真空中的静电场归纳,

真空中的静电场归纳,
真空中的静电场归纳,

普通物理学

程守洙第六版

静止电荷电场总结

真空中的静电场

教学目的要求

1. 理解点电荷概念,掌握库仑定律、电场强度和场强叠加原理;

2. 理解电场线与电通量,掌握静电场的高斯定理及其应用;

3. 理解静电场的保守性、环路定理与电势能;

4. 掌握电势和电势叠加原理;

5. 了解电场强度和电势梯度的关系.

本章内容提要

⒈两个基本定律

① 电荷守恒定律 在一个孤立系统内,无论进行怎样的物理过程,系统内电荷量的代数和总是保持不变,这个规律称为电荷守恒定律.它是物理学中普遍遵守的规律之一.

② 真空中的库仑定律 真空中两个静止的点电荷之间的相互作用力的大小与这两个电荷所带电荷量q l 和q 2的乘积成正比,与它们之间距离r 的平方成反比.作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸.即

121212

122201212012

4π4πr

q q q q r r r εε=

?=r F e ⒉两个重要物理量

① 电场强度 单位试验电荷在电场中任一场点处所受的力就是该点的电场强度.即

q F E =

② 电势 电场中某点的电势等于把单位正电荷自该点移到“电势零点”过程中电场力做的功.若取“无限远”处为“电势零点”,则

d p p p

W V q ∞

=

=??E l

电场强度和电势都是描述电场中各点性质的物理量,二者的积分关系为

d p p

V ∞

=??E l

微分关系是

grad V =V =--?E

⒊两个重要定理

① 高斯定理 在真空中的静电场内,通过任意闭合曲面的电场强度通量等于该闭合曲面所包围的电荷电荷量的代数和的1/ε 0倍.即

1

d i S

S q ε?=

∑?

E S

② 静电场的环路定理 在静电场中,电场强度E 的环流恒为零.即

0d =??l E

高斯定理和静电场的环路定理都是描写静电场性质的重要定理,前者说明静电场是有源场,而后者说明静电场是无旋场,即静电场是有源无旋场.

⒋三个叠加原理

① 静电力叠加原理 作用在某一点电荷上的力为其它点电荷单独存在时对该点电荷静电力的矢量和.即

1

n

i i ==∑F F

② 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加,即

1

n

i i==∑E E

③ 电势叠加原理 电场中某点的电势等于各电荷单独在该点产生的电势的叠加,即

1

n

p Pi i V V ==∑

⒌几个基本概念

① 电场 电荷周围存在的一种特殊物质,称为电场.它与分子、原子等组成的实物一样,具有质量、能量、动量和角动量,它的特殊性在于能够叠加.相对于观察者静止的电荷在其周围所激发的电场称为静电场.静电场对外的表现主要有:对处于电场中的其他带电体有作用力;在电场中移动其他带电体时,电场力要对它做功.

② 电场线 为形象地反映电场而人为地在电场中描绘的曲线.其画法规定:电场线上某点的

切线方向和该点场强方向一致;通过垂直于E 的单位面积的电场线的条数等于该点E 的大小.它的性质为:电场线起自正电荷(或无限远处),止于负电荷(或无限远处),电场线有头有尾,不是闭合曲线;两条电场线不能相交.

③ 电通量 通过电场中任一给定面的电场线的条数,称为该面的电通量.即

???==S

e e ΦΦS E d d

④ 电势能 电荷在静电场中的一定位置所具有的势能,称为电势能.电场力的功就是电势能改变的量度.若取无限远处为势能零点,则q 0在电场中某点a 的电势能为

0d a a

W q ∞

=??E l

即q 0自a 点移到 “势能零点”的过程中电场力做的功.电势能应属于q 0和产生电场的源电荷系统共有.

⑤ 电势差 在静电场中,任意两点a 和b 的电势之差称为电势差(电压),即

d b

ab a b a

U V V =-=??E l

即把单位正电荷自a 点移动到b 点的过程中电场力做的功.由此可以计算电场力做的功

)(b a ab ab V V q qU A -==

⑥ 等势面 电场中电势相等的点所组成的曲面叫等势面.画法规定:电场中任意两个相邻的等势面之间的电势差都相等.性质:在同一等势面上的任意两点间移动电荷,电场力不做功;等势面一定跟电场线垂直,即跟场强的方向垂直;电场线总是由电势较高的等势面指向电势较低的等势面;等势面密集处的电场强度大,等势面稀疏处电场强度小.

⑦ 电势梯度 电场中某点的电势梯度,在方向上与该点处电势增加率最大的方向相同,在量值上等于沿该方向上的电势增加率.即

d grad d n V

V V n

=

=?e ⒍场强和电势的计算

① 由点电荷公式

2014πq r ε=

??r E e , 04πp q V r

ε= ② 由叠加原理

1

n

i i==∑E E , 1

n

p Pi i V V ==∑

3104πn

i i

i i q r ε==∑E r , 104πn

i

p i i q V r ε==∑ 2

01d 4πr q r ε=?E e , 0d 4πp q V r ε=? ③ 由二者关系

grad V =V =--?E , d p p

V ∞

=??E l

④ 由高斯定理

1

d i S

S q ε?=

∑?

E S , 0d p p p

V =??

E l

对于具有一定对称性分布的带电体,通常先利用高斯定理求E 而后求V p ;对于由多个电荷或带电体组成的系统,则常用叠加原理求解.

思考题答题要点

1 怎样认识电荷的量子化和宏观带电体电荷量的连续分布?

答:常见的宏观带电体所带的电荷远大于基本电荷量,在一般灵敏度的电学测试仪器中,电荷的量子性是显示不出来的.因此在分析带电情况时,可以认为电荷是连续分布的,这正像人们看到流水时,认为它是连续的,而并不感觉到水是由一个个分子、原子等微观粒子组成的一样.

2 两个完全相同的均匀带电小球,分别带电荷量q 1 = 2 C 正电荷,q 2 = 4 C 负电荷,在真空中相距为r 且静止,相互作用的静电力为F .

⑴ 今将q 1、q 2、r 都加倍,相互作用力如何改变? ⑵ 只改变两电荷电性,相互作用力如何改变? ⑶ 只将r 增大4倍,相互作用力如何改变?

⑷ 将两个小球接触一下后,仍放回原处,相互作用力又如何改变? ⑸ 接上题,为使接触后,静电力大小不变应如何放置两球? 答:(1)作用力不变; (2)作用力不变;

(3)作用力变为 F /25,方向不变;

(4)作用力大小变为 F /8,方向由原来的吸引变为推斥(接触后电荷量先中和,后多余电荷量等分);

(5)将两小球在真空中的间距缩小为4/2r 静止放置.

3 若通过一闭合曲面的E 通量为零,则此闭合曲面上的E 一定是 ⑴ 为零,也可能不为零; ⑵ 处处为零.

答:⑴,因为通量除了和电场强度有关,还和电场与曲面的夹角有关. 4 比较场与实物的同和异?

答:同:都是物质存在的形式,客观存在并能为人所认识;存在的形式都具有多样性;其本性都是波粒二象性,都有质量、能量、动量、角动量、波长和频率等;进行的物理过程,也遵从质量守恒、能量守恒、动量守恒和角动量守恒等普遍规律;都不能创生,不能消灭,只能从一种形式转变为另一种形式.

异:实物由分子或原子组成,具有不可入性,即两个或多个实物不能同时占据同一个空间;而场所占据的空间能为其他场同时占有,且互不影响;实物的质量密度较大(103 kg/m 3),场的质量密度很小(10-23 kg/m 3);实物不能达到光速,场一般以光速传播,实物受力可产生加速度,场不能被加速;实物可作参考系,场不能当参考系.

5 能否单独用电场强度来描述电场的性质?为什么要引入电势?

答:可以只用电场强度来描述电场性质,但是引入电势后,既可从不同角度加深对电场的认识,也可简化运算,因为电势V 是标量,一般情况下计算V 比计算E 方便,求得V 后根据

grad V V =-=-?E ,即可得电场强度E 了.

6 电势零点的选择是完全任意的吗?

答:由定义来看,电势只具有相对值,从此意义上说,电势零点选择是完全可以任意的.但在理论研究中,往往要采用一些抽象模型,如无限大带电体、点电荷等,在这种情况下,电势零点就有一定的限制,即必须使得电场中各点的电势具有确定的值,这才有物理意义.例如,无限大均匀带点平面,由于电荷分布在无限范围,就不能选无限远处的电势为零,通常选带电平面本身的电势为零.又如点电荷,因为电荷集中在一个点上,因此不能选点电荷本身作为电势零点,而通常选无限远处为电势零点.无限长带电直线的电势零点,既不能选在其本身上,也不能选无限远处,只能选空间中的其它任意点.实际问题中常以大地或电器的金属外壳为电势零点.另外电势零点选择应尽量使计算简单.

7 电势与场强的关系式有积分形式和微分形式.计算时在怎样的情况下使用较方便. 答:电势与场强的关系有

微分形式:grad V V =-=-?E ;积分形式:?

?=a

a V l E d

当场强分布已知或带电系统的电荷分布具有一定对称性,因场强较易由高斯定理求出,用

积分形式计算电势方便.

当带电系统的电荷分布已知,电荷分布的对称性又不明显时,易用电势叠加法,即

0d d 4πq

V V r

ε==??

计算电势,再用微分式计算场强更为方便.

8 假如电场力做功与路径有关,定义电势的公式?

?=a

a V l E d 还有没有意义?从原则上

讲,这时还能不能引入电势的概念?

答:假如电场力做功与路径有关,则积分?

?=

a

a V l E d 在未指明积分路径以前就没有意义

——因为积分与路径有关,路径不同,积分的结果也不同.相同的初位置,可以有多种不同的积分值,即?

?=

a

a V l E d 没有确定的意义,因而不能根据它引入电势的概念.

9 怎样判断电势能、电势的正负与高低?

答:判断正负,必须首先选定参考零点.将给定电荷(可正可负)移至零点,根据电场力做

功的正负,决定该电荷在给定点电势能的正负;将单位正电荷(必须是正)从给定点移至零点,电场力做功的正负,决定给定点电势的正负.

比较高低,与零点选择无关.将给定电荷(可正可负)从A 点移至B 点,若电场力作正功,则W A >W B ,电场力作负功,W A

V A >V B ;电场力作负功,V A

10 库仑定律与高斯定理、静电场的环路定理有何关系?

答:库仑定律是直接从实验中总结出来的,是整个静电学理论的实验基础.由于它只是从电荷相互作用的角度研究静电现象,局限性较大,只适用于相对静止的点电荷的场.高斯定理和环路定理是库仑定律的推论,由于它们是用场的观点,从两个不同的侧面,对静电场的基本性质给出了完整的描述,适用于一切场源电荷激发的场.

当然,从另外一个角度,也可以先从实验中总结出高斯定理和环路定理,再由它们导出库仑定律.比如,可根据实验空腔导体内不带电的实验,得到高斯定理.再把高斯定理用于中心置一点电荷的闭合球面,即可导出库仑定律.因此高斯定理和环路定理又叫做静电场的第一、第二定律,这时库仑定律就只处于一种推论的地位.

11 如何判定电场中某点的电场强度的方向?试说明电场中某点的电场强度与试探电荷的关系.

答:引入正电荷0q 作为试探电荷,由电场强度的定义0

q F

E =

可知,电场中某点电场强度的方向就是正电荷0q 在该点所受的电场力的方向.从理论上讲,电场中任意点的电场强度与试探电荷0q 无关,然而实际过程中,试探电荷0q 必须是点电荷,而且其所带电荷量也必须足够小,这样做是为避免将0q 引入电场过程中对原有电场构成影响. 12 根据点电荷的电场强度公式r r q

e E 2

04πε=

,当所考察的场点距点电荷的距离0

→r 时,场强∞→E ,这是没有物理意义的,对于这个问题应如何解释?

答:任何带电体都有形状和大小,点电荷只是在某些情形下略去带电体的形状和大小、而将其看作一个点状的近似——只有当带电体自身的线度远小于考察距离时,才可将其视为点电荷.在本题的题设中,随着所考察场点距带电体的距离0→r ,带电体的形状与大小已不可略去,这样一来,也就不再能把被考察带电体继续作为点电荷处理,那么点电荷的电场强度公式

r

r

q

e E 204πε=

显然也就不再适用了. 13 一点电荷放在球形高斯面的球心处,试讨论下列情形下电通量的变化情况: (1)电荷离开球心,但仍在球内;

(2)球面内再放一个电荷; (3)球面外再放一个电荷. 答:由真空中的高斯定理

1

d i S

S q ε?=

∑?

E S 可以判断得知,在(1)

、(3)两种情形中,

电通量不会发生变化,而情形(2)中电通量会发生变化.

14 在电场中,电场强度为零的点,电势是否一定为零?电势为零的地方,电场强度是否一定为零?试举例说明.

答:电场强度为零的点,电势不一定为零;电势为零的地方,电场强度也未必为零.例如,电荷均匀分布于表面的带电球,其内部的电场强度为零,然而电势等于其表面电势,并不为零;若选择球外一有限距离处的任意点P 为电势零点,则该点处电势为零,但其电场并不为零.

静电场中的导体和电介质

教学目的要求

1. 理解导体的静电平衡条件与静电平衡时导体上的电荷分布规律,了解静电屏蔽的原理及应用;

2. 了解电介质对电场的影响和电介质的极化现象;

3. 掌握有电介质时的高斯定理及其应用、理解有电介质时的环路定理;

4. 掌握电容器电容的计算与电容器的联接;

5. 理解静电场的能量.

本章内容提要

⒈两个重要物理图像

① 静电平衡 在金属导体中,自由电子没有定向运动的状态,称为静电平衡. 静电平衡状态 导体内部和表面都没有电荷的宏观移动.

静电平衡条件 导体内部的电场强度为零,导体表面的电场强度与表面垂直.

静电平衡的特点 整个导体是等势体,导体的表面是等势面;导体表面附近任一点的电场强度的大小与该处导体表面上的电荷面密度成正比.

② 电介质的极化 电介质在外电场作用下,其表面出现净电荷的现象称为电介质的极化. 电极化强度P : 单位体积内分子电矩的矢量和,即 V

V ?=∑→?分

p

P 0

lim

电极化强度和场强的关系:E P e χε0= (各向同性电介质)

电位移矢量D :P E D +=0ε,对于各向同性电介质有E E D εεε==r 0 电介质存在时的电场:E E E '+=0

电极化率χe ,相对介电常数ε r 和绝对介电常数的关系 ε = ε 0 ε r = ε 0(1+ χe )

⒉两个重要定理

① 有电介质时的高斯定理 通过任意封闭曲面的电位移通量等于该封闭面所包围的自由电荷的代数和,即

0d q

S

=??S D

② 有电介质时的环路定理 在静电场中,电场强度E 的环流恒为零,即

0d =??l E

式中的场强E 为所有电荷(包括自由电荷和极化电荷)所产生的合场强.

⒊几个基本概念

① 静电感应 金属导体中的自由电子在外电场E 0的作用下,相对于晶格离子作定向运动,由于电子的定向运动,并在导体一侧面集结,使该侧面出现负电荷,而相对的另一侧面出现正电荷,这就是静电感应.

② 静电屏蔽 利用导体静电平衡的性质,使导体空腔内部空间不受腔外电荷和电场的影响,或者将导体空腔接地,使腔外空间免受腔内电荷和电场影响,这类操作都称为静电屏蔽.

③ 位移极化 由于无极分子的电极化是分子的正负电荷的中心在外电场的作用下发生相对位移的结果,所以这种电极化称为位移极化.

④ 取向极化 有极分子的电极化是分子电偶极子在外电场的作用下发生转向的结果,故这种电极化称为取向极化.

⑤ 电位移线 为了描述电位移D ,仿照电场线方法在有电介质的静电场中做电位移线,使线上每一点的切线方向和该点电位移D 的方向相同,并规定在垂直于电位移线的单位面积上通过的电位移线数目等于该点的电位移D 的量值. D 线发自正自由电荷止于负自由电荷.

⑥ 电容器 两个带有等值而异号电荷的导体所组成的带电系统称为电容器. 电容器的电容定义为电容器所带电荷量与其电压之比,即

B

A V V Q

C -=

它仅与两极板的尺寸、几何形状、周围介质及相对位置有关.

⒋三种主要的计算

① 场强与电势的计算:求场强时,用有电介质时的高斯定理∑?

=?0d q S

S D ,先求D ,

再用ε

D

E =

求出E ,可以不用考虑极化电荷,计算很方便,但只有当电场分布具有前面讲过的三种特殊对称性时,才能应用.求电势时,因为计算极化电荷不方便,所以求电势时一般不用叠加法,而常用电势的定义式d P P

V ∞

=

??

E l 来计算.

② 电容器电容的计算:一般情况下,先设电容器两极板所带电荷量为±Q ,确定两极板间的场强分布,然后由d B

AB A B A

U V V =-=

??

E l 求两极板间的电势差,最后利用电容器电容的定

义式计算;对于几种常见的电容器,可以直接利用其结果:平行板电容器S

C d

ε=

球形电容器4πA B B A

R R C R R ε=

-、圆柱形电容器2πln B A

l

C R R ε=;至于电容器串、并联的等值电容,有

+++=3

211

111C C C C (串联)和 +++=321C C C C (并联)

;个别情况下,也可利用电容器的储能公式计算.

③ 电场能量的计算:电容器的储能,可直接利用公式

222

1212CU QU C Q W e ===

电场中的能量 V W V e d 2

1

E D ?=?

其中,E D ?=2

1

e w 为电场能量密度,即电场单位体积中的能量.对于各向同性电介质,有

22

1

21E DE w e ε==

思考题答题要点

1 尖端放电的物理实质是什么?

答:尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去.

2 将一个带电+q 、半径为R B 的大导体球B ,移近一个半径为R A 而不带电的小导体球A ,如思考题2用图所示,试判断下列说法是否正确?并说明理由.

(1) B 球电势高于A 球;

(2) 以无限远为电势零点,A 球的电势:V A < 0.

答:(1) 正确.不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面.另外,定性画出电场线,如思考题2用图所示,在静电场的电场线方向上电势逐点降低,由图可知电场线自导体球B 指向导体球A ,故B 球电势高于A 球.

(2) 不正确.若以无穷远处为电势零点V ∞=0,如思考题2用图所示,可知A 球的电场线伸向无穷远处.所以,V A >0.

思考题2用图

3 怎样能使导体净电荷为零,而其电势不为零?

答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0

q而导体的电势V≠0.

4怎样理解静电平衡时导体内部各点的电场强度为零?

答:必须注意以下两点:

(1)这里的“点”是指导体内的宏观点,即无限小体积元.对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零;

(2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立.

5怎样理解导体表面附近的电场强度与表面上对应点的电荷面密度成正比?

答:注意不要误解为“导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的”.实际上这个场强是导体表面上全部电荷所贡献的合场强.如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献.

6为什么不能使一个物体无限制地带电?

答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷.当物体带电时,在其周围空间产生电场,其电场强度随物体带电荷量的增加而增大.带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿.在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电荷量减少.所以一个物体不能无限制地带电.如尖端放电现象.

7感应电荷的大小和分布怎样确定?

答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′.其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与Q异号的感应电荷q′.而一般情况下q′并不等于Q,q′的大小及其在导体上的分布情况由静电平衡条件决定,最终总是使得±q′与施感电荷Q在导体内任一点产生的合电场强度为零,只有在一些特殊情视下,q′的大小才会与Q相等.

8怎样理解导体壳外电荷对壳内的影响?

答:封闭导体壳不论接地与否,其内部的电场均不受壳外电荷的影响,对此不能产生误解,以为由于壳的存在,壳外电荷不在壳内产生电场.实际上,壳外电荷也要在壳内激发电场,只是由于这个场与壳外表面的感应电荷在壳内激发的场的合场强为零,才造成壳内电场不受壳外电荷影响这一结果.

9怎样理解导体壳内电荷对壳外的影响?

答:对一个不接地的中性导体壳,壳外无带电体,但壳外空间仍然可能有场,这个场是壳内电荷间接引起的.例如壳内有一正电荷q,则壳内、外壁的感应电荷将分别为-q和+q.外壁电荷将发出电场线,所以壳外空间有场.但是不要以为由于壳的存在,壳内电荷q不在壳外空间激

发场.实际上壳内电荷q 和内壁感应电荷-q 都要在壳外空间激发场,只不过其合场强为零,才使得壳外空间的场只是由外壁感应电荷+q 所决定.而且应当注意,无论壳内电荷分布如何,它和内壁感应电荷在壳外空间激发的合场强始终为零.壳外空间的场只与壳内电荷的总电荷量有关,而与它们的分布无关.

10 在静电场中的电介质和导体表现出有何不同的特征?

答:静电场中的导体的主要特征是表面有感应电荷,内部场强处处为零,表面为等势面,导体为等势体.而电介质的主要特征是在电场中被极化产生极化电荷,介质内部场强不为零,方向与外加电场方向一致,一般说介质表面不是等势面.

11 电介质的极化现象与导体的静电感应现象有什么区别?

答:导体的静电感应现象从微观上看,是金属中有大量自由电子,它们在电场的作用下可以在导体内作宏观移动,电子的移动使导体中的电荷重新分布,结果在导体表面出现感应电荷.感应电荷产生的电场与外电场的方向相反,因此随着感应电荷的堆积,导体中的合场强逐渐减小,达到静电平衡时,感应电荷产生的电场与外加电场相互抵消,导体中的合场强为零,导体中自由电子的宏观移动也停止.

电介质的极化现象从微观上看,分子中的电子与原子核的结合相当紧密,电子处于束缚状态.把电介质引入静电场时,电子与原子核之间,只能作一微观的相对位移,或者它们之间的连线稍微改变方向(有时两种情况都发生),结果在沿场强方向的两个表面出现极化电荷.极化电荷所产生的电场只是部分地抵消外加电场,达到稳定时,电介质内部的电场强度不为零.

12 怎样理解电势能与电场能?

答:电势能是带电体之间或带电体与电场之间的相互作用能,随电势能零点的选取而改变,其正负取决于相互作用性质.由于电势能在所求点A 处的值等于将电荷从无限远(电势能零点处)移至A 处外力反抗电场力做的功,外力做功的正负与电势能正负一致.也可由相互作用判断,如是排斥作用,则是正值,如是吸引作用,则是负值.电场能是电场物质所包含的固有能量,与势能零点的选取无关.电势能是电场能的一部分,也表示电场能随位置改变的变化.在某些情况,如电容器中,由于电场只存在于电容器内部,电容器储能

QU CU C Q W 2

1

212122===

它既是电场能,又是电势能.

13 怎样使导体有过剩的正(或负)电荷,而其电势为零?

答:将不带电的导体置于负电荷(或正电荷)的电场中,再将该导体接地,然后撤除接地线.则该导体有正电荷(或负电荷),并且电势为零.

14 怎样使导体有过剩的负电荷,而其电势为正?

答:将一带少量负电荷-q 的导体置于另一正电荷Q ( Q >> q )的电场中,由于Q >> q ,带负电荷的导体并未明显改变原电场,这时该导体有过剩的负电荷,而其电势为正.

15 电介质在外电场中极化后,两端出现等量异号电荷,若把它截成两半后分开,再撤去外电场,问这两个半截的电介质上是否带电?为什么?

答:不带电.因为从电介质极化的微观机制看有两类: ①非极性分子在外电场中沿电场方向产生感应电偶极矩;

②极性分子在外电场中其固有电偶极矩在该电场作用下沿着外电场方向取向.

其在外电场中极化的宏观效果是一样的,在电介质的表面上出现的电荷是束缚电荷,这种电荷不像导体中的自由电荷那样能用传导的方法引走.当电介质被裁成两段后撤去电场,极化的电介质又恢复原状,仍各保持中性.

16 一个孤立导体球带电荷量为q ,其表面附近的电场强度沿什么方向?当我们把另一带电体移近这个导体球时,球表面附近的电场强度将沿什么方向?表面上的电荷分布是否均匀?表面是否是等势体?电势值有无变化?球体内的电场强度有无变化?

答:孤立带电导体球的电荷在表面均匀分布,因此表面附近电场强度的方向与导体表面的法线方向平行,即沿球体的径向方向.然而,当把另一带电体移近导体球时,由于静电感应,导体球表面上的电荷不再均匀分布,不过电场强度的方向仍与导体表面垂直.

处于静电平衡状态的导体球,其表面是一个等势体,但其电势值相比原孤立导体球会有变化;不过此时球体内的电场与原孤立导体球体内的电场却是一样的,电场强度皆为0.

17 一个不带电的导体球的电容是多少?当平行板电容器的两极板上分别带上等值同号电荷时,与当平行板电容器的两极板上分别带上同号不等值的电荷时,其电容值是否相同?

答:电容是表述导体的一种电学性质,它与导体是否带电或带电多少无关,因此一个不带电的导体球的电容仍为04πR ε,R 为导体球半径.同理,当平行板电容器的两极板上分别带上等值同号电荷时,与平行板电容器的两极板上分别带上同号不等值的电荷时,其电容值是相同的.

18 一个带电的金属球壳里充满了均匀电介质,外面是真空,此球壳的电势是多少?若球壳内为真空,球壳外是无限大均匀电介质,这时球壳的电势为多少?

答:设金属球壳半径为R ,带电荷量为q ,均匀电介质的相对介电常数为r ε,则当该球壳里充满均匀电介质而外面为真空时,其电势为04πq R

ε;当该球壳内为真空而外面为无限大均匀

电介质时,其电势为

04πr q R

εε.

19 用电源对平行板电容器充电后即断开电源,然后将两极板移近,问在此过程中外力做正功还是做负功?电容器储能是增加还是减少?如果充电后不断开电源,情况又如何?

答:对平行板电容器充电后断开电源,然后将两极板移近,在此过程中外力做负功,电容器储能减少;如果充电后不断开电源,则该过程中外力做正功,电容器储能增加.

例题精选

1 一长为L ,电荷量为q 的均匀带电细棒,其中垂线上P 点置一点电荷q 0,P 点到细棒的距离为a ,求它们之间的库仑力.

解:将该带电细棒分成一系列的线段元,任取一距O 为x ,长为d x 的线段元,则其带电荷量d q =λd x (λ为电荷线密度),它与q 0的库仑力的大小为:

00222200d d d 4π()4π()

q q q x

F x a x a λεε=

=++

d F 的方向如习题1用图所示.

θcos d d ?=F F x

,220d d d sin 4π()y q x F F x a λθε=?=

+ 习题1用图 由于对称性, d F x 相互抵消, d F y 相互加强,故

/2

0223/2/20

d d 4π()L y L q a x F F x a λε-==+?

?22

L L

q a λ-

=

qq =

2 真空中一立方体形的高斯面,边长a = 0.1 m ,位于如习题2用图a 所示位置.已知

的电通量.

解:如习题2用图b 所示,通过x = a 处平面1的电场强度通量

Φ1 = -E 1 S 1= -b a 3

通过x = 2a 处平面2的电场强度通量

Φ2 = E 2 S 2 = 2b a 3

其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为

123321=+-=+=ba ba ΦΦΦ (N ·m 2/C)

3 如习题3用图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无限远处为电势零点,求空腔内任一点的电势.

解:由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为V . 在球层内取半径为r →r +d r 的薄球层,其电荷为2

d 4πd q r r =

该薄层电荷在球心处产生的电势为

00

d d d 4o q V r r r ρ

εε=

故整个带电球层在球心处产生的电势为

()2

1

2

2210

d d 2R o o R V V r r R R ρ

ρεε==

=

-??

因为空腔内为等势区,所以空腔内任一点的电势V 为

()2

2210

2o V V R R ρε==

- 本题根据电势定义??=l E d V 计算亦可。

4.两个带等量异号电荷的均匀带电同心球面,半径分别为R 1=0.03 m 和R 2=0.10 m .已知两者的电势差为450 V ,求内球面上所带的电荷.

解:设内球上所带电荷为Q ,则两球间的电场强度大小为

2

04r

Q

E επ=

(R 1 < r < R 2) 故两球的电势差为 ?

?

π=

=2

1

2

1

20

12d 4d R R R R r r Q r E U ε???? ??-π=

21

114R R Q ε

∴ ()

012129

2140.030.10450

C 9100.100.03R R U Q R R επ??=

=-??-≈2.14×10-9 C 5 如习题5用图a 所示,半径为R 1和R 2的两个同心球面均匀带电,电荷量分别为Q 1和

Q 2.

⑴ 试求区域1、2、3中的电势;

⑵ 讨论Q 1 = - Q 2和Q 2 = - Q 1R 2/R 1两种情况下各区域中的电势,并画出V -r 曲线.

习题3用图

解:(1)利用高斯定理可得 ()110

r R =

()1

212204πr

Q R r R r

ε=

<

322

04πr Q Q r R r

ε+=

>E e

相应各区域的电势分布为

()1212

332200d d 4π4πr

r Q Q Q Q V r r R r r εε∞

++=?==≥??

E l

12

2002

4π4πQ Q V r R εε=+ ()21R r R <<

()2

1

2112132310

121

d d d 4πR R R R r Q Q V r R R R ε∞

??=

?+?+?=

+≤ ???

???E l E l E l (2)当Q 2 = -Q 1时,V 3 = 0;1202114πQ V r R ε??=- ???;11

012114πQ V R R ε??

=- ???

当Q 2 = -12R R

Q 1时,()1213014πQ R R V R r

ε-=-;1201114πQ V r R ε??=- ???;01=V

在此两种情况下的V -r 曲线如习题5用图b 所示.

6在一个平面上各点的电势满足下式:

2

1

)()(2222y x b

y x ax V +++=

x 和y 为这点的直角坐标,a 和b 为常数.求任一点电场强度的E x 和E y 两个分量.

解:根据)+(j y

V i x V E

????-=可知 1

2

2

22

2

222

d ()()

d ()x V a x y bx x y E x x y -++=-=

+

习题5用图

a)

b)

1

22

2222

d [2()]

d ()y V y ax b x y E y x y ++=-=

+ 7 如习题7用图所示,一厚为a 的无限大带电平板,电荷体密度ρ = kx (0≤ x ≤ a ),

k 为一正值常数.求:

⑴ 板外两侧任一点 M 1、M 2的电场强度大小; ⑵ 板内任一点M 的电场强度; ⑶ 场强最小的点在何处.

解:(1)在x 处取厚为d x 的平板,其带电荷量

S x q ?=d d ρ,电荷面密度为x S

q

d d ρσ==

. 则

02d εσ=E 02d ερx =02d εx kx =?=?a x kx E 00

d 2ε02

4εka =

(2)板内任一点M 左侧产生的场强方向沿x 轴正向,且

x kx E a

d 200

1?=ε024εkx =

M 右侧产生的场强方向沿x 轴负向,且

x kx E a

x d 20

2?=ε()0224εx a k -= 故 ()

0220244εεx a k kx E --=()

220

24a x k -=ε 8一根长为L 的细棒,弯成半圆形,其上均匀带电,电荷线密度为λ+,试求在圆心O 点的电势.

解:半圆形导线半径πL

R =

,由电势叠加原理计算O 点电势, 0d d 4πq

V R

ε= , l q d d λ=

故 0

00

0444d d ελ

πελπελ===

=?

?R L R l V V L

9如习题9用图所示,在内、外半径分别为R 1和R 2的带电球壳内,各点的体电荷密度均为ρ,求距球心O 为r 的P 点的电势.

解:∵

d s

q ε?=

∑?

E S ,则 a

M 1

M 2

M O

x

习题7用图

习题9用图

r < R 1:∵

0q =∑ ,∴ 1

0=E ;

R 1

:∵ ()3

31

4

π3

q r R ρ=-∑,∴ 312

203R E

r r ρε?

?=- ???

; r ﹥R 2:∵()33

214π3q R R ρ=-∑, ∴ 3

32132

03R R E r

ρε-=. ∴ 1

2

1

2

1

2

3

d d d d R R p p

r

R R V E r E r E r ∞

=

?=++????E l

2

1

2

33

312

122

000d d 33R R R

R R R r r r r r ρρεε∞??-=+-+ ????? ()332222

1121120

22132

R R R R R R R R ρ

ε??=

-+-+-???? ()2

2210

2R R ρε=

- 10半径为R 的均匀带电球面置于真空中,其面电荷密度为σ,求 (1)球面内、外的电场强度;

(2)球面内、外的电势. 解:(1)∵ e 0

d s

q Φε=

?=

∑?

E S

当R r <时,因为球面内无电荷,∑=0q ,所以 0=球内E ;

当R r >时,因为 2

4πq R σ=?∑,故有 2

3

0R r

σε=外E r . (2)∵ d P P

V ∞

=

??

E l

当r

d 0d d =

R

r r R R R

V r r r σσεε∞

=?=?+???内E r ; 当r>R 时, 2

2

200

d d r r R R V r r r σσεε∞∞=?==

??外外E r . 11如习题11用图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: ⑴ 金属球A 内及其表面有电荷分布吗?

⑵ 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)

解:(1) 静电平衡后,金属球A 内无电荷,其表面有

习题11用图

q B

正、负电荷分布,但净电荷为零.

(2) 金属球为等势体,设金属球表面电荷面密度为,则

00d 14π4πA

A B

P O S q q S V V R a b

σεε???

==

++ ???

?

由(1)已知 0d =??

A

S S σ

故 014πA B P q q V a b ε??

=+ ??

?

例’一半径为R 的导体球原来不带电,在球外距球心为d 处放一点电荷,求球电势。若将球接地,求其上的感应电荷。

【解】由于导体球是一个等势体,故只要求得球内任一点的电势,即为球的电势。此题中球心的电势可以用电势迭加原理求出,它等于点电荷在球心提供的电势与导体球在球心提供的电势的代数和。

若导体球上的总电量为Q ,由于Q 只分布在球表面,故它在球心提供的电势为球面上各微元电荷在球心提供的微元电势的积分:

?

=

Q

R

Q R

dq 0044πεπε。

因球上原来不带电,即总电量0=Q ,故导体球在球心提供的电势为零,只有点电荷在球心提供电势:

d

q V 04πε=

若将导体球接地,则导体球总电量Q 不再为零,而

球心处电势应为零,即有:

04400=+

=

R

Q d

q V πεπε

可解得:

q d

R

Q -

=

12半径为R 1的导体球,被一与其同心的导体球壳包围着,其内外半径分别为R 2、R 3 ,如习题12用图所示,使内球带电q 、球壳带电Q ,试求:

⑴ 电势分布的表示式;

⑵ 用导线连接球和球壳后的电势分布; ⑶ 外壳接地后的电势分布.

解:(1)根据静电平衡条件,可知球壳内表面感应电荷为–q ,且均匀分布,而导体球所带电荷量q 也均匀分布在导体球表面;根据电荷守恒可知,导体球壳外表面均匀分布电荷的总电荷量为(Q + q ).因此,静电平衡后空间电势分布可

视为三个均匀带电球面的电势叠加.

已知均匀带电球面的电势为

00()4π()

4πq

r R R

V q

r R r εε?≤?

?=?

?≥??

由此可得,1R r ≤时, 10

1231

4πq q q Q V R R R ε??

+=

-+ ???

21R r R ≤≤时, 202314πq q q Q V r R R ε??

+=-+ ???

32R r R ≤≤时, 3034πq Q

V R ε+=

3R r ≥时, 404πq Q

V r

ε+=

(2)导体连接后,导体球带电荷量q 与球壳内表面感应电荷–q 中和,导体球壳与导体球

等电势,电荷分布在导体球壳的外表面,电荷量为Q q +,由此可得

3R r ≤时, 12303

4πq Q

V V V R ε+'''===

3R r ≥时, 404πq Q

V r

ε+'=

(3)外壳接地后,外表面电荷q + Q 被中和,则为两均匀带电球面电势叠加,故

1R r ≤时, 101214πq q V r R R ε??

''=

- ???

21R r R ≤≤时, 20214πq q V r r R ε??''=- ???

2R r ≥时, 340V V ''''==

习题12用图

大学物理静电场知识点总结

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 012 14q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑? n i i 3 3i 1 0i q 11 dq E r E r 44r r (3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定

理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑ ?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E

2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即

大学物理第6章真空中的静电场课后习题及答案

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷 q +的右侧,它受到的合力才可能为0,所以 2 00 200) 1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ 式中:θ为dq 到场点的连线与x 轴负向的夹角。 ?+= 2 32 20)(4dq R x x E x πε 232210)(24R x R x +?=πλπε2 32201)(2R x x R +=ελ 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 dq E dF x =dx R x x R 2 322021)(2+= ελλ 方向沿x 轴正方向。 直线段受到的电场力大小为 ?=dF F dx R x x R l ?+= 02 3220 21)(ελλ2 R O λ1 λ2 l x y z

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

静电场知识点总结

第一章静电场知识点概括 【考点1】电场的力的性质 1.库仑定律:■ (1)公式:F =kQ q ..(2)适用条件:真空中的点电荷。 2. F E=— q用比值法定义电场强度E,与试探电荷q无关;适用于一切电场 Q E=V r 适用于点电荷 U E =一 d 适用于匀强电场 3. (1)意义:形象直观的描述电场的一种工具 (2)定义:如果在电场中画出一些曲线,使曲线上每一点的切线方向跟该点的场强方向一致,这样的曲线就叫做电场线。 说明:a.电场线不是真实存在的曲线。 b.静电场的电场线从正电荷出发,终止于负电荷(或从正电荷出发终止于无穷远,或来自于 无穷远终止于负电荷)。 J c.电场线上每一点的切线方向与该点的场强方向相同。 d.电场线的疏密表示场强的大小,场强为零的区域,不存在电场线。 e.任何两条电场线都不会相交。 f.任何一条电场线都不会闭合。 g.沿着电场线的方向电势是降低的。 【典例1】如图所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的 圆心,?MOP =60° ,电荷量相等、符号相反的两个点电荷分别置于M、N两点,这 时O点电场强度的大小为E I;若将N点处的点电荷移至P点,则O点的场强大小变为 E2,E i与E2之比为() A.1 : 2 B.2: 1 C. 2:3 方法提炼:求解该类问题时首先根据点电荷场强公式得出每一个点电荷产生的场强的大小和方向,再依据平行四边形定则进行合成。

【考点2】电场的能的性质 1.电势能E P、电势「、电势差U (1)电场力做功与路径无关,故引入电势能,W A B= E pA- E PB (2)电势的定义式:;:=E P q (3)电势差:UAB = ;:A -订 (4)电场力做功和电势差的关系:W A^= qU AB 沿着电场线方向电势降低,或电势降低最快的方向就是电场强度的方向。 2.电场力做功 定义:电荷q在电场中由一点A移动到另一点B时,电场力所做的功W AB简称电功。 公式:W AB ^ qU AB 说明:1.电场力做功与路径无关,由q、U AB决定。 2.电功是标量,,电场力可做正功,可做负功,两点间的电势差也可正可负。 3?应用W A^qU AB时的两种思路 < (1)可将q、U AB连同正负号一同代入,所得的正负号即为功的正负; (2)将q、U AB的绝对值代入,功的正负依据电场力的方向和位移(或运动) 方向来判断。 ‘4.求电场力做功的方法:①由公式W A^qU AB来计算。 ②由公式W = F COS来计算,只适用与恒力做功。 彳 ③由电场力做功和电势能的变化关系W AB=E P A - E pB L④由动能定理W电场力+ W其他力=E k 【典例2]如图所示,Xoy平面内有一匀强电场,场强为E,方向未知,电场线跟X轴的负方向夹角为

物理-1静电场知识点

第一章 电场 一、电场基本规律 1、电荷守恒定律:电荷既不会创造,也不会消灭,它只能从一个物体转移到另一个物体,或者 从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。 (1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C ——密 立根油滴实验测得e 的值。 2、库伦定律:(1)定律内容:真空..中两个静止点电荷..... 之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:221r Q kQ F = k=9.0×109N ·m 2/C 2——静电力常量 (3)适用条件:真空中静止的点电荷。 二、电场 力的性质: 1、电场的基本性质:电场对放入其中的电荷有力的作用。 2、电场强度E :(1)定义:电荷在电场中某点受到的电场力F 与电荷的带电量q 的比值,就叫做该点的电场强度。(2)定义式:q F E = E 与F 、q 无关,只由电场本身决定。 (3)电场强度是矢量:大小:在数值上为单位电荷受到的电场力。 方向:规定正电荷受力方向,负电荷受力与E 的方向相反。 (4)单位:N/C,V/m 1N/C=1V/m (5)其他的电场强度公式 ○1点电荷的场强公式:2 r kQ E =——Q 场源电荷 ○ 2匀强电场场强公式:d U E =——d 沿电场方向两点间距离 (6)场强的叠加:遵循平行四边形法则 3、电场线:(1)意义:形象直观描述电场强弱和方向的理想模型,实际上是不存在的 (2)电场线的特点: ○ 1电场线起于正电荷(无穷远),止于(无穷远)负电荷 ○ 2不封闭,不相交,不相切。○3沿电场线电势降低,且电势降低最快。一条电场线无法判断场强大小,可以判断电势高低。 ○ 4电场线垂直于等势面 (3)几种特殊电场的电场线和等势面 三、电场 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势能Ep :( 1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。 电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:0A pA W E =——带正负号计算 (3)特点: ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 ○ 2电势能的变化量△E p 与零势能面的选择无关。 3、电势 φ:(1)定义:电荷在电场中某一点的电势能Ep 与电荷量的比值。 (2)定义式:φq E p = ——单位:伏(V )——带正负号计算 (3)特点: ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 ○ 2电势是一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 ○ 3 电势的大小由电场本身决定,与Ep 和q 无关。 ○ 4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 ○1根据电场线判断:沿着电场线方向电势降低。φA >φ B ○ 2根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 4、电势差U AB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:U AB = φA -φ B (3)特点: ○1电势差是标量,却有正负,只表示起点和终点的电势谁高谁低。 ○ 2单位:伏(V ) ○ 3电场中两点的电势差是确定的,与零势面的选择无关 ○ 4U=Ed 匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。 5、电场力做功W AB :( 1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即 与初末位置的电势差有关。 (2)表达式:W AB =U AB q —带正负号计算(适用于任何电场) W AB =Eqd —d 沿电场方向的距离。——匀强电场 (3 W AB =-△Ep=E pA -E PB 电场力做负功,电势能增加 6、等势面:(1)定义:电势相等的点构成的面。 (2)特点:○1等势面上各点电势相等,在等势面上移动电荷,电场力不做功。 ○ 2等势面与电场线垂直○3两等势面不相交○4等势面的密集程度表示场强的大小:疏弱密强。 (3)判断非匀强电场线上两点间的电势差的大小:靠近场源(场强大)的两点间的电势差大 于远离场源(场强小)相等距离两点间的电势差。 四、电容器及其应用:1、电容器充放电过程:(电源给电容器充电) 充电过程S-A :电源的电能转化为电容器的电场能 放电过程S-B :电容器的电场能转化为其他形式的能 2、电容:(1)物理意义:表示电容器容纳电荷本领的物理量。 (2)定义:电容器所带电量Q 与电容器两极板间电压U 的比值就叫做 E A B 无条件结论 若AB=BC ,则U AB >U BC

真空中的静电场总结,

.. 普通物理学 程守洙第六版 静止电荷电场总结

真空中的静电场 教学目的要求 1. 理解点电荷概念,掌握库仑定律、电场强度和场强叠加原理; 2. 理解电场线与电通量,掌握静电场的高斯定理及其应用; 3. 理解静电场的保守性、环路定理与电势能; 4. 掌握电势和电势叠加原理; 5. 了解电场强度和电势梯度的关系. 本章内容提要 ⒈两个基本定律 ① 电荷守恒定律 在一个孤立系统内,无论进行怎样的物理过程,系统内电荷量的代数和总是保持不变,这个规律称为电荷守恒定律.它是物理学中普遍遵守的规律之一. ② 真空中的库仑定律 真空中两个静止的点电荷之间的相互作用力的大小与这两个电荷所带电荷量q l 和q 2的乘积成正比,与它们之间距离r 的平方成反比.作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸.即 121212122201212012 4π4πr q q q q r r r εε=?=r F e ⒉两个重要物理量 ① 电场强度 单位试验电荷在电场中任一场点处所受的力就是该点的电场强度.即 q F E = ② 电势 电场中某点的电势等于把单位正电荷自该点移到“电势零点”过程中电场力做的功.若取“无限远”处为“电势零点”,则 0d p p p W V q ∞ ==??E l 电场强度和电势都是描述电场中各点性质的物理量,二者的积分关系为 d p p V ∞ =??E l 微分关系是 grad V =V =--?E ⒊两个重要定理 ① 高斯定理 在真空中的静电场内,通过任意闭合曲面的电场强度通量等于该闭合曲面所包围的电荷电荷量的代数和的1/ε 0倍.即 01d i S S q ε?=∑?内 E S

静电场知识点总结归纳

静电场知识点总结 一、点电荷和库仑定律 1.如何理解电荷量、元电荷、点电荷和试探电荷? (1)电荷量是物体带电的多少,电荷量只能是元电荷的整数倍. (2)元电荷不是电子,也不是质子,而是最小的电荷量数值,电子和质子带有最小的电荷量,即e=1.6×10-19 C,是密立根通过油滴实验测定的。 (3)点电荷要求“线度远小于研究范围的空间尺度”,是一种理想化的模型,对其带电荷量无限制. (4)试探电荷要求放入电场后对原来的电场不产生影响,且要求在其占据的空间内场强“相同”,故其应为带电荷量“足够小”的点电荷. 2.库仑定律 (1)适用条件:真空中的点电荷 (2)库仑力的方向:同种电荷相互排斥,为斥力;异种电荷相互吸引,为引力. 二、库仑力作用下的平衡问题 1.分析库仑力作用下的平衡问题的思路(与以往的受力分析一样,不过多了个电场力) (1)确定研究对象.如果有几个物体相互作用时,要依据题意,适当选取“整体法”或“隔离法”,一般是先整体后隔离. (2)对研究对象进行受力分析. 有些点电荷如电子、质子等可不考虑重力,而尘埃、液滴等一般需考虑重力.具体视题目要求来定。 (3)列平衡方程(F合=0或F x=0,F y=0,即水平和竖直方向合力分别为0). 2.三个自由点电荷的平衡问题 (1)条件:三个点电荷放置于于一条直线上,且接触面光滑不固定,有如下结论 (2)规律:“三点共线”——三个点电荷分布在同一直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷的电荷量最小; “近小远大”——中间电荷靠近电荷量较小的电荷. 三、场强的三个表达式的比较及场强的叠加 电场为矢量,叠加需要平行四边形定则。 四、对电场线的进一步认识 1.点电荷的电场线的分布特点 (1)离点电荷越近,电场线越密集,场强越强. (2)若以点电荷为球心作一个球面,电场线处处与球面垂直,在此球面上场强大小处处相等,方向各不相同. 2.等量异种点电荷形成的电场中电场线的分布特点 (1)两点电荷连线上各点,电场线方向从正电荷指向负电荷. (2)两点电荷连线的中垂面(线)上,场强方向均相同,且总与中垂面(线)垂直.在中垂面(线)上到O点等距离处各点的场强相等(O为两点电荷连线的中点).

静电场知识点总结(新)

高 一 物 理 选 修 3-1 《静 电 场》 总 结 一.电荷及守恒定律 (一) 1、三种起电方式: 2、感应起电的结果: 3、三种起点方式的相同和不同点: (二) 1、电荷守恒定律内容: 2、什么是元电荷: e 19 106.11-?=______________,质子和电子所带电量等于一个基本电荷的电量。 3、比荷: 二. 库仑定律 1、内容: ________________________________________________________________ _ 2、公式:21r Q Q K F =_________________,F 叫库仑力或静电力,也叫电场力。它可以是引力,也可以是斥力,K 叫静电力常量,29/109C m N K ??=_________________________。 3、适用条件:__________________(带电体的线度远小于电荷间的距离r 时,带电体的形状和大小对相互作用力的影响可忽略不计时,可看作是点电荷)(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r ,同种电荷间的库仑力F ,异种电荷间的库仑力F )。 4、三个自由点电荷静态平衡问题:

三.电场强度 1. 电场 ___________周围存在的一种物质。电场是__________的,是不以人的意志为转移的,只要电荷存在,在其周围空间就存在电场,电场具有___的性质和______的性质。 2. 电场强度 1) 物理意义: 2) 定义:公式:F E / =__________,E 与q 、F ____关,取决于_______,适用于____电场。 3) 其中的q 为__________________(以前称为检验电荷),是电荷量很______的点 电荷(可正可负)。 4) 单位: 5) 方向:是____量,规定电场中某点的场强方向跟_______在该点所受电场力方向 相同。 3. 点电荷周围的场强 ① 点电荷Q 在真空中产生的电场r Q K E =________________,K 为静电力常量。 ② 均匀带点球壳外的场强: 均匀带点球壳内的场强: 4. 匀强电场 在匀强电场中,场强在数值上等于沿______每单位长度上的电势差,即: U E /=_____。 5. 电场叠加 几个电场叠加在同一区域形成的合电场,其场强可用矢量的合成定则 (________)进行合成。 6. 电场线 (1)作用:___________________________________________________________。

大学物理 第7章 真空中的静电场 答案

第七章 真空中的静电场 7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。 解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为 )41()2 2( 420+= a q F πε=,252 0a q πε方向由q 指向-4q 。 7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。(1) 求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。 解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则 2 02 0)(4)(4ξπεξ λξπεξ λ-= -= x d x d dE 则整根细棒在P 点产生的电场强度的大小为 )1 1(4)(400 20 x L x x d E L --=-= ? πελξξπελ = ) (40L x x L -πελ方向沿ξ轴正向。 (2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y 2 04r dx dE πελ= θπελcos 42 0r dx dE y = , θπελsin 42 0r dx dE x = 因θ θθθcos ,cos ,2y r d y dx ytg x ===, 习题7-1图 dq ξ d ξ 习题7-2 图a x x dx 习题7-2 图b y

代入上式,则 )cos 1(400θπελ-- =y =)1 1(4220L y y +--πελ,方向沿x 轴负向。 θθπελ θd y dE E y y ??= =0 0cos 4 00sin 4θπελy = = 2204L y y L +πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。 解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。对称分析E y =0。 θπεθ λsin 42 0R Rd dE x = ??==πθπελ 00sin 4R dE E x R 02πελ = 2 02 2R q επ= ,如图,方向沿x 轴正向。 7-4 如图线电荷密度为λ1的无限长均匀带电直线与另一长度为l 、线电荷密度为λ2的均匀带电直线在同一平面内,二者互相垂直,求它们间的相互作用力。 解:在λ2的带电线上任取一dq ,λ1的带电线是无限长,它在dq 处产生的电场强度由高斯定理容易得到为, x E 01 2πελ= 两线间的相互作用力为 θ θπελ θd y dE E x x ??-= -=0 0sin 4x 习题7-3图 λ1 习题7-4图

真空中的静电场(答案解析)2015年度

第九章 真空中的静电场 一. 选择题 [ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷 线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E 为 (A) 0. (B) i a 02ελπ. (C) i a 04ελπ. (D) ()j i a +π04ελ. 【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为: 022E E a πε+-== 矢量叠加后,合场强大小为: 02E a λ πε=合,方向如图。 [ C ] 2(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . 【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。则大立 方体外围的六个正方形构成一个闭合的高斯面。由Gauss 定理知,通过该高斯面的电通量为 q ε。再据对称性可知,通过侧面abcd 的电场强度通量等于 24εq 。 A b c a q E + E - E 合 O +λ -λ x y (0, a ) +λ -λ x y (0, a )

[ D ] 3(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) a q 08επ-. 【提示】:2 20048P a M M a q q V E dl dr r a πεπε-= ==? ? [ C ] 4(自测提高4)如图9-34,设有一“无限大”均匀带正电荷的平面。取x 轴垂直带电平面,坐标原点在带电平面上,则其周围 空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): 【提示】:由于电场分布具有平面对称性,可根据高斯定理求得该带电平面周围的场强为: (+0;0)2E i x x σ ε=± > -<“”号对应“”号对应 [ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为: (A) r Q Q 0214επ+. (B) 202 10144R Q R Q εεπ+π. (C) 0. (D) 1 01 4R Q επ. 【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。 x

真空中的静电场(电势)

图1-1 班号: 姓名: 学号: 成绩: 2.真空中的静电场2(电场与电势) 一、选择题 1. 关于静电场中某点电势值的正负,下列说法正确的是:[ ] A. 电势值的正负取决于置于该点的试探电荷的正负; B. 电势值的正负取决于电场力对试探电荷做功的正负; C. 电势值的正负取决于电势零点的选取 ; D. 电势值的正负取决于产生电场的电荷的正负。 2.在下列关于静电场的表述中,正确的是:[ ] A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动; B .带负电的点电荷,在电场中从a 点移到b 点,若电场力作正功,则a 、b 两点的电势关系为U a >U b ; C .由点电荷电势公式r q U 0π4ε= 可知,当r →0时,则U →∞; D .在点电荷的电场中,离场源电荷越远的点,其电势越低; E .在点电荷的电场中,离场源电荷越远的点,电场强度的量值就越小。 3. 如图1-1所示,图中实线为某电场中的电场线,虚线表示等势面,a 、b 、c 为电场中的三个点,由图可以看出:[ ] A .c b a E E E >>,c b a U U U >>; B .c b a E E E <<,c b a U U U <<; C .c b a E E E >>,c b a U U U <<; D .c b a E E E <<,c b a U U U >>。 4. 在静电场中,若电场线为均匀分布的平行直线,则在该电场区域内电场线方向上任意两点的电场强度E 和电势U 相比较:[ ] A. E 相同,U 不同; B. E 不同,U 相同; C. E 不同,U 不同; D. E 相同,U 相同。

静电场知识点归纳

人教版物理高二上学期《静电场》知识点归纳 考点1.电荷、电荷守恒定律 自然界中存在两种电荷:正电荷和负电荷。例如:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。 1. 元电荷:电荷量e=1.60×10-19C 的电荷,叫元电荷。说明任意带电体的电荷量都是元电 荷电荷量的整数倍。 2. 电荷守恒定律:电荷既不能被创造,又不能被消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。 3. 两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。 考点2.库仑定律 1. 内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。 2. 公式:叫静电力常量)式中,/100.9(229221C m N k r Q Q k F ??== 3. 适用条件:真空中的点电荷。 4. 点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。 考点3.电场强度 1.电场 (1)定义:存在于电荷周围、能传递电荷间相互作用的一种特殊物质。 (2)基本性质:对放入其中的电荷有力的作用。 2.电场强度 ⑴ 定义:放入电场中的电荷受到的电场力F 与它的电荷量q 的比值,叫做该点的电场强度。 ⑵ 单位:N/C 或V/m 。 ⑶ 电场强度的三种表达方式的比较 ⑷方向:规定正电荷在电场中受到的电场力的方向为该点电场强度的方向,或与负电荷在电场中受到的电场力的方向相反。 ⑸叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的叠加,电场强度的叠加尊从平行四边形定则。 考点4.电场线、匀强电场 1. 电场线:为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。 2. 电场线的特点 ⑴ 电场线是为了直观形象的描述电场而假想的、实际是不存在的理想化模型。 ⑵ 始于正电荷或无穷远,终于无穷远或负电荷,静电场的电场线是不闭合曲线。

大学物理静电场知识点总结

大学物理静电场知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 0121 4q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑ ? n i i 33i 1 i q 11dq E r E r 44r r

(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关

真空中的静电场归纳,

普通物理学 程守洙第六版 静止电荷电场总结

真空中的静电场 教学目的要求 1. 理解点电荷概念,掌握库仑定律、电场强度和场强叠加原理; 2. 理解电场线与电通量,掌握静电场的高斯定理及其应用; 3. 理解静电场的保守性、环路定理与电势能; 4. 掌握电势和电势叠加原理; 5. 了解电场强度和电势梯度的关系. 本章内容提要 ⒈两个基本定律 ① 电荷守恒定律 在一个孤立系统内,无论进行怎样的物理过程,系统内电荷量的代数和总是保持不变,这个规律称为电荷守恒定律.它是物理学中普遍遵守的规律之一. ② 真空中的库仑定律 真空中两个静止的点电荷之间的相互作用力的大小与这两个电荷所带电荷量q l 和q 2的乘积成正比,与它们之间距离r 的平方成反比.作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸.即 121212 122201212012 4π4πr q q q q r r r εε= ?=r F e ⒉两个重要物理量 ① 电场强度 单位试验电荷在电场中任一场点处所受的力就是该点的电场强度.即 q F E =

② 电势 电场中某点的电势等于把单位正电荷自该点移到“电势零点”过程中电场力做的功.若取“无限远”处为“电势零点”,则 d p p p W V q ∞ = =??E l 电场强度和电势都是描述电场中各点性质的物理量,二者的积分关系为 d p p V ∞ =??E l 微分关系是 grad V =V =--?E ⒊两个重要定理 ① 高斯定理 在真空中的静电场内,通过任意闭合曲面的电场强度通量等于该闭合曲面所包围的电荷电荷量的代数和的1/ε 0倍.即 1 d i S S q ε?= ∑? 内 E S ② 静电场的环路定理 在静电场中,电场强度E 的环流恒为零.即 0d =??l E 高斯定理和静电场的环路定理都是描写静电场性质的重要定理,前者说明静电场是有源场,而后者说明静电场是无旋场,即静电场是有源无旋场. ⒋三个叠加原理 ① 静电力叠加原理 作用在某一点电荷上的力为其它点电荷单独存在时对该点电荷静电力的矢量和.即 1 n i i ==∑F F ② 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加,即 1 n i i==∑E E ③ 电势叠加原理 电场中某点的电势等于各电荷单独在该点产生的电势的叠加,即 1 n p Pi i V V ==∑ ⒌几个基本概念 ① 电场 电荷周围存在的一种特殊物质,称为电场.它与分子、原子等组成的实物一样,具有质量、能量、动量和角动量,它的特殊性在于能够叠加.相对于观察者静止的电荷在其周围所激发的电场称为静电场.静电场对外的表现主要有:对处于电场中的其他带电体有作用力;在电场中移动其他带电体时,电场力要对它做功. ② 电场线 为形象地反映电场而人为地在电场中描绘的曲线.其画法规定:电场线上某点的

高二物理静电场知识点总结及练习

高二物理静电场知识点总结及练习 物体带电也叫起电。使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。 电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 公式F = KQ1Q2/r (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,其中比例常数K叫静电力常量,K = 9.0*10 Nm /C 。(F:点电荷间的作用力(N),Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) 库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点: (1)始于正电荷(或无穷远),终止负电荷(或无穷远);

(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度点电荷的电场 电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q,它所受到的电场力F 跟它所带电量的比值F/q叫做这个位置上的电场强度,定义式是E = F/q,E是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q:检验电荷的电量(C))电场强度E的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E与F成正比,也不能认为E与q成反比。 点电荷场强的计算式E = KQ/r (r:源电荷到该位置的距离(m),Q:源电荷的电量(C)) 要区别场强的定义式E = F/q与点电荷场强的计算式E = KQ/r ,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。 5.电势能电势等势面 电势能由电荷在电场中的相对位置决定的能量叫电势能。 电势能具有相对性,通常取无穷远处或大地为电势能和零点。 由于电势能具有相对性,所以实际的应用意义并不大。而经常应用的是电势能的变化。电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电

大学物理静电场总结word版本

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场:εσ 02= E 2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值q E pa 0 则与电荷的大小和正负无关,它反映了静电场 中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V

②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即 E E E n E +++= (21) 2、电势叠加定理 V 1 、V 2 ...V n 分别为各点电荷单独存在时在P 点的电势点电荷系 的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。 3、高斯定理 在真空中的静电场内,通过任意封闭曲面的电通量等于该闭合曲面包围的所 有电荷的代数和除以 ε 说明: ①高斯定理是反映静电场性质的一条基本定理。 ②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。 ③高斯定理中所说的闭合曲面,通常称为高斯面。 三、静电平衡 1、静电平衡 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,带电 体系即达到了静电平衡。 说明: ①导体的特点是体内存在自由电荷。在电场作用下,自由电荷可以移

第六章 真空中的静电场总结

第六章 真空中的静电场 §6-1 电荷 库仑定律 5.电荷的量子化效应:到目前为止的所以实验表明,一切带电体包括微观粒子所带的电量 q ,都是某一基本电荷量的整数倍,这个基本电荷就是 e = 1.602 10-19 库仑 一个带电体带的电量 q = ne n = 1,2,3,... 只能取不连续的值,这称为电荷的量子化。 宏观带电体的带电量 q e ,准连续 二、库仑定律与叠加原理 库仑定律是两个点电荷相互作用的定律。 2.库仑定律 实验给出:k = 8.9880 10 9 N·m2/C2 121200 22014q q q q F k r r r r πε== ▲ 库仑定律适用的条件: ? 真空中点电荷间的相互作用 ? 电荷对观测者静止 41πε= k 0 —真空介电常量 2212o m /N C 1085.841 ??== -k πε 3.静电力的叠加原理 作用于某电荷上的总静电力等于其他点电荷单独存在时作用于该电荷的静电力的矢量和。 离散状态: ∑==N i i F F 1 2004i i i i r r q q F πε= 连续分布: 2004r r dq q F d πε= ?=F d F 结论:库仑力比万有引力大得多,所以在原子中,作用在电子上的力,主要是电场力,万有引力完全可以忽略不计。 §6-2 静电场 电场强度 一、电场 电荷间的相互作用是通过场来传递的 2. 静电场的对外表现: 静电场:相对于观察者静止的电荷所产生的电场称为静电场。 静电场最重要的表现有两方面:

★研究方法: 电场能量—引入电势 U E 电场力—引入场强 二、电场强度 1.试验电荷 q 0 及条件 { 点电荷(尺寸小) q 0 足够小,对待测电场影响小 4.场强叠加原理 设有若干个静止的点电荷q1、q2、…… qN ,它们单独存 在时的场强分别为N E E E ,2,1,则它们同时存在时的场强为 i N i i i N i i N i i r r q E q F q F E 012011004∑∑∑=======πε 三、电场强度的计算 1. 点电荷的电场强度 000 220000144ππq q F q E r r q r q r εε==?= 特点: (1)是球对称的; (2)是与 r 平方成反比的非均匀场。 22 2. 点电荷系的电场强度 q 1 ·· ·· ··q i q 2 E E i P ×r i 点电荷 q i 的场强: 2o 4i r i i r e q E i πε = ∑ =i i r i r e q E i 2 o 4πε 总场强: 点电荷系 场强叠加原理

相关文档
最新文档