饲料中真菌毒素生物脱毒的研究进展

饲料中真菌毒素生物脱毒的研究进展
饲料中真菌毒素生物脱毒的研究进展

饲料中真菌毒素生物脱毒的研究进展

张晓琳汪洋*李爱科

(国家粮食局科学研究院,北京100037)

摘要:真菌毒素是某些有害真菌产生的分子质量小、化学性质稳定、具有毒害作用的次级代谢产物,其存在不仅严重威胁着动物生产性能和人类健康,也给畜牧业和食品行业造成了巨大的经济损失。由于物理、化学脱毒法存在着营养成分流失、脱毒不彻底等问题,而不能被广泛应用。生物脱毒法不仅避免了上述缺点,还具有作用条件温和、安全环保的优点,是一种理想的脱毒方法。本文对饲料中常见真菌毒素的种类及其生物脱毒研究进展进行了综述,并对目前生物脱毒研究中存在的问题进行了讨论,旨在为研究人员探求实用高效、经济可行的真菌毒素生物脱毒方法提供参考。

关键词:饲料;真菌毒素;生物降解;生物脱毒;微生物

中图分类号:S816.17;S379.7 文献标识码:A 文章编号:

真菌毒素(mycotoxins)是某些真菌在污染谷物或者食品的生长繁殖过程中,产生的具有毒害作用的次级代谢产物,由其引起的中毒症状被称作是真菌毒素中毒症状(mycotoxicoses)。目前,已经发现真菌毒素的种类达400多种,其化学、生物学和毒理学性质多种多样,主要的毒性作用包括致癌作用、遗传毒性、致畸作用、肝细胞毒性、中毒性肾损害、生殖紊乱和免疫抑制。真菌毒素的存在不仅给人类及牲畜的健康带来极大的危害,也造成了相应的经济损失。据联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)统计,全球每年约有25%的农作物被真菌毒素污染,约2%的农作物因污染严重而失去营养和经济价值,造成数千亿美元的经济损失[1]。另外,2003年末至2004年秋,由于养猪行业大量使用发霉玉米,动物出现多种并发传染病,养殖场出现难以控制的局面。据调查,仅河南省死亡猪只就达1 000万头。如果以平均每头100元计算,经济损失达10亿元;如果再考虑饲料转化率低下、动物药品消耗增加,则2004年中国范围仅养猪业损失就在100亿元以上[2]。因此,如何解决真菌毒素对粮食和饲料的污染,对改善动物生产性能和提高人类食品安全有非常重要的意义。目前,毒素污染饲料的脱毒方法主要包括物理、化学和生物脱毒法。虽然物理、化学脱毒法取得了一定程度上的成功,但存在操作困难、降低饲料的营养品质和适口性等缺点[3-4]。与物理、化学脱毒法相比,生物脱毒法具有作用条件温

和,对原料的感官性状、适口性等影响极小,增加原料营养价值等优点,被认为是最佳脱毒方法。随着物理、化学脱毒手段弊端的不断出现和人们对迅猛发展的生物技术优点的认识增加,国内外利用微生物进行毒素脱毒的研究正在逐步展开,而且相关研究成果表现出了良好的开发和应用前景。生物脱毒作用除了包括微生物通过酶促反应将毒素转化成低毒或者无毒产物的生物转化作用之外,还包括将毒素黏附在其细胞壁上形成复合物而达到去除毒素目的的吸附作用,后者通常不改变毒素分子本身的结构,不是本文阐述的重点。本文针对饲料中常见的真菌毒素,对近年来国内外真菌毒素生物脱毒的研究进展进行概述。

1 真菌毒素的生物脱毒

1.1 黄曲霉毒素(aflatoxin,AFT)

AFT是一类由多种寄生曲霉(Aspergillus parasiticus)和黄曲霉(Aspergillus flavus)产生的二呋喃氧杂萘邻酮的衍生物[5],现已分离出B1、B2、G1、G2、B2a、G2a、M1、M2、P1等18种之多,其中以黄曲霉毒素B1(aflatoxin B1,AFB1)的毒性和致癌性最强。AFB1广泛存在于玉米、高粱、花生粉、豆粕、棉籽粕等饲料原料中,其危害包括降低动物产乳量及产蛋量,导致动物免疫力低下以及致癌、致畸和致突变。对AFT生物降解的研究较早,已发现多种真菌和细菌都具有降解AFT的能力。真菌中的树状指孢霉(Dactylium dendroide)[6]、少根根霉(Rhizopus arrhizus)[7]、寄生曲霉[8]、茎点霉(Phoma sp.)[9]、白腐菌(Trametes versicolor)[10]、黑曲霉(Aspergillus niger)[11]、假蜜环菌(Armillariella tabescens)[12]及食用真菌糙皮侧耳(Pleurotus ostreatus)[13]都具有生物降解AFT的作用。虽然这些真菌能够降解AFT,但是降解过程缓慢并且不彻底[6-13],这在一定程度上限制了其在饲料行业中的应用。在20世纪末,国内研究者刘大岭等[12]首先发现假蜜环菌E-2的粗酶液可使样品中的AFB1含量减少80%;随后,该真菌产生的AFB1降解酶得以分离纯化[14],其编码基因也得以成功克隆和表达[15]。另外,对该脱毒酶的固定化技术和酶特性研究表明,此脱毒酶的理想反应条件是中性pH,高水分的体外反应体系,比较适合在植物油、酱油、啤酒以及牛奶等液体反应体系中进行,难以在籽实、饼粕等低水分饲料原料中直接应用[16-17]。

细菌降解AFT的报道并不太多,Lillehoj等[18]首先发现橙色黄杆菌(Flavobacterium aurantiacum)具有去除溶液中AFT的能力。后来,Smiley等[19]研究发现橙色黄杆菌能产生一种脱毒酶,该脱毒酶通过酶促作用使AFT达到降解。Hormisch等[20]从煤田附近污染的土壤样

品中分离到1株能够同时降解荧蒽和AFB1的分支杆菌(Mycobacterium fluoranthenivorans)。Teniola等[21]也从多环芳烃化合物污染的土壤中分离得到红串红球菌(Rhodococcus erythropolis)DSM 14303和分支杆菌DSM 44556T,它们分泌的胞外酶都具有较高的降解AFB1的能力。Alberts等[22]通过薄层色谱-高效液相色谱-电喷雾质谱-液相质谱技术,对红串红球菌降解AFB1的机理进行了进一步研究,结果表明该菌对AFT的消减是由于其产生的酶的生物降解作用。另外,李俊霞等[23]以香豆素为唯一碳源和能源进行初筛,以AFB1为唯一碳源和能源进行复筛,获得1株嗜麦芽窄食单胞菌(Stenotrophomonas sp.),该菌株对100 μg/kg 的AFB1的72 h的降解率达到85.7%。

1.2 赭曲霉毒素(ochratoxin,OT)

OT是由曲霉属(Aspergillus)和青霉属(Penicillium)中的某些菌株产生的具有毒害作用的次级代谢产物。OT是污染谷物食品与饲料的重要真菌毒素,共有A、B、C和α 4种衍生物,其中毒性最大、与人类健康关系最密切、产毒量最高、对农作物的污染最重、分布最广的是赭曲霉毒素A(ochratoxin A,OTA)。OTA能对肾脏和肝脏产生损伤作用,具有致畸性、致癌性和免疫毒性等多种毒性,对动物和人体健康有很大的潜在危害。OTA由异香豆素通过酰胺键与β-苯丙氨酸相连形成。OTA分子结构中的苯丙氨酸基团是其毒力基团[24],其生物降解通常是将OTA水解为低毒的赭曲霉毒素α(ochratoxin α,OTα)和β-苯丙氨酸[25]。在细菌降解OTA方面,研究显示动物的胃肠道微生物通常能有效地降解OTA,特别是在反刍动物中[26-27]。Madhyastha等[28]研究发现,非反刍动物肠道内的微生物也能影响OTA的生物降解率,OTA的降解率可能与盲肠和大肠中微生物的多少有关。Hwang等[29]对37种细菌进行筛选后发现,醋酸钙不动杆菌(Acinetobacter calcoaceticus)能在乙醇无机盐培养基中将OTA降解为OTα。Fuchs等[30]筛选到1株嗜酸乳杆菌(Lactobacillus acidophilus)VM20可以降解OTA,并且通过人类肝肿瘤细胞微核试验对该菌株的脱毒效果进行了生物学验证。Petchkongkaew 等[31]从泰国发酵大豆产品中分离到的地衣芽孢杆菌(Bacillus licheniformis)CM21对OTA的降解率达到92.5%,其中的降解产物之一是OTα,其降解机制可能是该菌株产生的羧肽酶(carboxypeptidases)的酶促分解作用。短杆菌属(Brevibacterium)细菌同样具有降解OTA 的能力,降解产物为OTα和L-β-苯基丙氨酸[32]。Shi等[33]从新鲜的麋鹿粪便中分离到的1株枯草芽胞杆菌(Bacillus subtilis)CW14,该菌株不仅能够抑制OTA产生菌——曲霉菌的生长,

还具有高效降解OTA的能力。B?hm等[34]报道,乳酸杆菌(Lactobacillus)、芽孢杆菌(Bacillus)、酵母菌(Saccharomyces)都具有一定的OTA降解能力,但降解产物的结构、毒性以及这些微生物在毒素污染饲料中的实际应用效果都有待进一步研究。某些真菌如烟曲霉(Aspergillus fumigatus)、黑曲霉(Aspergillus niger)、匍枝根霉(Rhizopus stolonifer)TJM8A8和小孢根霉(Rhizopus microsporus)NRRL2710都具有降解OTA的能力[35-36]。除了霉菌之外,Péteri等[37]发现红发夫酵母(Phaffia rhodozyma)CBS 5905不仅能吸附OTA,还能通过羧肽酶将OTA降解为低毒的OTα。

1.3 玉米赤霉烯酮(zearalenone,ZEN)

ZEN,又称F2毒素,是一种具强烈致畸作用的生殖系统毒素。ZEN能导致家畜生长速度下降、免疫抑制、繁殖障碍等。近年来,对ZEN生物降解的研究取得了一定进展。据报道,粉红螺旋聚孢霉(Clonostachys rosea)IFO 7063可以通过分泌碱性水解酶——泛解酸内酯水解酶,将ZEN转化成无雌激素性质的产物,水解酶编码基因zhd101也已经被成功克隆和表达[38-39]。Molnar等[40]从白蚁的后肠中分离出了1种新酵母菌——解毒毛孢酵母(Trichosporon mycotoxinivorans),它可以成功地将1 mg/L的ZEN降解成无毒的非雌激素类化合物。Altalhi 等[41-42]研究发现恶臭假单胞菌(Pseudomonas putida)ZEA-1具有降解ZEN的能力,编码此ZEN降解酶的基因在大肠杆菌中也获得了表达。另外,一些根霉菌,如匍枝根霉(Rhizopus stolonifer)、米根霉(Rhizopus oryzae)、小孢根霉(Rhizopus microsporus),也具有降解ZEN的能力[36]。国内近几年在ZEN降解菌株筛选和基因克隆方面也取得了一些研究进展。程波财等[43]通过富集分离的方法获得了1株藤黄微球菌(Micrococcus luteus),该菌株能将2 μg/mL的ZEN几乎完全降解;该课题组研究人员又从粉红螺旋聚孢霉中克隆到与zhd101高度同源的基因ZEN-jjm,并在大肠杆菌中成功表达[44]。刘海燕等[45]从粉红螺旋聚孢霉31535菌株中克隆了与zhd101有11个碱基差异的基因zlhy-6,并在毕赤酵母中成功表达。Yu等[46]从土壤中分离了1株不动杆菌(Acinetobacter sp.)SM04,该菌株能在以ZEN为唯一碳源和能源的培养基中快速生长,并能将ZEN降解成无毒的非雌激素类化合物,进一步研究发现其发酵上清液中的过氧化物酶具有降解ZEN的功能,其编码基因也得以成功克隆和表达[47]。

1.4 脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)

DON,化学名称为3α,7α,15-三羟基-12,13-环氧单端孢霉-9-烯-8-酮,因能引发母猪拒食

和呕吐又得名呕吐毒素(vomitoxin),它广泛存在于小麦、大麦、玉米等谷物类粮食和饲料中,家畜食用DON污染的饲料会引起拒食、呕吐、生长延迟、生殖紊乱等症状;而人类误食DON污染的粮食会引起免疫抑制、贫血、头痛、呕吐、厌食和腹痛等症状[48-51]。对DON 生物脱毒的研究始于20世纪80年代,迄今为止,国内外已经报道的DON生物脱毒方式主要包括C3羟基的乙酰化、糖苷化、氧化、异构化,C16的羟基化,C12/C13环氧基团的去环氧化。在DON的化学结构中,12,13-环氧基团是主要的毒力基团,去掉这个基团可以大大地降低其毒性,肠道微生物菌群可以通过酶促降解环氧基团从而对DON起到减毒作用。Fuchs 等[52]从牛瘤胃的富集培养物中分离到真杆菌(Eubacterium)BBSH 797,该菌可以在24~48 h内转化DON和其他的单端孢霉烯族毒素,从而部分地降低饲料中毒素的毒力,后来,百奥明公司基于此脱毒机理成功开发了微生物饲料脱毒制剂真杆菌BBSH 797,表明了其良好的应用价值,但由于该脱毒方式需要严格的厌氧条件,一定程度上限制了其应用。Shima等[54]从土壤中分离到1株属于土壤杆菌-根瘤菌属(Agrobacterium-Rhizobium)的细菌E3-39,它能够在培养l d后把90%的DON转化为3-酮基-DON,从而使DON在免疫抑制方面的毒性大大降低。Ikunaga等[54]在土壤中筛选到1株诺卡氏属菌株,该菌株能在好氧条件下利用DON为唯一碳源和能源生长,其降解毒素浓度范围为10~1 000 μg/mL。He等[55]通过高浓度的DON作为选择性压力,从南京郊外土壤中分离得到1株可以水解DON的塔宾曲霉(Aspergillus tubingensis),该菌株与DON共培养14 d后,可清除94.4%的DON。徐剑宏等[56]从土壤、麦穗中分离获得了1株德沃斯氏菌(Devosia sp.)DDS-1,该菌株对液体培养基中DON的降解能率达95%以上,其代谢产物化学结构及其毒性未知。后续研究发现德沃斯氏菌DDS-1可以先将DON乙酰化为3-乙酰基-DON,然后再将3-乙酰基-DON氧化为3-羰基-DON,接下来再进一步降解;对3-乙酰基-DON氧化酶的酶学特性研究表明,DDS-1产生的3-乙酰基-DON氧化酶具有较好的温度和酸碱稳定性,该酶反应需要金属离子作为辅因子[57]。

1.5 伏马毒素(fumonisin,FB)

FB主要是由串珠镰刀菌(Fusarium moniliforme)、层出镰刀菌(F. proliferatum)、轮枝镰刀菌(F. verticillioides)等有害真菌感染玉米及其他农作物产生的一类结构相似的真菌毒素。到目前为止,已经发现24种FB,其中有明显毒性且含量较高的是伏马毒素B1(fumonisin B1,FB1)、伏马毒素B2(fumonisin B2,FB2)和伏马毒素B3(fumonisin B3,FB3),而FB1

则是危害性最大和研究最广的FB[58]。FB作为动物饲料中常见的真菌毒素之一,对各种动物的影响不一,它能引起马脑白质软化症(equine leukoencephalomalacia,ELEM)、猪肺水肿等疾病,给多种动物肝脏、肾脏造成损伤,甚至引起肿瘤发生,且人食管癌和神经管型缺陷病也可能与FB有关,对畜禽和人类的健康造成很大的危害。最近国际癌症研究机构(International Agency for Research on Cancer,IARC)已将它列入可能致癌物的黑名单内。目前,许多先进国家为了保护国民健康及畜牧业不受其害,已开始着手制定农产品及其食用原料等有关于FB的限量标准,并管制已受此毒素污染的食品不得流入消费市场。关于FB的生物降解研究报道并不多见,其原因可能是由于该毒素发现时间较晚,对其危害性认识不够且未引起足够重视。据报道,斯平尼弗外瓶柄霉(Exophiala spinifera)可以以FB1为唯一碳源生长,进一步研究表明该菌株产生的可溶性酯酶、胺氧化酶和其他酶可作用于FB进行一系列的酶促反应,从而达到降解毒素的目的[59-60]。

2 真菌毒素生物脱毒研究中存在的问题

生物脱毒作为真菌毒素脱毒研究领域的热点,已经有诸多研究成果见诸报端,但这些研究成果大都停留在基础研究阶段,离规模化推广应用仍有一定的距离。从基础和应用方面综合考虑,生物脱毒的研究仍然存在以下几个关键问题有待深入研究与探索。

2.1 降解菌株方面

其一,有些毒素降解菌株的毒素降解能力不太理想,存在着降解不彻底、活性容易消失等问题。上文提及的从土壤中分离到的细菌Agrobacterium-Rhizobium E3-39,能将DON氧化为中间产物3-酮基-DON后将之同化[53],但从该篇文章报道至今近20年的时间内,未见任何后续报道,猜测其活性已经丧失。其二,降解菌株本身缺乏毒性评估,其结果会最终决定降解菌种本身是否具有实质性的应用价值。其三,对真菌毒素生物解毒的研究主要侧重于对降解单一毒素菌株的筛选,在自然条件下,真菌毒素的产生通常具有共发性,即2种或多种毒素共同存在,而这些毒素被动物误食之后,其毒性作用具有协同性,会对动物的健康产生更大的危害。目前,真菌毒素生物降解的研究多侧重于对单一毒素降解菌株的筛选,而对于具有多种毒素降解能力菌株的筛选研究则相对较少,需进一步加大研究力度。其四,筛选过程中,真菌毒素标准品通常是作为唯一碳源加入到培养基当中,而标准品价格不菲,这无疑增加了不少的研究成本。有研究人员在AFB1降解菌株初步筛选的研究中,以AFB1结构类似物

——香豆素来替代价格昂贵的AFB1标准品[23],不但经济可行,还减少了研究人员与黄曲霉毒素的接触,安全性高,这种研究方法希望能给同行带来一些启发。

2.2 降解机理方面

其一,真菌毒素作为化学性质稳定、结构复杂的小分子物质,它的生物降解过程通常需要多种酶共同作用,经过多个生化反应完成,在此过程中产生的中间产物和终产物是否真正的低毒或者无毒?这些代谢产物被动物食用的时候,会不会被动物自身或其消化系统内的微生物重新代谢生成有毒有害的物质?这些方面都需要生物脱毒科研工作者给予充分的重视,并加强这方面的研究。其二,真菌毒素生物脱毒的一般性研究主要是侧重于降解菌株的筛选和菌株的降解能力,但是对于降解酶的分离、纯化,降解酶蛋白质结构、序列及降解酶基因克隆等作为生物脱毒开发应用的重要理论基础研究则很薄弱,仍需深入系统化研究。

3 小结

真菌毒素作为一类无法完全避免的剧毒性天然污染物,由于其存在的广泛性、毒害性,如何有效控制真菌毒素污染一直是粮食和饲料行业悬而未决的难题。真菌毒素的生物脱毒作为一种安全、高效、环保的方法备受研究者的关注。虽然现在国内外利用生物脱毒以降解饲料中真菌毒素的应用少之又少,但现有的研究成果均表现出了良好的开发和应用前景,相信在不久的将来,越来越多的真菌毒素降解菌株和降解酶会被人们发现,各种未知的毒素降解机制也将逐渐为人类所了解和掌握,更多的真菌毒素微生物脱毒剂或脱毒酶制剂产品被成功应用于粮食和饲料行业,从而提高粮食利用率,保证畜牧业的安全生产,提高畜牧业经济效益。

参考文献:

[1]BENNETT J W,KLICHM.Mycotoxins[J].Clinical Microbiology Reviews,2003,16(3):497–516.

[2] 计成.霉菌毒素与饲料食品安全[M].北京:化学工业出版社,2007.

[3] JOUANY J P.Methods for preventing,decontaminating and minimizing the toxicity of mycotoxins in feeds[J].Animal Feed Science and Technology,2007,137(3/4):342–362.

[4] HE J W,ZHOU T,YOUNG J C,et al.Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains:a review[J].Trends in Food Science & Technology,2010,21(2):67–76.

[5] NESBITT B F,O'KELLY J,SARGEANT K,et al.Aspergillus flavus and Turkey X disease:toxic metabolites of Aspergillus flavus[J].Nature,1962,195(4846):1062–1063.

[6] DETROY R W,HESSELTINE C W.Isolation and biological activity of a microbial conversion product of aflatoxin B1[J].Nature,1968,219(5157):967.

[7] COLE R J,KIRKSEY J W,BLANKENSHIP B R.Conversion of aflatoxin B1to isomeric hydroxy compounds by Rhizopus spp.[J].Journal of Agricultural and Food Chemistry,1972,20(6):1100–1102.

[8] DOYLE M P,MARTH E H.Degradation of aflatoxin by lactoperoxidase[J].ZeitschriftfürLebensmittel-Untersuchung und Forschung,1978,166(5):271–273.

[9] HUYNH V L,LLOYD A B.Synthesis and degradation of aflatoxins by Aspergillus parasiticus.Ⅰ.Synthesis of aflatoxin B1by young mycelium and its subsequent degradation in aging mycelium[J].Australian Journal of Biological Sciences,1984,37(1/2):37–43.

[10] ZJALIC S,REVERBERI M,RICELLI A,et al.Trametes versicolor:a possible tool for aflatoxin control[J].International Journal of Food Microbiology,2006,107(3):243–249.

[11] 陈仪本,蔡斯赞,黄伯爱,等.生物学法降解花生油中黄曲霉毒素的研究[J].卫生研

究,1998,27(增刊):79–83.

[12] 刘大岭,姚冬生,陈敏峰.真菌提取液对黄曲霉毒素解毒作用的研究[J].广东药学院学

报,1995,11(2):92–94.

[13] MOTOMURA M,TOYOMASU T,MIZUNO K,et al.Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus[J].Microbiological

Research,2003,158(3):237–242.

[14] LIU D L,YAO D S,LIANG Y Q,et al.Production,purification,and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens(E-20)[J].Food and Chemical Toxicology,200,39(5):461–466.

[15] 左振宇,刘大岭,胡亚冬,等.密码子优化的重组黄曲霉毒素解毒酶(rADTZ)在毕氏酵母中组成型分泌表达的研究[J].中国农业科技导报,2007,9(5):87–94.

[16] 刘大岭,姚冬生,黄炳贺,等.黄曲霉毒素解毒酶的固定化及其性质的研究[J].生物工程学

报,2003,19(5):603–607.

[17] 刘大岭.黄曲霉毒素生物酶解毒研究——黄曲霉毒素B1酶解毒机制研究[D].博士学位论文.广州:中山大学,1998.

[18] LILLEHOJ E B,CIEGLER A,HALL H H.Aflatoxin B1 uptake by Flavobacterium aurantiacum and resulting toxic effects[J].Journal of Bacteriology,1967,93(1):464–471.

[19] SMILEY R D,DRAUGHON F A.Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic[J].Journal of Food Protection,2000,63(3):415–418. [20] HORMISCH D,BROST I,KOHRING G W,et al.Mycobacterium fluoranthenivorans sp.nov.,a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant[J].Systematic and Applied Microbiology,2004,27(6):653–660.

[21] TENIOLA O D,ADDO P A,BROST I M,et al.Degradation of aflatoxin B1by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp.nov.DSM44556T[J].International Journal of Food Microbiology,2005,105(2):111–117. [22] ALBERTS J F,ENGELBRECHT Y,STEYN P S,et al.Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures[J].International Journal of Food Microbiology,2006,109(1/2):121–126.

[23] 李俊霞,梁志宏,关舒,等.黄曲霉毒素B1降解菌株的筛选及鉴定[J].中国农业科学,2008,41(5):1459–1463.

[24] ABRUNHOSA L,PATERSON R R M,VEN?NCIO A.Biodegradation of ochratoxin A for food and feed decontamination[J].Toxins,2010,2(5):1078–1099.

[25] CHU F S.Studieson ochratoxins[J].CRC Critical Reviews in Toxicology,1974,2(4):499–524.

[26] GALTIER P,ALVINERIEM.In vitro transformation of ochratoxin A by animal microbioalfloras[J].Annals of Veterinary Research,1976,7(1):91–98.

[27] XIAO H,MARQUARDT R R,FROHLICH A A,et al.Effect of a hay and a grain diet on therate of hydrolysis of ochratoxin A in the rumen of sheep[J].Journal of Animal Science,1991,69(9):3706–3714.

[28] MADHYASTHA M S,MARQUARDT R R,FROHLICH A A,et al.Hydrolysis of ochratoxin

A by the microbial activity of digesta in the gastrointestinal tract of rats[J].Archives of Environmental Contamination and Toxicology,1992,23(4):468–472.

[29] HWANG CA,DRAUGHON F A.Degradation of ochratoxin A by Acinetobacter calcoaceticus[J].Journal of Food Protection,1994,57(5):410–414.

[30] FUCHS S,SONTAG G,STIDL R,et al.Detoxification of patulin and ochratoxinA,two abundant mycotoxins,by lactic acid bacteria[J].Food and Chemical Toxicology,2008,46(4):1398–1407.

[31] PETCHKONGKAEW A,TAILLANDIER P,GASALUCK P,et al.Isolation of Bacillus spp. from Thai fermented soybean(Thua-nao):screening for aflatoxin B1and ochratoxin a detoxification[J].Journal of Applied Microbiology,2008,104(5):1495–1502.

[32] RODRIGUEZ H,REVERON I,DORIA F,et al.Degradation of ochratoxin a by Brevibacterium species[J].Journal of Agricultural and Food Chemistry,2011,59(19):10755–10760.

[33] SHI L,LIANG Z H,LI J X,et al.Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW14[J].Journal of the Science of Food and Agriculture,2014,94(9):1879–1885.

[34] B?HM J,GRAJEWSKI J,ASPERGER H,et al.Study on biodegradation of some A- and B-trichothecenes and ochratoxin A by use of probiotic microorganisms[J].Mycotoxin Research,2000,16(Suppl.1):70–74.

[35] VARGA J,RIGó K,TéREN J.Degradation of ochratoxin A by Aspergillus species[J].International Journal of Food Microbiology,2000,59(1/2):1–7.

[36] VARGA J,PéTERI Z,TáBORI K,et al.Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates[J].International Journal of Food Microbiology,2005,99(3):321–328.

[37] PéTERI Z,TéREN J,VáGV?LGYI C,et al.Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts[J].Food Microbiology,2007,24(3):205–210.

[38] KAKEYA H,TAKAHASHI-ANDO N,KIMURA M,et al.Biotransformation of the mycotoxin,zearalenone,to a non-estrogenic compound by a fungal strain of Clonostachys sp.[J].Bioscience,Biotechnology,and Biochemistry,2002,66(12):2723–2726.

[39] TAKAHASHI-ANDO N,KIMURA M,KAKEYA H,et al.A novel lactonohydrolase

responsible for the detoxification of zearalenone:enzyme purification and gene cloning[J].Biochemical Journal,2002,365(1):1–6.

[40] MOLNAR O,SCHATZMAYR G,FUCHS E,et al.Trichosporon mycotoxinivorans sp.nov.,a new yeast species useful in biological detoxification of various mycotoxins[J].Systematic and Applied Microbiology,2004,27(6):661–671.

[41] ALTALHI A D.Plasmid-mediated detoxification of mycotoxin zearalenone in Pseudomonas Sp. ZEA-1[J].American Journal of Biochemistry and Biotechnology,2007,3(3):150–158.

[42] ALTALHI A D,EL-DEEB B.Localization of zearalenone detoxification gene(s) in pZEA-1 plasmid of Pseudomonas putida ZEA-1 and expressed in Escherichia coli[J].Journal of Hazardous Materials,2009,161(2/3):1166–1172.

[43] 程波财,姜淑英,汪孟娟,等.藤黄微球菌降解真菌毒素玉米赤霉烯酮的研究[J].中国微生态学杂志,2010,22(5):389–392.

[44] 程波财,史文婷,罗洁,等.玉米赤霉烯酮降解酶基因(ZEN-jjm)的克隆、表达及活性分析[J].农业生物技术学报,2010,18(2):225–230.

[45] 刘海燕,孙长坡,伍松陵,等.玉米赤霉烯酮毒素降解酶基因的克隆及在毕赤酵母中的高效表达[J].中国粮油学报,2011,26(5):12–17.

[46] YU Y S,QIU L P,WU H,et al.Degradation of zearalenone by the extracellular extracts of Acinetobacter sp.SM04 liquid culture[J].Biodegradation,2011,22(3):613–622.

[47] YU Y S,WU H,TANG Y Q,et al.Cloning,expression of a peroxiredoxin gene from Acinetobacter sp.SM04 and characterization of its recombinant protein for zearalenone detoxification[J].Microbiological Research,2012,167(3):121–126.

[48] ROTTER B A.Toxicology of deoxynivalenol (vomitoxin)[J].Journal of Toxicology and Environmental Health,1996,48(1):1–34.

[49] PESTKA J J,SMOLINSKI A T.Deoxynivalenol:toxicology and potential effects on humans[J].Journal of Toxicology and Environmental Health,Part B:Critical Reviews,2005,8(1):39–69.

[50] PESTKA J J.Deoxynivalenol:mechanisms of action,human exposure,and toxicological

relevance[J].Archives of Toxicology,2010,84(9):663–679.

[51] SOBROVA P,ADAM V,VASATKOVA A,et al.Deoxynivalenol and its toxicity[J].Interdisciplinary Toxicology,2010,3(3):94–99.

[52] FUCHS E,BINDER E M,HEIDLER D,et al.Characterisation of metabolites after the microbial degradation of A- and B-trichothecenes by BBSH 797[J].Mycotoxin Research,2000,16(Suppl.1):66–69.

[53] SHIMA J,TAKASE S,TAKAHASHI Y,et al.Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J].Applied and Environmental Microbiology,1997,63(10):3825–3830.

[54] IKUNAGA Y,SATO I,GROND S,et al.Nocardioides sp.strain WSN05-2,isolated from a wheat field,degrades deoxynivalenol,producing the novel intermediate 3-epi-deoxynivalenol[J].Applied Microbiology and Biotechnology,2011,89(2):419–427.

[55] HE C H,FAN Y H,LIU G F,et al.Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability[J].International Journal of Molecular Sciences,2008,9(12):2366–2375.

[56] 徐剑宏,祭芳,王宏杰,等.脱氧雪腐镰刀菌烯醇降解菌的分离和鉴定[J].中国农业科学,2010,43(22):4635–4641.

[57] 徐剑宏,潘艳梅,胡晓丹,等.降解菌DDS-1产3-AC-DON氧化酶的酶学特性[J].中国农业科学,2013,46(11):2240–2248.

[58] SYDENHAM E W,SHEPHARD G S,THIEL P G.Liquid chromatographic determination of fumonisin B1,B2,B3in food and feed[J].Journal of the Association of Official Analytical Chemists,1992,75(2):313–318.

[59] DUVICK J,ROOD T,MADDOX J,et al.Detoxification of mycotoxins in planta as a strategy for improving grain quality and disease resistance:identification of fumonisin-degrading microbes from maize[M]//KOHMOTO K,YODER O C.Molecular genetics of host specific toxins in plant diseases.Dordrecht:Kluwer Academic,1997:369–381.

[60] BLACKWELL B A,GILLIAM J T,SAVARD M E,et al.Oxidative deamination of hydrolyzed

fumonisin B1(AP1)by cultures of Exophiala spinifera[J].Natural Toxins,1999,7(1):31–38.

Progress on Biological Detoxification of Mycotoxins in Feeds

ZHANG Xiaolin*WANG Yang*LI Aike

(Academy of State Administration of Grain, Beijing 100037, China)

Abstract: Mycotoxins are small molecular weight toxic secondary metabolites with stable chemical property produced by some harmful fungi. Their existences are a threat both in terms of their impact on animal production and the threat to human health and thus can lead to great economic losses in animal husbandry and food industry. Though many physical or chemical methods are available for mycotoxin detoxification, most of them are not widely available due to some drawbacks of destruction of nutrients and incomplete detoxification involved in detoxification process. Biological detoxification is considered as a desired detoxification strategy, because it not only overcomes the above shortcomings, but also has the advantages of mild reaction condition, safety and environmental friendliness. This paper summarized kinds of common mycotoxins in feeds and biological detoxification research progress of mycotoxins. Additionally, problems in current biological detoxification research were also discussed in this paper. It aimed to provide theoretical references for researchers to seek practical, effective and economically feasible biological detoxification methods.

Key words: feeds; mycotoxins; biodegradation; biological detoxification; microorganisms

蓖麻油浸提同步蓖麻饼粕脱毒技术的研究

蓖麻油浸提同步蓖麻饼粕脱毒技术的研究溶剂浸提法具有浸提效率高、设备要求低、便于自动化和连续化生产等优点,是当今大多数企业制取蓖麻油采用的技术。国内主要采用6号溶剂作为浸提蓖麻油的浸提剂。 6号溶剂主要成分是正己烷,该溶剂浸提蓖麻油效率低、易爆炸、有毒、污染空气,所以寻找一种浸提蓖麻油效率高、安全、绿色环保的溶剂替代6号溶剂显得格外紧迫。蓖麻籽中含有四种毒素,毒素毒性大,性质各异,使蓖麻饼粕脱毒困难。 现有脱毒技术存在对设备要求高,条件苛刻,工业成本高或者脱毒效果不理想等缺点,使蓖麻饼粕主要作为农田肥料使用,附加值低。为改进蓖麻油制取和蓖麻饼粕脱毒技术,提高蓖麻籽加工的整体经济效益,本文建立了一套溶剂浸提蓖麻油同步脱除蓖麻饼粕毒素的工艺技术,主要研究结果如下。 采用甲醇、95%乙醇、丙酮、异丙醇做蓖麻油浸提实验,同时以正己烷作对比。结果表明:五种溶剂中,95%乙醇浸提后饼粕粗蛋白含量及NSI最高,浸提的蓖麻油质量较好,一次浸提蓖麻油提取率能达到89.55%,可将95%乙醇作为浸提蓖麻油的浸提剂。 分别用85%、65%、45%、25%的乙醇溶液浸提蓖麻饼粕。结果表明:浓度大于或等于65%的乙醇溶液具备浸提蓖麻油和脱除蓖麻碱的能力,浓度小于或等于45%乙醇浓度的乙醇溶液具备脱除变应原和蓖麻碱的能力。 优化了 95%乙醇浸提蓖麻油的条件,得到95%乙醇浸提蓖麻油的最优条件为:微波变性时间1 min、浸提时间1 h、料液比1:8 g/mL、浸提次数3次。在最优条件下,蓖麻油的浸提率为99.98%,饼粕残油率为0.07%,饼粕蓖麻碱残留量为

0.0188%。 考察了不同因素对25%乙醇脱除饼粕中变应原、蓖麻碱的影响,得到25%乙醇溶液脱除饼粕中变应原、蓖麻碱毒素的适宜条件为:浸提时间3 h、浸提温度80℃、料液比1:12 g/mL、浸提3次。在适宜条件下,蓖麻碱脱除率为98.43%,变应原脱除率为 98.64%。

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

饲料霉菌毒素污染及其脱毒方法

饲料霉菌毒素污染及其脱毒方法 (中国农业科学院畜牧研究所动物营养与饲料研究室张军民) 霉菌毒素是次生性的真菌代谢物,全世界极为关注。据估计,全世界供应的谷物中有25%受到霉菌毒素污染。有几种方法一直被用来对收霉菌毒素污染的饲料进行脱毒或灭活处理,但是其作用极不稳定,或者不实用。 一、霉菌对饲料的危害自从1960年英国火鸡X-病爆发,世界开始注重对毒素中毒的彻底调查。已知有300多种真菌产生毒素,但除几种毒素外,人们对它们产生的毒素所知甚少。已知的重要的毒素有:黄曲霉素、赭曲霉毒素、桔霉素和玉米赤霉烯酮。这些有霉菌分布各异,都已从范围广泛的各种谷物及混合饲料中分离。真菌生长: 曲霉属菌属曲霉科,大多数真菌污染事件都发生在操作不当的收获、运输、饲料原料和混合饲料储藏过程中。饲料水分含量12%或以上,相对湿度80~90%和温度在10~42℃都足以使真菌生长。而霉菌对饲料造成严重的危害。微生物活动是导致贮藏饲料霉变的主要原因,微生物个体极小,在其未大量繁殖前,常不易被发现。当发现霉变颜色时,说明微生物繁殖已处于旺盛阶段,饲料品质已受到严重破坏。 1、造成大量的营养物质损失。 据研究,导致饲料霉变的孢霉菌,属一种腐生微生物。该微生物自身不仅不制造营养,而且常可通过分泌多种酶分解饲料养分,供其生长繁殖。因此,凡被霉菌污染的饲料,营养物质含量大大降低,并散发一股难闻的霉味。联合国粮农组织调查,全世界每年被真菌污染的各类谷物、油料种子和饲料,约占其总量的10%左右。可见,霉菌是影响全世界农业、饲料业和养殖业发展的一大危害,必须预以高度重视。 2、引起发热,使贮料发生质变。 霉菌在消耗饲料营养物质的同时,还释放出热量。料温升高的结果,使饲料中蛋白质、脂肪、维生素发生变化。首先使蛋白质发生质变,出现蛋白质溶解度降低,纯蛋白减少、氨态氮增加、蛋白质利用率和氨基酸含量下降。 3、产生毒素污染饲料。 在本文中重点强调霉菌毒素对谷物和饲料的污染及其可能的脱毒方法。霉菌毒素是次生性的真菌代谢物,至今仍是全世界受到重大关注的一个领域。霉菌毒素如果有的话一般是以微量污染物的形式存在于农产品中,其浓度范围以每克中含有多少纳克到多少微克计。对霉菌毒素的大力研究以进行了将近40年。1961年分离到了第一组霉菌毒素并对它们进行了描述。它们由黄曲霉毒素组成。这是对1960年在动物中爆发的严重急性病进行研究的结果。1965年,继黄曲霉毒素的发现之后又识别了另一组重要的霉菌毒素-赭毒素(Ochratoxins)。 二、霉菌毒素分类及危害霉菌毒素中毒的典型情况一般是由于发生急性临床症状。这

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

菜籽粕脱毒

菜籽饼脱毒 菜粕(菜籽饼)是一种利用价值极大的高蛋白饲料,含蛋白质 35%--40%、消化能10.46--12.55kj/kg、钙0.61%、磷0.95%,还含有铁、铜、锰、硒等微量元素和多种维生素,但因含有芥子甙、芥酸、植酸和单宁等抗营养因子,使其用途、用量大打折扣。芥子甙遇芥子酶或在消化道内能产生多种有毒物质,使猪甲状腺肿大、消化道和肝、肾损坏;芥酸可以使动物生长受阻;植酸能与钙、镁、锌结合,影响肌体发育;单宁除了味苦,还妨碍蛋白质的消化。所以,菜粕都要经脱毒处理才能作饲料用。 一作用与功能 1、对杂粕棉籽饼棉粕、菜籽饼菜粕等含有毒素和抗营养因子的原料有良好的脱毒作用和消除作用。 2、改善其适口性,消除大量影响口感苦味的单宁、芥子碱、皂素、环丙烯酸,降解和软化粗纤维,分泌与合成大量活性益生菌、生物活性小肽类氨基酸、各种生化酶、促生长因子等营养与激素类物质,动物对其中的微生物菌体蛋白氨基酸、乳酸菌、酵母菌就象人饮用的氨基酸口服液、酸奶和啤酒中的成份一样养成一种嗜好,喜爱采食。 3、脱毒发酵过程中产生的大量活性益生菌,能调节机体胃肠道微生态平衡和提高消化酶活性,促进饲料营养的消化、吸收和利用,提高饲料转化率和饲料报酬。 4、全面替代抗生素生产无抗生物发酵饲料,解决由于过多使用抗生素引起动物耐药性而使动物多病和无法医治,即使生病也好治疗。

5、提高免疫力,预防并治疗肠道疾病,建立肠道微生态平衡,抑制有害病菌的繁殖,增加有益微生物繁殖;对因胃肠道微生态失调而引起的细菌性胃肠炎或消化不良性的下痢或拉稀有良好的预防效果,特别对乳仔猪的黄、白痢或拉稀的保健预防有特效,能有效的降低发病率和死亡率。 6、除臭驱蝇,减少污染,控制细菌性疾病,能减少粪便中氮、磷、钙的排泄量,减少粪便臭味及有害气体排放,表现为动物粪便臭味逐步减轻,减少饲料蛋白质分解为氨气浪费,从而减少环境污染。 7、改善肉蛋奶品质,生产“绿色肉”、“农家蛋”、“无抗奶”,本品通过增强消化吸收功能,充分吸收利用饲料中营养成份及原料的天然色素,无需添加化学色素苏丹红、加丽素红造成对人体的有害物质及影响畜禽产品天然食用风味,可媲美家养畜禽肉。能天然增加动物产品着色度和食用风味,猪只皮肤红润,毛色发亮;肉鸡肉鸭颜色加深;改善蛋壳的质量和颜色,蛋清厚稠,蛋黄鲜红;水产动物颜色更加健康,无斑点。 二使用方法 发酵成熟的饲料可与玉米等能量饲料配合,加入其它添加剂做成全价饲料。 由于发酵时间比较短,可以防止及控制发酵物受其它杂菌的污染。另外,高活性生物制剂中的有益菌种大量生长,产生菌体蛋白、氨基酸、维生素、蛋白酶、淀粉酶等产物,可以提高菜籽粕的营养价值。菜籽粕中单宁含量可以降低50%左右,从而改善了菜籽粕的适口

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

植物组织培养脱毒方法综述

植物组织培养脱毒方法综述 摘要:植物病毒是制约花卉产业发展的重要因素,通过茎尖处理、茎尖结合热处理、冷处理、化学药剂处理及愈伤组织处理等方法可以去除植物病毒。通过查阅国内外研究文献和资料,综合阐述了茎尖培养脱毒、热处理脱毒、化学药剂培养脱毒、愈伤组织脱毒、冷处理脱毒等方法。 关键词:组织培养;脱毒;茎尖培养 正文: 植物病毒分布广、危害大,对世界花卉产业的发展产生了巨大的冲击。近年来。随着我国从国外引种花卉的种植面积的扩大以及不规范的繁殖技术,病毒病开始流行,严重影响了中国花卉产业的发展。目前国内外多用组织培养脱毒方法来阻止病毒病的继续传播以便提高植物的产量和质量。因此,本文对当前植物组织培养脱病毒方法作了综述,以期从中得到启示,进一步促进植物脱毒方法及应用的相关研究。 植物组织培养脱毒方法有茎尖培养脱毒、热处理脱毒、冷处理脱毒、化学药剂处理脱毒、花药培养脱毒、愈伤组织脱毒、珠心胚培养脱毒、茎尖微体嫁接脱毒等,其中由于茎尖培养脱毒效果好,是目前植物无病毒苗培育应用最广泛、最重要的一个途径。研究表明,如果将不同的方法结合起来应用效果会更好,通常将茎尖结合热处理来脱毒。 1、茎尖培养脱毒 茎尖培养脱毒原理:在染病毒植株体内,病毒分布并不均匀,在生长点病毒含量最低。病毒通过维管束和胞间连丝传播,在分生区内无维管束,病毒扩散慢,加之植物细胞不断分裂增生,所以病毒含量少,在茎尖生长点几乎检测不出病毒,因此切取茎尖愈小愈好,但实际操作中茎尖取太小不易培养成活,过大又不能去毒。 1.1 茎尖培养的方法及注意事项 将消毒后的材料放置在20~40倍解剖显微镜下,用解剖刀剥取0.1~1 mm 的茎尖,迅速放入培养基中,如果在空气中暴露时间过长,就会因失水引起茎尖死亡。赵军良等人的研究表明,带有一个叶原基的茎尖,脱毒效果最好,成活率最高[3]。不同的植物材料茎尖剥取的方法和最适合脱毒的茎尖大小不同。在菊花的茎尖培养中,在超净工作台内将消毒后的茎尖中用肉眼能看到的叶柄切除,在实体解剖镜下用解剖刀剥离顶芽至露出带有1~2片叶原基的生长点,生长点大小约在0.3~0.5 mm左右。大于以上尺寸脱毒率将会下降,反之成活率将会下降,迅速将摘出的生长点置于培养基中。就香石竹而言,切掉叶柄后,生长点是在几重叶原基的包围下,要从外到内逐一切掉外层叶原基,当生长点露出时把包括1—2片叶原基在内的生长点切下,迅速移入事先预备好的培养基内,注意生长点的方向及不要把生长点埋在培养基内。在康乃馨的茎尖培养中取带有1—2个叶原基、长0.2-0.3 mm的茎尖接种到培养基上,接种时只须沾取茎尖置于轻轻划破的培养基表面即可。洋葱可用0.5—0.7 mm茎尖培养,能有效地脱除洋葱中的O YDV和GI v病毒。在对白葱的茎尖脱毒研究表明,以带有1片叶原基大小为0.2-0.6 mm的茎尖外植体较为适宜。 1.2 茎尖培养可能出现的问题及防治方法 茎尖培养可能出现褐化、玻璃化等现象,这会严重影响植物的成活率,所以

菜籽饼粕脱毒处理

菜籽饼粕脱毒处理 菜籽饼粕含蛋白质35%~40%,各种氨基酸含量丰富而比例较适当,其品质接近大豆饼粕的水平,但由于菜籽饼粕含有许多与蛋白质组分有关的抗营养物质和有毒成分,使饲用价值降低,应用受到限制,造成资源的严重浪费。 菜籽饼粕中的抗营养成分和有毒物质,有三个最重要的因素,一是硫葡萄糖甙及其衍生物,二是植酸,三是单宁。据测定,不同地区及不同品种的菜籽饼粕的含毒量各异,硫葡萄糖甙为5.6%~9.7%,植酸含量为4.4%~5.6%,单宁含量约为1.5%~3.5%。 硫葡萄糖甙本身无毒,只是其水解产物才具有毒性,其降解产物主要有异硫氰酸酯、恶唑烷硫酮、硫腈酸酯和腈四类。异硫氰酸酯有辛辣味,严重影响菜籽饼粕的适口性,。高浓度的异硫氰酸酯对粘膜有强烈的刺激作用,长期或大量饲喂菜籽饼粕时可引起胃肠炎、肾炎及支气管炎,甚至肺水肿。异硫氰酸酯中的硫氰离子是与碘离子的形状和大小相似的单价阴离子,在血液中含量多时,可与碘离子竞争,而浓集到甲状腺中去,抑制了甲状腺滤泡细胞浓集碘的能力,从而导致甲状腺肿大,并使动物生长速度降低;硫氰酸酯的硫氰离子也可引起甲状腺肿大,其作用机制与异硫氰酸酯相同;恶唑烷硫酮的主要毒害作用是阻碍甲状腺素的合成,引起腺垂体促甲状腺素的分泌增加,导致甲状腺肿大,故被称为甲状腺肿因子或致甲状腺肿素。同时,还可使动物生长缓慢,一般来说,鸭对恶唑烷硫酮比鸡敏感,鸡比猪敏感;硫葡萄糖甙在较低的温度及酸性条件会有大量的腈形成,腈对机体的毒性比异硫氰酸酯和恶唑烷硫酮大得多,腈可引起细胞内窒息,但症状发展较慢。抑制动物生长,使肝和肾肿大,单胃动物的胃环境很有利于腈的生成。 植酸具有很大的螯合能力,其螯合能力与螯合剂乙二胺四乙酸近似,植酸在消化道中能结合二价和三价金属离子如钙、锌、镁、铜、锰、钴和铁等,形成不溶性螯合物。在pH=7.4的条件下,植酸和金属离子结合的能力:Cu2+>Zn2+>CO2+>Mn2+>Fe3+>Ca2+。这些螯合物即使在弱酸(pH=3-4)条件下,也极难溶解,不易被消化道吸收。因此,饲料中植酸的含量过高时,可使钙、锌等元素的利用率大为降低。特别是锌,在小肠上端pH条件下,锌形成极难溶解的植酸盐。据报道,高含量的植酸可使单胃动物对钙的吸收降低达35%。尤其是幼畜,植酸过多对钙的吸收的抑制作用表现得更为明显,并可导致佝偻病。 单宁通常存在于菜籽外壳中,主要是缩合单宁,单宁具有涩味,适口性差,首先影响动物的食欲,降低采食量。在消化道中单宁可与饲粮中的蛋白质结合,生成不溶性化合物,也可与多种金属离子如钙、铁及锌等发生沉淀作用,从而降低它们的利用率。单宁还可和消化酶结合,影响酶的活性和功能,不利于营养物质的消化吸收。 中国饲料卫生标准中规定:菜籽饼粕中异硫氰酸酯的允许量为≤4000毫克/千克;鸡配合饲料≤500毫克/千克;生长肥育猪配、混合饲料≤500毫克/千克。恶唑烷硫酮的允许量:肉用仔鸡、生长鸡配合饲料≤1000毫克/千克:

蓖麻粕脱毒

蓖麻粕有效成分及毒素 文章来源:点击数:190 更新时间:2011-11-06 蓖麻粕有效成分及毒素 1.1蓖麻粕的有效成分 蓖麻作为一种重要的油料作物在我国的内蒙古、东北及广大南方地区都有大面积栽种。蓖麻籽仁含油占籽重的45~50%,其余部分主要为蛋白质。蓖麻饼粕中有丰富的蛋白质,粗蛋白含量约33~35%,为粮食作物的三倍。蓖麻蛋白组成中含有球蛋白60%,谷蛋白20%,清蛋白16%,不含或含少量动物难以吸收的醇溶蛋白,所以蓖麻蛋白绝大部分可被动物消化利用。脱毒蓖麻粕蛋白与大豆相近,大豆中赖氨酸比蓖麻高40%左右,而蓖麻蛋白的蛋氨酸比大豆高出40%,如果两者混合,可起到氨基酸互补的作用。 1.2蓖麻粕的毒素 尽管蓖麻蛋白有以上优点,却因含有少量毒素,未经处理不能食用。蓖麻籽中含有少量毒素,但毒性非常剧烈。据记载,成人食入10—25粒、小孩食入5—15粒蓖麻籽就会有生命危险。蓖麻籽中的主要毒素有: 1.2.1蓖麻碱 蓖麻碱存在于蓖麻的叶、茎和籽中,它占籽重的0.15%—0.2%,在脱脂饼粕中占 0.3%—0.4%。蓖麻碱属高毒性物质,可引起呕吐,呼吸抑制,肝和肾受损。饲喂试验表明饲料中蓖麻碱含量超过0.01%,能抑制鸡的生长,含量超过0.1%,鸡将中毒麻痹死亡。 1.2.2蓖麻毒蛋白 蓖麻毒蛋白是高分子蛋白毒素,它存在于蓖麻籽蛋白质中,含量占籽重的0.5—1.5%,为脱脂饼粕的2—3%。蓖麻毒蛋白是一种蛋白合成抑制剂,在蓖麻毒素中是毒性最剧烈的一种,1Kg毒蛋白可毒死360万人,连眼镜蛇毒、氢氰酸都无法与它比拟。毒蛋白对动物毒性极大,兔肌肉注射半致死量LD50为4.1μg/kg。毒蛋白在水中煮沸或加压蒸汽处理即凝固变性,失去毒性。 1.2.3变应原 变应原存在于蓖麻仁中不含油的胚乳部分,具有强烈的过敏活性及抗原性,其毒性对人只过敏不致死,对动物相对重些但也不会致死。 1.2.4血球凝集素 血球凝集素是高分子蛋白质,对一定的糖分子有特异亲合力,它与蓖麻毒素蛋白同时存在于籽仁中。凝集素遇热不稳定,100℃加热30min被破坏,所以在机榨饼或预榨浸油饼粕中,血球凝集素和毒蛋白同时变性而失去活性。 2蓖麻饼粕的脱毒方法 2.1化学法 化学法是将水、饼粕、化学药剂按比例加入到耐腐蚀并带有搅拌的去毒罐中,按照所需温度、压力,通(或不通)蒸汽,维持一定时间,出料进行分离,然后将饼粕进行干燥冷却即可。化学法中有酸处理法、碱处理法、石灰法、氨处理法等。

饲料中真菌毒素生物脱毒的研究进展

饲料中真菌毒素生物脱毒的研究进展 张晓琳汪洋*李爱科 (国家粮食局科学研究院,北京100037) 摘要:真菌毒素是某些有害真菌产生的分子质量小、化学性质稳定、具有毒害作用的次级代谢产物,其存在不仅严重威胁着动物生产性能和人类健康,也给畜牧业和食品行业造成了巨大的经济损失。由于物理、化学脱毒法存在着营养成分流失、脱毒不彻底等问题,而不能被广泛应用。生物脱毒法不仅避免了上述缺点,还具有作用条件温和、安全环保的优点,是一种理想的脱毒方法。本文对饲料中常见真菌毒素的种类及其生物脱毒研究进展进行了综述,并对目前生物脱毒研究中存在的问题进行了讨论,旨在为研究人员探求实用高效、经济可行的真菌毒素生物脱毒方法提供参考。 关键词:饲料;真菌毒素;生物降解;生物脱毒;微生物 中图分类号:S816.17;S379.7 文献标识码:A 文章编号: 真菌毒素(mycotoxins)是某些真菌在污染谷物或者食品的生长繁殖过程中,产生的具有毒害作用的次级代谢产物,由其引起的中毒症状被称作是真菌毒素中毒症状(mycotoxicoses)。目前,已经发现真菌毒素的种类达400多种,其化学、生物学和毒理学性质多种多样,主要的毒性作用包括致癌作用、遗传毒性、致畸作用、肝细胞毒性、中毒性肾损害、生殖紊乱和免疫抑制。真菌毒素的存在不仅给人类及牲畜的健康带来极大的危害,也造成了相应的经济损失。据联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)统计,全球每年约有25%的农作物被真菌毒素污染,约2%的农作物因污染严重而失去营养和经济价值,造成数千亿美元的经济损失[1]。另外,2003年末至2004年秋,由于养猪行业大量使用发霉玉米,动物出现多种并发传染病,养殖场出现难以控制的局面。据调查,仅河南省死亡猪只就达1 000万头。如果以平均每头100元计算,经济损失达10亿元;如果再考虑饲料转化率低下、动物药品消耗增加,则2004年中国范围仅养猪业损失就在100亿元以上[2]。因此,如何解决真菌毒素对粮食和饲料的污染,对改善动物生产性能和提高人类食品安全有非常重要的意义。目前,毒素污染饲料的脱毒方法主要包括物理、化学和生物脱毒法。虽然物理、化学脱毒法取得了一定程度上的成功,但存在操作困难、降低饲料的营养品质和适口性等缺点[3-4]。与物理、化学脱毒法相比,生物脱毒法具有作用条件温

棉籽饼粕脱毒方法综述

棉籽饼粕脱毒方法综述 摘要:棉籽饼粕含有丰富的蛋白质,但同时也含有对畜禽有毒害的游离棉酚,研究适宜的脱毒方法脱除或钝化棉籽饼粕中的游离棉酚,使之变成优质蛋白质饲料,对饲料工业的发展具有重大的现实意义。本文从棉酚的结构、中毒症状谈起,综述了目前主要的棉籽饼粕脱毒方法效果和它们各自的优缺点,同时对棉籽饼脱毒研究中仍存在的问题也提出了一些看法和建议。 关键词:棉子饼粕、棉酚、脱毒 1、前言 我国是世界产棉大国,棉花产量居世界第一位,每年棉籽饼粕生产量60万吨左右[1]。棉籽不仅是很好的油源,而且也是很好的蛋白质资源。但因棉籽仁和棉籽饼粕含有棉酚等有毒物质,其用途受到很大限制,用作饲料的不足30%[2]。特别是近年来,随着畜牧业的发展,世界范围内蛋白质饲料的缺乏日益突出。2000年蛋白质饲料缺乏高达1800xl04万吨[3]。对棉籽饼粕的开发利用,无疑会对我国畜牧业和食品工业起到推动作用并带来显著的经济效益和社会效益。 2、棉籽饼粕的营养特性 棉籽经压榨处理的称为棉籽饼,溶剂浸提的称为棉籽粕。棉籽饼的营养价值随棉花的品种、种植环境、是否去壳及榨油的工艺不同而不同。一般蛋白质含量在34%以上,其中赖氨酸大约占蛋白质的1.3%~1.5%.蛋氨酸含量占1%,色氨酸1%,苏氨酸3%~3.2%.精氨酸含量特别高,精赖比在2.7以上(正常值为1.2~1.3),粗纤维一般在13%以上。此外,棉籽还含有丰富的维生素E和B族维生素等。去壳机榨的棉仁饼每千克含有产奶净能7.66MJ.kg-1,猪消化能为11.55 MJ.kg-1,鸡代谢能为8.19 MJ.kg-1;可消化蛋白263g.kg-1,无氮浸出物34.55%,祖纤维10.7%。去壳浸提的棉籽饼粕营养成分略低于机榨的棉籽饼,特别是粗脂肪降低35%以上。带壳土榨的棉籽饼中因壳及棉绒较多其营养成分含量比去壳机榨的棉仁饼减少20%~30%。另外,我国机榨棉仁饼粗蛋白质含量平均为36.7%,较美国的41%低,而游离棉酚的含量比美国的0.04%高。更重要的一点是棉籽饼

三种生物脱氮工艺研究现状

2016 年春季学期研究生课程考核 (读书报告、研究报告)考核科目:专业新技术 学生所在院 :市政环境工程学院 (系) 学生所在学科: 学生姓名:左左 学号: 学生类别:工学硕士 考核结果阅卷人 三种生物脱氮工艺研究现状 一、前沿

氮是造成水体富营养化的一种主要污染物质,尤其是当水体有机性污染物降低到一定标准之后。为了维护生态环境,保障人体健康,国家的污水排放标准逐步严格,对氮的去除也有了更高的要求。因此,研究具有高效脱氮功能的工艺越来越重要。 传统的生物脱氮理论[1]包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。其生物脱氮原理为: 氨化反应是在氨化菌作用下,有机氮被分解转化为氨态氮,这一过程称为氨化过程,氨化过程很容易进行;硝化反应由好氧自养型微生物完成,在有氧状态下,亚硝化菌利用无机碳为碳源将NH4+氧化成NO2-,然后硝化菌再将NO2-氧化成NO3-的过程。反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮 (N2 )的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物 (污水中的 BOD 成分)作为电子供体,提供能量并被氧化稳定。具体流程图如下: 传统生物脱氮途径 近十多年来,许多国家加强了对生物脱氮的研究,并在理论和技术上都取得了重大突破。其中主要包括短程硝化反硝化,厌氧氨氧化和同步硝化反硝化等,以及它们的组合工艺[2]。这些新的理论研究表明: ①硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用; ②反硝化不只在厌氧条件下进行,某些细菌可在好氧或缺氧条件下完成反硝化; ③许多好氧反硝化菌同时也是异养硝化菌,并能把NH4+氧化成NO2-后,直接进行反硝化反应。 二、研究现状 1、短程硝化反硝化 短程硝化反硝化[3]是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中将亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。因此,该技术具有很多优点: 可节省约25%氧供应量,降低能耗; 可节省反硝化所需的碳源,在C/N 一定的情况下,提高TN的去

植物组织培养脱毒方法综述

植物组织培养脱毒方法综述 符国芳,李 青 (北京林业大学,北京100083) 摘要:植物病毒是制约花卉产业发展的重要因素,通过茎尖处理、茎尖结合热处理、冷处理、化学药剂处理及愈伤组织处理等方法可以去除植物病毒。通过查阅国内外研究文献和资料,综合阐述了茎尖培养脱毒、热处理脱毒、化学药剂培养脱毒、愈伤组织脱毒、冷处理脱毒等方法。 关键词:组织培养;脱毒;茎尖培养 中图分类号:S432 4+1 文献标识码:A 文章编号:1002-7351(2007)03-0255-04 Summarization on the methods of virus elimination by plant tissue culture FU Guo fang,LI Qing (Beijing Forestry U niversity ,Beij ing 100083,China) Abstract:Plant virus is the factor that inhibits flow er industr y development Plant v irus can be eliminated by shoot tip treatment,shoot t ip and heat treatment,cold treatment,chemical treatment and callus treatment,so o n By searching the research bibliog ra phies home and abr oad,this paper describes the methods to eliminate v irus by shoot t ip culture,heat treatment,chemical treat ment,callus treatment and cold treatment,so on Key words:tissue culture;vir us elimination;shoot tip culture 植物病毒分布广、危害大,对世界花卉产业的发展产生了巨大的冲击。近年来,随着我国从国外引种花卉的种植面积的扩大以及不规范的繁殖技术,病毒病开始流行,严重影响了中国花卉产业的发展。目前国内外多用组织培养脱毒方法来阻止病毒病的继续传播以便提高植物的产量和质量。因此,本文对当前植物组织培养脱病毒方法作了综述,以期从中得到启示,进一步促进植物脱毒方法及应用的相关研究。 植物组织培养脱毒方法有茎尖培养脱毒、热处理脱毒、冷处理脱毒、化学药剂处理脱毒、花药培养脱毒、愈伤组织脱毒、珠心胚培养脱毒、茎尖微体嫁接脱毒等,其中由于茎尖培养脱毒效果好,是目前植物无病毒苗培育应用最广泛、最重要的一个途径 [1]。研究表明,如果将不同的方法结合起来应用效果会更好, 通常将茎尖结合热处理来脱毒。1 茎尖培养脱毒 茎尖培养脱毒原理:在染病毒植株体内,病毒分布并不均匀,在生长点病毒含量最低。病毒通过维管束和胞间连丝传播,在分生区内无维管束,病毒扩散慢,加之植物细胞不断分裂增生,所以病毒含量少,在茎尖生长点几乎检测不出病毒,因此切取茎尖愈小愈好,但实际操作中茎尖取太小不易培养成活,过大又不能去毒[2]。 1 1 茎尖培养的方法及注意事项 将消毒后的材料放置在20~40倍解剖显微镜下,用解剖刀剥取0 1~1mm 的茎尖,迅速放入培养基中,如果在空气中暴露时间过长,就会因失水引起茎尖死亡。赵军良等人的研究表明,带有一个叶原基的茎尖,脱毒效果最好,成活率最高[3]。不同的植物材料茎尖剥取的方法和最适合脱毒的茎尖大小不同。在菊花的茎尖培养中,在超净工作台内将消毒后的茎尖中用肉眼能看到的叶柄切除,在实体解剖镜下用解剖刀剥离顶芽至露出带有1~2片叶原基的生长点,生长点大小约在0 3~0 5mm 左右,大于以上尺寸脱毒率将会下降,反之成活率将会下降,迅速将摘出的生长点置于培养基中 [4]。就香石竹而言,切掉叶柄后, 收稿日期:2007-01-08;修回日期:2007-03-15 作者简介:符国芳(1982-),女(土家族),湖南张家界人,北京林业大学硕士研究生,从事园林植物组织培养研究。第34卷第3期 2007年9月福建林业科技Jour of F ujian Forestry Sci and T ech V ol 34 N o 3Sep ,2007

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

新型饲料脱毒剂的制备工艺及生产

新型饲料脱毒剂的制备工艺及生产 项目可行性报告 2012.2

目录 一、立项的背景和意义 (3) 1.1 立项背景 (3) 1.1.1 饲料行业发展形势 (3) 1.1.2 饲料污染情况 (5) 1.1.3 市场需求 (7) 1.2 项目的意义 (8) 二、国内外研究现状和发展趋势 (10) 2.1 研究现状 (10) 2.2 发展趋势 (11) 三、项目研究开发内容和技术关键及主要创新点 (12) 3.1 研究开发内容 (12) 3.2 技术关键 (12) 3.3 主要创新点 (13) 四、项目预期目标 (14) 4.1 技术指标 (14) 4.2 经济指标 (14) 4.3 产业化前景 (14) 五、项目实施方案、技术路线、组织方式与课题分解 (16) 5.1 实施方案 (16) 5.2 技术路线 (16) 5.3 组织方式 (16) 5.4 课题分解 (17) 六、计划进度安排 (17) 七、现有工作基础和条件 (18) 7.1 工作基础 (18) 7.2 条件 (19) 7.2.1 硬件方面 (19) 7.2.2 软件方面 (20) 八、经费预算 (20)

一、立项的背景和意义 近十多年来,我国养殖业的快速发展拉动了我国的饲料产业,饲料总量连续19年世界第二。农业部畜牧业司副司长王宗礼2011年11月在全国饲料行业形势分析会上表示,预计2011年我国商品饲料总产量将达到1.69亿吨,同比增长4%。目前饲料产业已成为我国国民经济中不可或缺的重要行业,它一头牵着种植业,每年转化约1亿吨国产玉米和几千万吨豆粕、棉粕、菜粕等饲料原料;另一头连着养殖业,促进我国肉、蛋、奶和水产品产量增长,对提高人民生活水平发挥了不可替代的作用。 但饲料及原料易受到霉菌毒素的污染,给饲料原料的采购和销售带来了极大困难。近年来,随着全球气候不稳定,极端气候的发生率增加,将影响霉菌毒素的发生率以及原料的生产量,霉菌毒素在饲料及原料中的污染也基本呈现持续增加的趋势,目前几乎采购不到完全不受霉菌感染的饲料原料。这不仅会造成大量的原料浪费,而且给动植物带来影响,更会严重危害人类健康,乃至影响畜牧业、食品业的发展。 目前国内外市场上解决饲料污染问题最为可行的方法是是添加霉菌毒素吸附剂。但较为成熟有效的产品多为国外品牌,占据了绝大部分的市场领域。而国内产品发展则较为滞后,不仅产品种类较少,且存在水平低、效果差等问题,很多都是从国外直接购买价格高昂的酶制剂作为核心技术,没有自主技术和品牌,市场占有率小。 1.1 立项背景 1.1.1 饲料行业发展形势 近几年来,我国饲料行业运行总体延续了近几年来稳健的发展趋势,饲料工业总产量和总产值均呈现稳步增长,详情可见下图1.1 2006-2011年饲料总产量趋势和下表1.1饲料工业2007-2010年产值情况。

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

相关文档
最新文档