量子通信

量子通信 锁定

量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。



所谓量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式,是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。
光量子通信主要基于量子纠缠态的理论,使用量子隐形传态(传输)的方式实现信息传递。根据实验验证,具有纠缠态的两个粒子无论相距多远,只要一个发生变化,另外一个也会瞬间发生变化,利用这个特性实现光量子通信的过程如下:事先构建一对具有纠缠态的粒子,将两个粒子分别放在通信双方,将具有未知量子态的粒子与发送方的粒子进行联合测量(一种操作),则接收方的粒子瞬间发生坍塌(变化),坍塌(变化)为某种状态,这个状态与发送方的粒子坍塌(变化)后的状态是对称的,然后将联合测量的信息通过经典信道传送给接收方,接收放根据接收到的信息对坍塌的粒子进行幺正变换(相当于逆转变换),即可得到与发送方完全相同的未知量子态。
量子纠缠态理论
量子纠缠态理论
经典通信较光量子通信相比,其安全性和高效性都无法与之相提并论。安全性-量子通信绝不会“泄密”,其一体现在量子加密的密钥是随机的,即使被窃取者截获,也无法得到正确的密钥,因此无法破解信息;其二,分别在通信双方手中具有纠缠态的2个粒子,其中一个粒子的量子态发生变化,另外一方的量子态就会随之立刻变化,并且根据量子理论,宏观的任何观察和干扰,都会立刻改变量子态,引起其坍塌,因此窃取者由于干扰而得到的信息已经破坏,并非原有信息。高效,被传输的未知量子态在被测量之前会处于纠缠态,即同时代表多个状态,例如一个量子态可以同时表示0和1两个数字, 7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。
这里进一步解释一下量子纠缠。量子纠缠可以用“薛定谔猫”来帮助理解:当把一只猫放到一个放有毒物的盒子中,然后将盒子盖上,过了一会问这个猫现在是死了

,还是活着呢?量子物理学的答案是:它既是死的也是活的。有人会说,打开盒子看一下不就知道了,是的,打开盒子猫是死是活确实就会知道,但是按量子物理的解释:这种死或者活着的状态是人为观察的结果,也就是人的宏观干扰使得猫变成了死的或者活的了,并不是盒子盖着时的真实状态,同样,微观粒子在不被“干扰”之前就一直处于“死”和“活”两种状态的叠加,也可以说是它既是“0”也是“1”。
薛定谔猫
薛定谔猫
量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的“幽灵”——量子纠缠的实证说起。
由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。
1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。 从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。 量子纠缠证实了爱因斯坦的幽灵——超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。
在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(Quantum Teleportation)的概念。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)” ——量子纠缠效益开始真正发挥其真正的威力。
1993年,在贝内特提出量子通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。
1997年在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲

地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。
经过二十多年的发展,量子通信这门学科已逐步从理论走向实验,并向实用化发展,主要涉及的领域包括:量子密码通信、量子远程传态和量子密集编码等。[1]


量子通信系统,按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。
1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未省量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原地。其基本思想是:将原物的信息分成经典信息与量子信息两部分,它们分别经由经典通道与量子通道传送给接收者。经典信息是发送者对原物质进行某一种测量而获得的,量子信息是发送者在测量里未提取的其余信息;接收者在获得这两种信息之后,就可以制备出原物量子态完全复制品。这个过程中传送的仅仅是原物质的量子态,而不是原物本身。发送者甚至可以对这一个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。
在这个方案中,纠缠态的非定域性起着至关重要的作用。量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。在量子力学中能够以这样的方式制备两个粒子态,在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有极其重要意义,而且能用量子态作为信息载体,通过量子态的传送实现大容量信息的传输,实现原则上不可破译的量子保密通信。
1997年,在奥地利留学的中国青年学者潘建伟和荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上第一次在实验上成功地将一个量子态从甲地的光子传送到
乙地的光子上。实验中传输的只是表达量子信息的“状态”,作

为信息载体的光子本身并没有被传输。迩来,潘建伟及其合作者在如何提纯高品质的量子纠缠态的研究中又取得了新突破。为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态。但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差。因此,如何提纯高品质的量子纠缠态是此刻量子通信研究中的重要课题。
国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的。后来潘建伟等人发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,此刻原则上解决了时下在远距离量子通信中的根本问题。这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”。




量子通信具有传统通信方式所不具备的绝对安全特性,不但在国家安全、金融等信息安全领域有着重大的应用价值和前景,而且逐渐走进人们的日常生活。
为了让量子通信从理论走到现实,从上世纪90年代开始,国内外科学家做了大量的研究工作。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会和国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个,日本邮政省把量子通信作为21世纪的战略项目。我国从上世纪80年代开始从事量子光学领域的研究,近几年来,中国科学技术大学的量子研究小组在量子通信方面取得了突出的成绩。
2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下量子通信的安全速率随距离增加而严重下降的问题。
2006年夏,我国中国科学技术大学教授潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学—维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的诱骗态量子密钥分发实验,由此打开了量子通信走向应用的大门。
2008年底,潘建伟的科研团队成功研制了基于诱骗态的光纤量子通信原型系统,在合肥成功组建了世界上首个3节点链状光量子电话网,成为国际上报道的绝对安全的实用化量子通信网络实验研究的两个团队之一(另一小组为欧洲联合实验团队)。
2009年9月,潘建伟的科研团队正是在3节点链状光量子电话网的基础上,建成了世界上首个全通型量子通信网络,首次实现了实时语音量子保密通信。这一成果在同类产品中位居国际先进水平,标志着中国在城域量子网络关键技术方面

已经达到了产业化要求。
全通型量子通信网络是一个5节点的星型量子通信网络,克服了量子信号在商用光纤上传输的不稳定性是量子保密通信技术实用化的主要技术障碍,首次实现了两两用户间同时进行通信,互不影响。该网络用户间的距离可达20公里,可以覆盖一个中型城市;容纳了互联互通和可信中继两种重要的量子通信组网方式,并实现了上级用户对下级用户的通信授权管理。
该成果首次全面展示和检验了量子通信系统组网和扩展的能力,标志着大规模可扩展网络量子通信技术的成熟,将量子通信实用化和产业化进程又向前推进了一大步。据称,潘建伟团队将与中国电子科技集团公司第38研究所等机构合作,在合肥市及周边地区启动建设一个40节点量子通信网络示范工程,为量子通信的大规模应用积累工程经验。[1]



据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破标明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果即将发表在《新物理学杂志》(New Journal of Physics)上。
意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。此消息将会大受全球通信公司和银行的欢迎。
量子通信
量子通信
2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通信研究中通过创下了通信距离达144公里的最远纪录。而要达到更远的距离很难,因为大气容易干扰光子脆弱的量子状态。而巴伯利小组想出了解决办法,通过人造卫星来发送光子。由于大气随高度的增加而日趋稀薄,在卫星上旅行数千公里只相当于在地面上旅行8公里。
为证实地面能观测到从轨道卫星上发送回来的光子,此研究小组从意大利马泰拉(Matera)激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。
参与此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。宰林格正在打造一个人造卫星,用于产生

纠缠光子,接收信息并对信息编码,之后再将编码的信息反射回来,以建立全球量子通信网络。
量子通信是利用了光子等粒子的量子纠缠原理。量子信息学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。
量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与此刻成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个。日本邮政省把量子通信作为21世纪的战略项目。



据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破标明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果即将发表在《新物理学杂志》(New Journal of Physics)上。
意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。此消息将会大受全球通信公司和银行的欢迎。
量子通信
量子通信
2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通信研究中通过创下了通信距离达144公里的最远纪录。而要达到更远的距离很难,因为大气容易干扰光子脆弱的量子状态。而巴伯利小组想出了解决办法,通过人造卫星来发送光子。由于大气随高度的增加而日趋稀薄,在卫星上旅行数千公里只相当于在地面上旅行8公里。
为证实地面能观测到从轨道卫星上发送回来的光子,此研究小组从意大利马泰拉(Matera)激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。
参与

此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。宰林格正在打造一个人造卫星,用于产生纠缠光子,接收信息并对信息编码,之后再将编码的信息反射回来,以建立全球量子通信网络。
量子通信是利用了光子等粒子的量子纠缠原理。量子信息学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。
量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与此刻成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个。日本邮政省把量子通信作为21世纪的战略项目。





据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破标明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果即将发表在《新物理学杂志》(New Journal of Physics)上。
意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。此消息将会大受全球通信公司和银行的欢迎。
量子通信
量子通信
2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通信研究中通过创下了通信距离达144公里的最远纪录。而要达到更远的距离很难,因为大气容易干扰光子脆弱的量子状态。而巴伯利小组想出了解决办法,通过人造卫星来发送光子。由于大气随高度的增加而日趋稀薄,在卫星上旅行数千公里只相当于在地面上旅行8公里。
为证实地面能观测到从轨道卫星上发送回来的光子,此研究小组从意大利马泰拉(Matera)

激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。
参与此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。宰林格正在打造一个人造卫星,用于产生纠缠光子,接收信息并对信息编码,之后再将编码的信息反射回来,以建立全球量子通信网络。
量子通信是利用了光子等粒子的量子纠缠原理。量子信息学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。
量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与此刻成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个。日本邮政省把量子通信作为21世纪的战略项目。



从技术本质上而言
1G是模拟电路系统 1G基于FDMA
2G以后都是是数字电路系统 2G基于CDMA&TDMA
3G 基于WCDMA
4G 基于OFDMA
相对应的 各种物理层信号处理技术和控制链路 网络层等相关技术也有演进变化
从用户角度
1G 就是大哥大 只能在室外接电话
2G 就是早期的moto手机 可以发短信可以打电话 也是后来的小灵通 可惜在高速运行的汽车上喂喂草 更是之后的索爱手机 可以下载彩信彩铃
3G 就是后来的苹果 三星 可以发短信打电话包括在汽车上知乎刷屏
4G 就是不远的将来 小米可以在任何地方让你看电影
5G 就是在下一个10年后 XX手机火车上也可以让你跟家人视频 是不是很感人。。。
作者:chisy Liu
链接:https://www.360docs.net/doc/583138502.html,/question/24845430/answer/35847475
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。




2G/3G/4G网络的区别

随着移动、联通、电信三大网络商均获得4G牌照,标示着我国4G网络的来临。近日有媒体称“中国移动和中国联通将停止2G新建网络的投资”。对此,中国移动回应称:中国移动执行的是“2G、3G、WLAN、4G”四网协同策略

,且今年已经明确要对2G网络进行投资。中国联通回应称:联通的网络投资确实主要放在3G/4G网络上,但短期内并不可能完全停止2G网络的新建。 那么2G、3G、4G网络到底有什么区别呢?或许这是很多用户疑惑的一个问题。 什么是2G、3G、4G网络 2G网络是指第二代无线蜂窝电话通讯协议,是以无线通讯数字化为代表,能够进行窄带数据通讯。常见2G无线通讯协议有GSM频分多址(GPRS和EDGE和CDMA 1X码分多址两种,传输速度很慢。 3G网络是第三代无线蜂窝电话通讯协议,主要是在2G的基础上发展了高带宽的数据通信,并提高了语音通话安全性。3G一般的数据通信带宽都在500Kb/s以上。目前3G常用的有3种标准:WCDMA、CDMA2000、TD-SCDMA,传速速度相对较快,可以很好的满足手机上网等需求,不过播放高清视频较为吃力。 4G网络是指第四代无线蜂窝电话通讯协议,是集3G与WLAN于一体并能够传输高质量视频图像以及图像传输质量与高清晰度电视不相上下的技术产品。4G系统能够以100Mbps的速度下载,比拨号上网快2000倍,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。 对于用户而言,2G、3G、4G网络最大的区别在于传速速度不同。












相关文档
最新文档