新型生物脱氮工艺研究进展

新型生物脱氮工艺研究进展
新型生物脱氮工艺研究进展

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

德国生物脱氮计算

德国生物脱氮工艺中曝气池的设计计算 作者:屈计宁高廷耀 阅读:1904次 上传时间:2004-12-13 推荐人:yiming (已传论文1137套) 简介:德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝 气池设计方法介绍给大家,以供参考。 关键字:生物脱氮曝气池脱氮除磷 相关站中站:曝气技术及设备产品应用 A131的应用条件: ①进水的COD/BOD5≈2,TKN/BOD5≤0.25; ②出水达到废水规范VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果; ②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值; ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的悬浮固体浓度X; ⑥污水温度。 图1为前置反硝化系统流程。 1 计算N DN/BOD5和V DN/V T N DN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积V DN占总体积V T的大小。 由氮平衡计算N DN/BOD5: N DN=TKN i-N oe-N me-N s 式中TKN i——进水总凯氏氮,mg/L N oe——出水中有机氮,一般取1~2mg/L

N me——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在 18mg/L以下,则设计时取0.67×18=12mg/L N s——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L 由此可计算N DN/BOD5之值,然后从表1查得V DN/V T。 2泥龄 泥龄ts是活性污泥在曝气池中的平均停留时间,即 ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量 t S=(X×V T)/(Q S×X R+Q×X E) 式中t S——泥龄,d X——曝气池中的活性污泥浓度,即MLSS,kg/m3 V T——曝气池总体积,m3 Q S——每天排出的剩余污泥体积,m3/d X R——剩余污泥浓度,kg/m3 Q——设计污水流量,m3/d X E——二沉池出水的悬浮固体浓度,kg/m3 根据要求达到的处理程度和污水处理厂的规模,从表2选取应保证的最小泥龄。

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

AO生物脱氮工艺设计计算

A 1/O 生物脱氮工艺设计计算 1. 已知条件 (1) 设计流量 Q=40000m 3/d (2) 设计进水水质 BOD 5浓度S 0=130mg/L; TSS 浓度X 0=180mg/L; TN 0=40mg/L; NH 3-N=25 mg/L; TP=3.5 mg/L; COD cr =220 mg/L (3) 设计出水水质 BOD 5浓度S e <=20mg/L; TSS 浓度X e <=20mg/L; TN e <=20mg/L; NH 3-N<=8 mg/L; TP<=1mg/L; COD cr <=60 mg/L PH=6.0~7.0 2. 设计计算(按BOD 5负荷计算) (1) 设计参数计算 根据手册知道:

(1)设计参数计算 ①假设BOD 5污泥负荷: N S =0.13kg BOD 5 /(kgMLSS〃d) ②污泥指数: SVI=150 ③回流污泥浓度X R =106*r/SVI r——考虑污泥在沉淀池中停留时间,池深,污泥厚度等因素的系数取r=1.2 则X R =106*1.2/150=8000(mg/L) ④根据手册回流污泥比R=50%~100% 取R=100%

⑤曝气池混合液污泥浓度 {X}kg/m 3=R*X R /(R+1)=1*8000/2=4000mg/L=4 ⑥TN 去除率 {ηN }%=( TN 0- TN e )/ TN 0=(40-20)/40=50 ⑦内回流比 {R 内}%=η/(1-η)=0.5/(1-0.5)=100 (2) A 1/O 池主要尺寸计算 ①曝气池总有效容积 {V}m 3=Q 设L 0/ N S X=40000×130/(0.13×4000)=10000m 3 又生化反应池中好氧段容积与缺氧段容积之比 V 1/V 2=3~4 取V 1/V 2=4 则V 1=8000 m 3 V 2=2000 m 3 ②有效水深 h=5.0m ③好氧反应池的尺寸 总容积V 1=8000m 3, 设反应池两组。 单组池容V 1单= V 1/2=4000 m 3 单组有效面积S 1单=V 1单/h=4000/5.0=800m 2 采用5廊道式, 廊道宽b 1=5.0m 反应池长度L 1=S 1单/5 b 1=800/(5×5.0)=32m 校核 b/h=5.0/5.0=1 (满足b/h=1~2) L/b=32/5.0=6.4(满足L/b=5~10) 超高取1.0,则反应池总高H=5.0+1.0=6 m

生物脱氮工艺新旧比较及其发展

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 生物脱氮工艺新旧比较及其发展 水处理技术:本文对传统生物脱氮技术和目前新型的生物脱氮技术进行了介绍。 1传统生物脱氮工艺 中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在。如污水有机氮占含氮量的4O%~60%,氨氮占5O%~60%,硝态氮仅占0%一5%。传统生物脱氮技术遵循已发现的自然界氮循环机理,中的有机氮依次在氨化菌、亚硝化菌、硝化菌和反硝化菌的作用下进行氨化反应、亚硝化反应、硝化反应和反硝化反应后最终转变为氮气而溢出水体,达到了脱氮目的。 传统生物脱氮技术是目前应用最广的脱氮技术。硝化工艺虽然能把氨氮转化为硝酸盐,消除氨氮的污染,但不能彻底消除氮污染。而反硝化工艺虽然能根除氮素的污染,但不能直接去除氨氮。因此,传统生物脱氮工艺通常由硝化工艺和反硝化工艺组成。由于参与的菌群不同和工艺运行参数不同,硝化和反硝化两个过程需要在两个隔离的反应器中进行,或者在时间或空间上造成交替缺氧和好氧环境的同一个反应器中进行传统生物脱氮途径就是人为创造出硝化菌、反硝化菌的生长环境,使硝化菌和反硝化菌成为反应池中的优势菌种。由于对环境条件的要求不同,硝化反硝化这两个过程不能同时发生,而只能序列式进行,即化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。 常见的工艺有三级生物脱氮工艺、二级生物脱氮工艺和合建式缺氧一好氧活性污泥法脱氮系统等。传统生物脱氮工艺存在不少问题:(1)工艺流程较长,占地面积大,基建投资高。(2)由于硝化菌群增殖速度慢且难以维持较高的生物浓度,特别是在低温冬季,造成系统的HRT较长,需要较大的曝气池,增加了投资和运行费用。(3)系统为维持较高的生物浓度及获得良好

三种生物脱氮工艺研究现状

2016 年春季学期研究生课程考核 (读书报告、研究报告)考核科目:专业新技术 学生所在院 :市政环境工程学院 (系) 学生所在学科: 学生姓名:左左 学号: 学生类别:工学硕士 考核结果阅卷人 三种生物脱氮工艺研究现状 一、前沿

氮是造成水体富营养化的一种主要污染物质,尤其是当水体有机性污染物降低到一定标准之后。为了维护生态环境,保障人体健康,国家的污水排放标准逐步严格,对氮的去除也有了更高的要求。因此,研究具有高效脱氮功能的工艺越来越重要。 传统的生物脱氮理论[1]包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。其生物脱氮原理为: 氨化反应是在氨化菌作用下,有机氮被分解转化为氨态氮,这一过程称为氨化过程,氨化过程很容易进行;硝化反应由好氧自养型微生物完成,在有氧状态下,亚硝化菌利用无机碳为碳源将NH4+氧化成NO2-,然后硝化菌再将NO2-氧化成NO3-的过程。反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮 (N2 )的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物 (污水中的 BOD 成分)作为电子供体,提供能量并被氧化稳定。具体流程图如下: 传统生物脱氮途径 近十多年来,许多国家加强了对生物脱氮的研究,并在理论和技术上都取得了重大突破。其中主要包括短程硝化反硝化,厌氧氨氧化和同步硝化反硝化等,以及它们的组合工艺[2]。这些新的理论研究表明: ①硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用; ②反硝化不只在厌氧条件下进行,某些细菌可在好氧或缺氧条件下完成反硝化; ③许多好氧反硝化菌同时也是异养硝化菌,并能把NH4+氧化成NO2-后,直接进行反硝化反应。 二、研究现状 1、短程硝化反硝化 短程硝化反硝化[3]是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中将亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。因此,该技术具有很多优点: 可节省约25%氧供应量,降低能耗; 可节省反硝化所需的碳源,在C/N 一定的情况下,提高TN的去

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

(完整版)A1O脱氮工艺毕业设计

以下文档格式全部为word格式,下载后您可以任意修 改编辑。 摘要 炼油污水中通常含有大量的油、BOD5、COD、NH4-N、酚及其它杂质等。为保证出水达到排放标准,必须对其进行处理。 本设计采用A1O脱氮工艺对隔油后的炼油污水进行生化处理,即采用的是前置反硝化生物脱氮工艺。设计中主要处理设施有缺氧池、好氧池、二沉池、混凝反应池、混凝沉淀池、监测池等。A1O脱氮工艺主要包括生物除碳、好氧硝化、缺氧生化、混凝沉淀四个部分。在反应工序中,通过硝化菌的作用、将氨氮转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,从而达到从废水中脱氮的目的。二沉池出水进入混凝反应池,通过向混凝反应池中投加无机复合絮凝剂,使污水中的杂质和悬浮物沉降,进一步提高出水水质。 本工艺系统流程简单,不需外加碳源,基建费用与运行费用低,处理效果好,易于管理。

关键词:炼油污水;硝化;反硝化;混凝 Abstract The oil-refining sewage usually includes a large amount of oil, BOD5, COD, NH4-N, phenylic acid and other impurities, etc. In order to achieve the effluent standard, the oil-refining sewage must be disposed. The A1O denitrification craft is adopted to carry out biochemical treatment for refinery sewage after oil removal, i.e., the pre-denitrification biotreatment process. The main processing establishments include anoxic basin, aerobic basin, secondary sedimentation basin, coagulation basin, coagulative precipitation tank, monitoring basin and so on. And the A1O denitrification craft is made of four sections of biological decarbonization, aerobic nitration, anoxic biochemistry, and coagulative precipitation. In reaction procedure, the ammonia nitrogen is transformed into the nitrite nitrogen and the nitrate by nitrification, and then the nitrate nitrogen is transformed into nitrogen by denitrification, thereby the aim that the nitrogen is removed away from sewage comes true. The yielding water of secondary sedimentation basin comes into coagulation basin;

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

新型生物脱氮工艺发展(综述)

新型生物脱氮工艺发展综述 传统的生物脱氮工艺基本原理是在二级生物处理过程中,先将有机氮转化为氨氮,再通过硝化菌和反硝化菌的作用将氨氮转化为亚硝态氮和硝态氮,最终通过反硝化作用将硝态氮转化为氮气完成脱氮。因为硝化与反硝化反应的进行存在相互制约的关系;在有机物大量存在的情况下,自养硝化菌对氧气和营养物的竞争力不如好养异养菌,无法占据主导地位;反硝化需要有机物作为电子供体,但是硝化过程去除了大量的有机物,导致反硝化过程中碳源缺乏,所以为平衡两单元的不同需求,发展出多种生物脱氮方法相结合的工艺。 传统的生物脱氮工艺主要依靠调整工艺流程来缓解硝化菌反应环境和反硝化菌 反应环境之间存在的矛盾。如果硝化反应阶段在前,则需要外加电子供体例如甲醇等物质,提高了运行费用;如果硝化反应阶段在后,则需要将硝化废水回流,容易产生 污泥上浮并且需要提高回流比以获得更高的去除率。这个矛盾在处理氨氮浓度较低的市政废水中尚不明显,但在处理垃圾渗滤液、畜牧废水等高浓度氨氮废水时,极大的限制了系统脱氮效率。 近年来通过理论研究和实践创新,人们发现了一些与传统生物脱氮理论相反的生物脱氮方法,如短程生物脱氮工艺、SHARON工艺、ANAMMOX工艺、 SHARON-ANAMMOX组合工艺、OLAND工艺、CANON工艺。 1短程生物脱氮工艺 一般认为氨向亚硝酸盐转化是硝化过程的速度控制步骤,但在研究过程中人们发现亚硝酸盐积累的现象。生物脱氮需经过硝化和反硝化两个阶段,如果将作为反硝化反应的电子受体时,就实现了短程生物脱氮过程,该过程节省了进一步氧化亚硝酸的曝气动力费用,节省了反硝化过程中需要的碳源。 近年来短程硝化-反硝化技术的研究与应用多集中于处理高浓度氨氮废水, 这是 因为较高的游离氨浓度会抑制亚硝酸氧化菌的生长。同时也有研究指出, 较低的溶解氧浓度(DO<0.5mg/L) 下也可实现短程硝化, 因为氨氧化菌对溶氧的亲和力强于亚 硝酸氧化菌。比较普遍的观点认为, 短程硝化反应对温度要求比较苛刻。 2亚硝化脱氮(SHARON)工艺 SHARON工艺即亚硝化脱氮工艺,是荷兰Delft技术大学1997年提出开发的新 型生物脱氮工艺。基本原理是在同一个反应器内,在有氧的条件下,自养型亚硝酸菌将转化为,然后在缺氧条件下,异养型反硝化菌以有机物为电子供体,以 为电子受体,将转化为N2。其理论基础是亚硝酸型硝化反硝化技术,生化反应 可用下式表示 该工艺的关键是如何将氨氧控制在亚硝酸阶段,并持久维持在较高浓度的亚硝酸盐积累。 该工艺使用无需污泥停留的CSTR反应器,在较短的HRT和30~40摄氏度的条

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺水污染课程设计

城镇污水处理厂工艺设计(生物脱氮除磷工艺)水污染课程设 计

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

生物脱氮技术

污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。生活污水中 氮的主要存在形态是有机氮和氨氮。通常采用的二级生化处理技术对氮的去除率是比较低的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。污水脱氮,从原理看,可以分为物理法、化学法和生物法三大类。由于生物脱氮一般能够满足有关方面对污水净化的要求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究与投资开发领域。 一、生物脱氮技术 生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的。生物脱氮工 艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活性污泥法和生物膜法生物脱氮工艺。前者的硝化菌、反硝化菌等微生物处于悬浮态,而后者的各种微生物却附着在生物膜上。 1.活性污泥法 活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒。 (1)活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化和 反硝化作用分别在不同的构筑物中完成,如下图所示: 由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污 泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长环境均较佳,因而反应速度快,脱氮效果也比较好。但是,三级活性污泥法的流程长、构筑物多、附属设备多,因此基建费用高、管理难度大。此外,为了保持硝化所需的稳定pH值,往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高。可以看出,这种工艺的确具有很大的局限性。 如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应 器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统。如下图:

生物脱氮技术的发展及应用

生物脱氮技术的发展及应用 摘要介绍了脱氮技术的基本原理及脱氮的传统工艺,简述脱氮技术的发展过程及几种脱氮技术的优缺点,重点介绍生物脱氮新技术,展望了脱氮技术未来的发展。 关键词脱氮技术;生物脱氮;硝化与反硝化;脱氮技术发展 1引言 废水生物脱氮技术是90年代中期美国和南非等国的水处理专家们在对化学、催化和生物处理方法研究的基础上,提出的一种经济有效的处理技术。废水生物脱氮利用自然界氮素循环的原理,在水处理构筑物中营造出适宜于不同微生物种群生长的环境,通过人工措施,提高生物硝化反硝化速率,达到废水中氮素去除的目的。本文将重点介绍传统生物脱氮技术和目前新型的生物脱氮技术。 2生物脱氮的基本原理 废水生物脱氮一般由3种作用组成:氨化作用、硝化作用和反硝化作用。 2.1氨化作用 在未经处理的原废水中,含氮化合物主要以有机氮如蛋白质、尿素、胺类化合物、硝基化合物以及氨基酸等形式存在,此外还含有部分氨态氮如NH3和NH4--N。在细菌的作用下,有机氮化合物分解、转化为氨态氮。在活性污泥和生物膜系统内,氨化作用能较完全的发生。 2.2硝化作用 废水中的氨氮在硝化细菌的作用下,进一步氧化为硝态氮。此过程包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化成亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。 亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-和HCO3-等作为碳源,通过NH3、NH4+或NO2的氧化获得能量。硝化反应过程需要在好氧条件下进行,以氧作为电子受体。 2.3反硝化作用 反硝化作用是在反硝化细菌参与的条件下,将硝化过程产生的硝酸盐或亚硝酸盐还原成N2过程。反硝化菌是一类化能异养兼性缺氧型微生物,其反应需在严格厌氧条件下进行[1]。 3生物脱氮的影响因素

新型生物脱氮工艺

摘要:本论文介绍几种新型的生物化脱氮工艺,其中有新型脱氮工艺:短程硝化反硝化, 同时硝化反硝化, 厌氧氨氧化, 固定化微生物脱氮技术工艺等几种。关键词:生物脱氮工艺短程硝化反硝化同时硝化反硝化厌氧氨氧化1.短程硝化反硝化短程硝化反硝化生物脱氮(shortcut nitrification denitrification)是由荷兰Delft技术大学开发出来的脱氮新工艺[1-3]。其基本原理是将NH3-N氧化控制在亚硝化阶段,然后进行反硝化。反应方程式可表示为: (2-15) (2-16) 短程硝化反硝化的生物脱氮途径与传统硝化反硝化相比,在处理高浓度有机氮废水中具有潜在的优势:⑴短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮节省了25%的耗氧量;⑵在反硝化过程中是以有机碳源作为电子供体,短程硝化反硝化仅需传统硝化反硝化60%的有机碳源,节省了40%的碳源。理论上计算,传统硝化反硝化C/N为2.86:1,短程硝化反硝化C/N为1.71:1,即较低的C/N下就可以实现短程硝化反硝化反应;⑶缩短了反应历程,提高了脱氮效率。在好氧过程中短程硝化反硝化生物脱氮比传统硝化反硝化生物脱氮减少了由NO2--N氧化为NO3--N的过程,缩短了总的反应历程。另外,在短程硝化反硝化过程中由于省去了由NO3--N 到NO2--N这一转化过程,反硝化碳源不再为硝酸盐还原菌优先利用,也不存在硝酸盐还原酶对亚硝酸盐还原酶的竞争性抑制,加速了脱氮效率。2.同时硝化反硝化同时硝化反硝化(simulataneous nitrification denitrification)工艺,简单地说,是在同一个反应器中同时实现硝化和反硝化。Munch.Elisabeth V等研究了SBR法中的同时硝化反硝化现象[4。G.Bertanza运用延时曝气法对废水处理过程中的同时硝化反硝化现象进行了三年的研究[5]。试验结果表明:处理系统中的氧化还原电位在120~180mv范围内(此时DO 浓度均在1.5mg/L以下)同时硝化反硝化的处理效果最好,总氮去除率可达到60%~70%。根据以上可知,同时硝化反硝化现象确实存在于多种废水处理工艺中。目前大多数学者认为其机理的探讨主要从微环境理论、微生物学和生物化学的角度来研究:⑴从微环境角度来看,由于微生物个体形态非常微小,一般属μm级,影响生物的生存环境也是微小的。由于微生物种群结构、基质分布、代谢活动和生物化学反应的不均匀性,以及物质传递的变化等因素的相互作用,在活性污泥菌胶团和生物膜内部会存在多种多样的微环境类型。即使在好氧性微环境占主导地位的活性污泥系统中,也常常同时存在少量的微氧、缺氧、[!--empirenews.page--]厌氧等状态的微环境。⑵从生物学和生物化学角度来看,主要有两种观点存在:一种是Lloyd等及Robertson和Kuennen提出的好氧反硝化的概念,认为好氧反硝化菌和好氧反硝化酶系的存在导致了这种现象。目前已知的好氧反硝化菌有Pseudoonas、Spp、Alcaligensfaecalis、Thiosphaera、Pantotropha等[6],这些菌种为好氧反硝化的解释提供了生物学依据。另一种是Bock等提出的好氧反氨化的概念,即在有氧气限制的情况下,NH3-N直接转化为氮气。同时硝化反硝化有以下优点[7]:⑴硝化过程中消耗碱度,反硝化过程中产生碱度,这样同时硝化反硝化能有效地保持反应器中pH值稳定,而且无需添加外碳源,考虑到硝化菌最适pH值范围很窄,仅为7.15~8.16,因此这一点是很重要的。⑵同时硝化反硝化意味着在同一反应器、相同的操作条件下,硝化和反硝化应能同时进行。如果能够保证在好氧池中一定效率的反硝化与硝化反应同时进行,那么对于连续运行的同时硝化反硝化工艺污水处理厂,可以省去缺氧池的费用,或至少减少反应池容积。对于仅由一个反应池组成的序批式反应器来讲,同时硝化反硝化能够降低实现完全硝化反硝化所需的时间。同时硝化反硝化系统提供了今后降低投资并简化生物脱氮技术的可能性。然而,对于同时硝化反硝化的机理还缺乏深入的认识与了解,要使该项技术实用化还有大量研究工作有待完成。3.厌氧氨氧化1990年,荷兰Delft技术大学Kluyver生物技术实验室开发了ANAMMOX工艺。该工艺的特点是:在厌氧的条件下,以NO3―为电子受体,将NH3-N 转化为氮气。最近研究表明NO3―是一个关键的电子受体。由于这类细菌是自养菌,因此不需要添加有机物来维持反硝化。试验研究发现:厌氧反应器中NH3-N浓度的降低与NO3―的去除

生物脱氮除磷的综述

目前我国废水生物脱氮除磷的研究进展 赵春霞 (苏州科技学院,环境工程1222,学号1230103233) 引言:随着城市发展以及工业化进程的加快,导致污水成为人们重点处理的有关于环境的热点问题。大量的生活污水、工业废水和农田地表水径流汇入湖水、河流、水库和海湾水域,使藻类等其他植物大量繁殖,从而形成了水体富营养。所以对于我国这样水资源本来就很紧缺的国家,严格控制氮、磷污水的超标排放是很有必要的。传统的脱氮除磷技术制约了工艺的高效性与稳定性,而且很多的流程中包含多重污泥和污泥回流,增加了系统的复杂性,使得基建和运行费用大大提高。因此,我们必须跟进生物脱氮除磷的研发,不断提高生物脱氮除磷的水平。 1 生物脱氮除磷技术的原理 1)脱氮原理。污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝 化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用 转化为亚硝态氮、硝态氮。在缺氧条件下通过反硝化作 用将硝氮转化为氮气,即将(经反亚硝化)和(经反硝 化)还原为氮气,溢出水面释放到大气,参与自然界氮 的循环。水中含氮物质大量减少,降低出水的潜在危险 性,达到从废水中脱氮的目的。然而,近些年的研究发

现:在好氧的条件下,同时发生了硝化和反硝化作用;在厌氧条件下,NH4+-N减少,这些现象都无法用传统的脱氮的原理来解释,表明除了传统的脱氮理论以外, 还存在其他的生物脱氮原理。[1] 在此处键入公式。 2)除磷原理。生物除磷主要是在厌氧和好氧的环境下交替进行,在厌氧的条件下释放磷,在有氧的条件下摄取磷,通过排除富磷污泥达到除磷的目的。再通过聚磷菌除磷 的时候,其关键是PHB,当污水中BOD和TP的含量大于 20的时候,生物除磷比较安全,产生的PHB也比较多。 还有人认为,在释放磷的时候,关键是VFA,想要提高 除磷能力,便必须提高VFA的浓度。[5] 图1为生物除磷 示意图 图1生物除磷示意图 [1] 2 生物脱氮除磷技术 2.1生物脱氮技术 污水生物脱氮技术是通过反应器和控制手段实现时间或空间上的好氧和缺氧环境,达到硝化和反硝化脱氮的目的。

污水生物脱氮技术原理

污水生物脱氮技术原理、影响因素和3大关键菌种 本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。 01、污水脱氮方法简介 目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法通过外加直流电,在阳极产生强氧化剂,在阴极产生强还原环境和碱性环境,相互作用脱氮。不过物理法和化学法、电化学法都不是咱们注册考试考察重点内容,《排水工程》考察重点脱氮方法为生物脱氮方法。 02、生物脱氮技术原理 说到生物脱氮,就离不开缺氧的概念,一定要注意缺氧和厌氧的区别,其中缺氧是没有分子氧但是有硝酸根、亚硝酸根,而厌氧则是既没有分子氧也没有氮的氧化物,要求要比缺氧更加严格。 水体中的总氮=硝酸盐氮+亚硝酸盐氮+有机氮+氨氮,其中有机氮+氨氮=凯氏氮,硝酸盐氮+亚硝酸盐氮=硝态氮,所以总氮=凯氏氮+硝态氮。这是一个知识常考点,需要大家弄清楚这几个氮的相互包含关系。 生物脱氮的原理,大致可以分为以下4步骤描述: 1.有机氮在氨化细菌的作用下,发生氨化作用生成氨氮,注意氨化作用在厌氧环境、好氧环境均能进行,且氨化作用能够产生碱度。 2.水中氨氮再亚硝酸菌的亚硝化作用下,生成亚硝酸根,亚硝化过程消耗碱度,且在好氧条件下进行。 3.亚硝酸菌在硝酸菌的作用下,发生硝化作用,继续生成硝酸根,这个过程也是在好氧条件下进行的,这个过程也消耗碱度,但是消耗量要比亚硝化过程少。 4.生成的硝酸根在缺氧条件下,由反硝化细菌发生反硝化作用,生成氮气排入大气,这个过程能够大大增加碱度,可以适当弥补前面阶段消耗的碱度。 对于最常规的生物脱氮,就是以上4步骤,但是目前研究最多的还有短程反硝化脱氮,也就是进行到第2步,生成亚硝酸根时,就在缺氧条件下由反硝化细菌把亚硝酸根转变为氮气排除进入大气中,省略了第3步骤,从而提高了脱氮

相关文档
最新文档