chain , L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region )连接到主干上形成一个 "Y"形分子,称为Ig分子的单体, 是构成免疫球蛋白分子的基本单位。

免疫球蛋白分子的结构与功能

、免疫球蛋白分子的基本结构 Porter等对血清IgG 抗体的研究证明,lg分子的基本结构是由四肽链组成的。即由二条 相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为lg分子的单体,是构成免疫球蛋白分子的基 本结构。lg单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 图2-3免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是lg分子的 L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较 分析,从而为lg分子氨基酸序列分析提供了良好的材料。 1. 轻链(light chain,L )轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(与lambda(入)同一个天然lg分子上L链的型总是相同的。正常人血清中的K入约为2:1。 2. 重链(heavy chain,H链)重链大小约为轻链的2倍,含450?550个氨基酸残基,分子量约为55或75kD。每条H链含有4?5个链内二硫键所组成的环肽。不同的H链由于 ?戰水化合韧

氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:卩链、丫链、a链、3链和£链,不同H链与L链 (K或入链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。Y a和3链上含有4个肽,□和&链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N- 末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1. 可变区(variable region,V区)位于L链靠近N端的1/2 (约含108?111个氨基酸残基)和H链靠近N端的1/5或1/4 (约含118个氨基酸残基)。每个V 区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67?75个氨基酸残基。V区氨基酸的组成和排列 随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万 化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR )。在V区 中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion )。VL 中的高变区有三个,通常分别位于第24?34、50?65、95?102位氨基酸。VL和VH的这 三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(compleme ntarity-determi ning regi-on,CDR)o VL 和VH 的HVR1、HVR2 和HVR3 又可分另U称为CDR1、CDR2 和CDR3 , 一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determ inants 主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

抗体的基本结构

1.适应症 2.用量用法 12.相关文献 具有抗体活性得血清蛋白称为免疫球蛋白,又称为抗体。就是由机体得B淋巴细胞在抗原得刺激下分化、分裂而成得一组特殊球蛋白。人与动物得免疫血清中得免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白得20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)。 免疫球蛋白分子得基本结构 Porter等对血清IgG抗体得研究证明,Ig单体分子得基本结构就是由四条肽链组成得。即由二条相同得分子量较小得肽链称为轻链与二条相同得分子量较大得肽链称为重链组成得。轻链与重链就是由二硫键连接形成一个四肽链分子称为Ig分子得单体,就是构成免疫球蛋白分子得基本结构。Ig单体中四条肽链两端游离得氨基或羧基得方向就是一致得,分别命名为氨基端(N端)与羧基端(C端)。 图2-3 免疫球蛋白分子得基本结构示意图 轻链与重链 由于骨髓瘤蛋白(M蛋白)就是均一性球蛋白分子,并证明本周蛋白(BJ)就是Ig分子得L链,很容易从患者血液与尿液中分离纯化这种蛋白,并可对来自不同患者得标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好得材料。

1.轻链(lightchain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个链内二硫键所组成得环肽。L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链得型总就是相同得。正常人血清中得κ:λ约为2:1。 2.重链(heavychain,H链)重链大小约为轻链得2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成得环肽。不同得H链由于氨基酸得排列顺序、二硫键得数目与们置、含糖得种类与数量不同,其抗原性也不相同,根据H链抗原性得差异可将其分为5类:μ链、γ链、α链、δ链与ε链,不同H链与L链(κ或λ链)组成完整Ig得分子分别称之为IgM、IgG、IgA、IgD与IgE。γ、α与δ链上含有4个环肽,μ与ε链含有5个环肽。重链(heavy chain,H链)由450~570个氨基酸残基组成,分子量约为50~70kD。不同得H链因氨基酸得排列顺序、二硫键得数目与位置、含糖得种类与数量不同,其抗原性也不相同,可将其分为μ链、γ链、α链、δ链、ε链五类,这些H链与L链(κ链或λ链)组成得完整Ig分子分别称为IgM(μ)、IgG(γ)、IgA(α)、IgD(δ)与IgE(ε 可变区与恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链得氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区(C区)。 1.可变区(variableregion,V区)位于L链靠近N端得1/2(约含108~111个氨基酸残基)与H链靠近N端得1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成得肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸得组成与排列随抗体结合抗原得特异性不同有较大得变异。由于V区中氨基酸得种类、排列顺序千变万化,故可形成许多种具有不同结合抗原特异性得抗体。 L链与H链得V区分别称为VL与VH。在VL与VH中某些局部区域得氨基酸组成与排列顺序具有更高得变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位得氨基酸组面与排列相对比较保守,称为骨架区(framework region)。VL中得高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL与VH得这三个HVR分别称为HVR1、HVR2与HVR3。经X线结晶衍射得研究分析证明,高变区确实为抗体与抗原结合得位置,因而称为决定簇互补区(plementarity-determining region,CDR)。VL 与VH得HVR1、HVR2与HVR3又可分别称为CDR1、CDR2与CDR3,一般得CDR3具有更高得高变程度。高变区也就是Ig分子独特型决定簇(idiotypic determinants)主要存在得部位。在大多数情况下H链在与抗原结合中起更重要得作用。

最新医学免疫学:免疫球蛋白分子的结构与功能

医学免疫学:免疫球蛋白分子的结构与功 能

医学免疫学 第二节免疫球蛋白分子的结构与功能 一、免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(κ)与 lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。

2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。VL中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining regi-on,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇 (idiotypic determinants)主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

第四章 免疫球蛋白

第四章 免疫球蛋白 第一部分:学习习题 一、 填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA 、IgM 、 IgG 、IgE 、IgD 等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG 可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、 多选题 [A 型题] 1.抗体与抗原结合的部位: A.V H B. V L C. C H D.C L E. V H 和 V L 2.免疫球蛋白的高变区(HVR)位于 A.V H 和 C H B. V L 和V H C.Fc 段 D.V H 和C L E. C L 和C H 3.能与肥大细胞表面FcR 结合,并介导I 型超敏反应的Ig 是: A.IgA B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig 是: A.IgA B. IgM C. IgG

D.IgD E. IgE 5.血清中含量最低的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B. IgM C. IgG D.IgD E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体 D.IgD类抗体 E. IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体

医学免疫学免疫球蛋白

医学免疫学免疫球蛋白 大纲要求 一、基本概念 二、免疫球蛋白的结构 三、免疫球蛋白的类型 四、免疫球蛋白的功能 五、各类免疫球蛋白的特性和功能 六、抗体的制备 一、基本概念 (一)抗体(antibody, Ab) 是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,是介导体液免疫的重要效应分子。 (二)免疫球蛋白(immunoglobulin, Ig) 指具有抗体活性的或化学结构与抗体相似的球蛋白。 二、免疫球蛋白(Ig)的结构 (一)Ig的基本结构 由两条相同的重链(H链)和两条相同的轻链(L链)借链间二硫键连接组成。 可变区(V区)和恒定区(C区) 可变区:H链近氨基端(N端)1/4或1/5区域内的氨基酸、L链近N端1/2区域内的氨基酸序列多变,称为V区。 超变区(HVR):VH和VL各有3个区域的氨基酸组成和排列顺序高度可变,称为HVR,也称为互补决定区(CDR)。一般CDR3变化程度更高。 骨架区(FR) 恒定区:H链和L链靠近C端区域的氨基酸序列相对稳定,称为C区。

免疫球蛋白的类、亚类、型、亚型 根据CH不同分为五类: CH:γαμδε Ig: IgG IgA IgM IgD IgE 亚类:IgG1~IgG4; IgA1、IgA2。 根据CL不同分为两型:κ型、λ型 亚型:λ1~λ4 (二)Ig的功能区 L链:VL、CL。 H链: VH、CH1、CH2、CH3(IgA、IgG、IgD)VH、CH1、CH2、CH3、CH4(IgM、IgE)铰链区:位于CH1与CH2之间,易弯曲。各功能区主要功能: VH、VL:与抗原特异性结合部位 CH和CL:遗传标志所在处 IgG的CH2和IgM的CH3:激活补体 IgG的CH2/CH3和IgE的CH4:结合细胞

免疫球蛋白分子的结构与功能

一、免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。 2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于

氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。VL 中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining regi-on,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determinants)主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

常用免疫学检查参考值

常用免疫学检查参考值 血清免疫球蛋白分类Ig通常是指具有抗体活性和(或)抗体样结构的球蛋白。 应用免疫电泳与超速离心分析可将Ig分5类:IgG、IgA、IgM、IgD、IgE。 IgG:含量最多或最主要的Ig(75%),唯一能够通过胎盘的Ig。主要由脾脏和淋巴结中的浆细胞合成与分泌。 IgA:约占10%,SIgA在局部免疫中起重要作用。主要由肠系淋巴组织中的浆细胞产生。 血清免疫球蛋白 IgM:分子量最大,由5个IgM单体通过J链连接。是最早出现的Ig,是抗原刺激后最早出现的抗体,其杀菌、溶菌、溶血、促吞噬以及凝集作用比IgG高500-1000倍。 测定方法:单向免疫扩散法(RID)或免疫比浊法。 血清免疫球蛋白测定参考值 参考值:IgG:7.6-16.6g/L (RID法)IgA:710-3350mg/L IgM :0.48-2.12 g/L 临床意义 免疫球蛋白增高 多克隆增高:常见于各种慢性感染、慢性肝病、肝硬化、淋巴瘤和某些自身免疫性疾病,如SLE、类风湿关节炎等。 单克隆增高:主要见于免疫增殖性疾病,如多发性骨隋瘤、原发性巨球蛋白血症等。 免疫球蛋白降低:常见于各类先天性免疫缺陷病、获得性免疫缺陷病、联合免疫缺陷病及长期使用免疫抑制剂的病人。 血清IgD测定 免疫扩散法:0-62mg/L 已发现有些抗核抗体、抗基底膜抗体、抗甲状腺抗体和抗“O”抗体等均属IgD,但活性甚低。 血清IgE:主要由鼻咽部、支气管、胃肠道等粘膜固有层的浆细胞分泌,为亲细胞抗体,能与肥大细胞、嗜碱性粒细胞膜上的FceR结合,产生I型变态反应。 ELASA:0.1-0.9mg/L 临床意义: 1. I型变态反应 2. IgE型骨髓瘤、寄生虫感染等 3. 慢性肝炎、SLE、类风湿性关节炎等。 血清M蛋白测定(M protein,monoclonal immunoglobulins)是一种单克隆B淋巴细胞异常增殖时产生的IgG分子或片段,一般不具有抗体活性。 参考值:蛋白电泳法,免疫电泳法:阴性 意义:1.多发性骨髓瘤(MM),占35%-65%,其中IgG型占60%左右;IgA型占20%左右;轻链型占15%左右;IgD、IgE型罕见。2.巨球蛋白血症。3.重链病(HCDs)。4.半分子病。5.恶性淋巴瘤。6.良性M蛋白血症。 血清补体测定 补体是具有酶活性的一种不耐热球蛋白,分3组:9种补体成分(C1-C9);B、D、P、H、I 因子;补体调节蛋白,如C1抑制物、C4结合蛋白、促衰变因子等。 总补体溶血活性(CH50)测定 参考值试管法:50000-100000U/L 意义:增高见于急性炎症、急性组织损伤、恶性肿瘤及妊娠。降低见于急性肾小球肾炎、自身免疫性疾病、亚急性感染性心内膜炎、慢性肝病、肝硬化、AIDS、严重烧伤等。

抗体的基本结构

抗体的基本结构

免疫球蛋白

具有抗体活性的血清蛋白称为免疫球蛋白,又称为抗体。是由机体的B淋巴细胞在抗原的刺激下分化、分裂而成的一组特殊球蛋白。人和动物的免疫血清中的免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白的20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G

(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D (IgD)、免疫球蛋白E(IgE)。 免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig单体分子的基本结构是由四条肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C 端)。 图2-3 免疫球蛋白分子的基本结构示意图 轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自

不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(lightchain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个链内二硫键所组成的环肽。L 链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。 2.重链(heavychain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸的排列顺序、二硫键的数目和们置、含糖的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig 的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个环肽,μ和ε链含有5个环肽。重链(heavy chain,H链)由450~570个氨基酸残基组成,分子量约为50~70kD。不同的H链因氨基酸的排列顺序、二硫键的数目和位置、含糖的种类和数量不同,其抗原性也不相同,可将其分为μ链、γ链、α链、δ链、ε链五类,这些H链与L链(κ链或λ链)组成的完整Ig分子分别称为IgM(μ)、IgG(γ)、IgA(α)、IgD(δ)和IgE(ε 可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区(C区)。

抗体的结构

抗体的结构 一、单体 Porter等对血清IgG抗体的研究证明:Ig分子的基本结构是由四肽链组成的。即:由二条相同的分子量较小的肽链(轻链)和二条相同的分子量较大的肽链(重链)组成。 轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体;单体是构成所有免疫球蛋白分子的基本结构;所有抗体的单体都是四条肽链的对称结构,即:两条糖基化重链(H)和两条非糖基化轻链(L);每条重链和轻链分为氨基端(N端)和羧基端(C端)。 二、轻链和重链

1、轻链(light chain,L链) 由214个氨基酸残基组成,通常不含碳水化合物,分子量为24kD,有两个由链内二硫键组成的环肽,L链可分为:Kappa(κ)与 lambda(λ)2个亚型。 2、重链(heavy chain,H链) 由450-550个氨基酸残基组成,分子量55-75kD,含糖数量不同,4-5个链内二硫键,可分为5类,μ、γ、α、δ、ε链,不同的H链与L链(κ或λ)组成完整的Ig分子。分别称为:IgM,IgG,IgA,IgD和IgE。

三、可变区和恒定区 通过对H链或L链的氨基酸序列比较分析,发现: 其N-末端序列变化很大,称此区为可变区(V区); C-末端氨基酸则相对稳定,变化很小,称此区为恒 定区(C区)。 1、可变区(Variable region,V区) L链N端1/2处(VL)108-111个氨基酸残基,H链N端1/5-1/4处(VH)118个氨基酸残基,V区有一个肽环65-75个氨基酸残基。

可变区可分为高变区(hypervariable region,HVR)和骨架区(framework region,FR),VL的HVR在24-34,50-56,89-97氨基酸位置。VH的HVR在31-35,50-56,95-102氨基酸位置。分别称为VL和VH的HVR1,HVR2,HVR3。

抗体和抗体的结构详解知识讲解

抗体和抗体的结构详 解

抗体和抗体的结构详解 2014-10-21 00:00 来源:丁香园点击次数: 3476 关键词:抗体结 构 抗体,也叫免疫球蛋白 (Ig),是一种能特异性结合抗原的糖蛋白,而抗原是在易感染动物体内引发抗体产生的物质。在体内,抗体是由于外源性分子的侵袭而产生的。抗体以一个或者多个Y 字形单体存在,每个 Y 字形单体由 4 条多肽链组成,包含两条相同的重链和两条相同的轻链。轻链和重链是根据它们的分子量大小来命名的。Y 字形结构的顶端是可变区,为抗原结合部位。 任何一个抗体的轻链都可以分为κ或λ型(基于小分子多肽结构上的差异),每一个抗体的重链则决定了它的类或型。 抗体结构 重链 哺乳动物 Ig 的重链一共有五种,分别用希腊字母α、δ、ε、γ和μ 来命名,相对应组成的抗体就称为 IgA、IgD、IgE、IgG 和 IgM 五种抗体。不同的重链在大小和组成上有所区别,α和

γ包含大约 450 个氨基酸,而μ 和ε则有大约 550 个氨基酸。 每个重链有两个区:恒定区和可变区。所有同一型的抗体其恒定区都是相同的,不同型的抗体之间则存在差异。重链γ、α和δ的恒定区的组成为 3 个前后串联的 Ig 结构域,并有一个铰链区增加它的灵活性;重链μ 和ε的恒定区则由 4 个 Ig 结构域组成。不同 B 细胞产生的抗体其重链的可变区不同,但同一种 B 细胞或细胞克隆产生的抗体其可变区则是相同的,每一个重链的可变区都是大约 110 个氨基酸长度,并组成一个单独的 Ig 结构域。 轻链 哺乳动物只有两种轻链:λ型和κ型,每条轻链有两个前后相连的结构域:一个恒定区和一个可变区。轻链的长度大约为 211~217 个氨基酸, 每个抗体包含的两条轻链总是相同的,对哺乳动物来说每一个抗体中的轻链只有一个型:κ或λ型。在一些低等的脊椎动物中,像软骨鱼类(软骨鱼)和硬骨鱼类体内也会发现其他型的轻链如ι(iota) 型。 Fab和Fc段 Fc 段可以直接结合酶或荧光染料来标记抗体,是在 ELISA 过程中抗体铆钉在板上的部位,也是在免疫沉淀、免疫印迹和免疫组化中识别并结合二抗的部位。抗体可以被蛋白水解酶如木瓜蛋白酶水解成 2 个 F(ab) 段和一个 Fc 段,或者被胃蛋白酶从铰链区断开,水解成一个 F(ab)2 段和一个 Fc 段。IgG 抗体片段有时是非常有用的,由于缺少 Fc 段,F(ab) 段即不会和抗原发生沉淀,也不会在活体研究中被免疫细胞捕获。因为分子片段较小,且缺乏交联功能(由于 Fc 段的缺失),Fab 段通常用于功能性研究中的放射性标记,Fc 段则主要用做组化染色中的阻断剂。 抗体同型:

相关文档
最新文档