植物多糖生物活性的研究进展

植物多糖生物活性的研究进展
植物多糖生物活性的研究进展

植物多糖生物活性的研究进展(作者: _________ 单位:___________ 邮编: ___________ )

【关键词】多糖类;植物,药用;生物类

多糖广泛分布于自然界的多种生物体中,尤其是动物细胞膜、植物细胞壁和微生物细胞壁中,是一类由醛糖或酮糖通过糖苷键连接而成的天然高分子多聚物,是构成生命体的分子基础之一。多糖在自然界中储量丰富,主要分为植物多糖、动物多糖以及微生物多糖3类[1]。自I960年以来,人们陆续发现多糖具有多种药理活性,它不仅可以作为广谱免疫促进剂调节机体免疫功能,还可以在抗肿瘤、抗病毒、抗氧化、降血糖、抗辐射等方面发挥广泛的药理作用[2拟.7]。迄今为止,已有300多种多糖类化合物从天然产物中分离出来,其中从植物中提取的水溶性多糖最为重要[8]。因为它药理活性强,来源广泛,细胞毒性低,安全性强,毒副作用较小,已引起医药界的广泛关注,并成为当今生命科学研究的热点之一。

1植物多糖的生物学功能

1.1免疫调节作用Yang等研究发现,在针对小鼠腹腔巨噬细胞的体内和体外试验中,当归多糖均可显著提高一氧化氮(NO )生成

量,

提高细胞溶酶体酶活性[9]。另外,他们还发现L拟硝基拟精氨酸甲酯(NG A nitro 拟L拟arginine methyl ester , L拟NAME)即一种诱导

型NC合酶(iNOS)抑制剂,可有效抑制巨噬细胞中当归多糖诱导的NO 的增殖,说明当归多糖是在iNOS基因表达的诱导下刺激巨噬细胞产生NO的。Cheung等从冬虫夏草中提取得到虫草多糖(UST2000)并对产物进行了成分分析和体外药理活性研究[10]。虫草多糖主要由葡萄糖、甘露糖和半乳糖组成,比例为 2.4 : 2 : 1;体外试验中,虫草多

糖可显著促进细胞增殖和白细胞介素的分泌;另外,虫草多糖可短暂诱导胞外信号调控酶的磷酸化而使其激活、提高巨噬细胞的吞噬活性

并提高酸性磷酸酯酶的活性。结果表明,虫草多糖在触发免疫应答方面具有极其重要的作用。

1.2抗肿瘤活性自从1950年发现酵母多糖具有抗肿瘤活性以来,研究人员已分离出许多具有抗肿瘤活性的植物多糖。Lins等经

过血液实验、生物化学实验和组织病理学分析得知,在体外实验中,红藻硫酸多糖无显著细胞毒性,但体内实验显示出明显的抗肿瘤活性,并且可以增强5拟氟尿嘧啶诱发的免疫应答,说明红藻硫酸多糖由于它的免疫学性质而具有抗肿瘤活性[11]。Yamasaki等通过体外实验研究发现,云芝多糖可增强肿瘤细胞的生长抑制和细胞凋亡,降低肿瘤细胞的扩散能力,从而发挥抗肿瘤功效[12]。

1.3抗菌抗病毒活性Wang等研究发现,匍扇藻粗多糖具有显著抗I

型和H型单纯疱疹病毒的活性,可抑制不同的单纯疱疹病毒株,包括标准株、阿昔洛韦抗性株和临床病毒株;其细胞毒性很低,具有较大的选择性系数。这种粗多糖还有一定的抗呼吸道合胞病毒活性,但对流感病毒没有抑制作用[13]。Marti ns等报道伞菇多糖可以提高白色念珠菌感染的小鼠腹膜巨噬细胞的杀菌活性,同时H2O2水平上升,并且多糖处理组的腹膜巨噬细胞甘露糖受体表达量增加,可加强无噬菌素微生物对细菌的粘附和吞噬作用,说明巴西伞菇多糖可以通过刺激宿主巨噬细胞的杀菌活性来发挥抑菌活性[14]。

1.4降糖降血脂活性植物多糖能够促进胰岛素的分泌,影响糖代谢酶的活性,促使外周组织摄取葡萄糖,抑制糖异生途径,从而降低血糖。Gong等研究表明,马齿苋粗多糖可显著降低糖尿病小鼠的空腹血糖浓度、血清总胆固醇和甘油三酯的浓度,并可显著提高高密度脂蛋白拟c和血浆胰岛素水平[15] °Li等报道黄芪多糖在时间和计量依赖性条件下,可显著降低血糖水平,提高血浆胰岛素浓度,降低B细胞凋亡率和辅助性T淋巴细胞因子Th1/Th2的比例,促进脾脏中过氧化物酶体增生物激活受体拟丫(PPAR);丫)基因的表达,说明黄芪多糖具有降血糖活性,但它并不能完全治愈I型糖尿病[16]。

1.5抗辐射活性Kim等把人参多糖预处理的小鼠骨髓细胞经丫射线照射后,与对照组相比,人参多糖处理组的骨髓细胞内的IL拟.12、主要组织相容性复合体H (MHQ类分子)和CD4+T淋巴细胞的含量显著提高,骨髓细胞含量高并且可以成功分化为树突状细胞进行抗原递呈以参

与免疫应答,说明人参多糖可保护和修复受辐射损伤的细胞,具有较好的抗辐射活性[17]。Sun等在研究当归多糖的辐射保护作用时发现,与对照组相比,当归多糖预处理组小鼠的外周淋巴细胞的死亡率显著降低,说明当归多糖能保护白血球和淋巴细胞免受辐射的损伤,可用于急性辐射的防护[18]。

1.6抗氧化和抗衰老活性Hong等以4组昆明系小鼠模型研究甘草多糖的抗氧化活性,结果表明高脂饮食组小鼠血清抗氧化酶活性显著降低,与之相比,甘草多糖处理组小鼠的免疫和抗氧化酶活性显著提咼,说明甘草多糖具有抗氧化活性且可显著氧化应激反应[19]。Chen等从赤灵芝中分离得到灵芝多糖并应用卵巢癌小鼠模型研究其对血清抗氧化酶活性的影响,结果显示,灵芝多糖处理组小鼠的丙二醛(MDA含量显著降低、血清抗氧化酶活性显著提高,说明灵芝多糖具有显著抗氧化活性,可以用于卵巢癌的治疗[20]。

1.7其他作用植物多糖除了具有上述的生物活性以外,还具有多种其他的生物学功能。有些多糖具有抗疲劳活性,如毛竹叶多糖有些多糖具有抗凝血活性,如龙胆多糖;有些多糖具有溃疡保护活性,如芦荟多糖;有些多糖具有抗炎活性,如虎杖多糖;有些多糖具有镇痛活性,如牡荆多糖;还有些植物多糖具有促进创伤愈合、减轻肝损伤以及治疗骨质疏松等活性[21拟28]。

2植物多糖的结构和功能的相互关系

研究显示,多糖的生物活性及其功能直接或间接受其分子结构和空

间构象的影响,取代、降解等分子修饰也有可能影响多糖的生物学活性。目前对多糖构效关系的研究主要包括物理性质、一级结构、空间构象和分子修饰等方面。

2.1物理性质与生物活性多糖的物理性质可直接影响其生物活性。如茯苓多糖具有显著的抗肿瘤活性,但茯苓多糖不溶于水,不便于临床应用,若将其羧甲基化便可得到水溶性羧甲基茯苓多糖,其抗肿瘤活性也明显提高,便于研究和应用[29]。多糖的生物活性也与其相对分子量大小有关。相对分子量越大,体积越大,越不利于多糖跨越多重细胞膜障碍而进入生物体内发挥生物学活性,但也并不是相对

分子量越低越好,因为分子量过低,无法形成产生活性的聚合结构。肝素、低分子肝素治疗短暂性脑缺血发作均有效,但低分子量肝素较肝素更加安全,因为肝素发挥抗凝血活性的主要单元为五糖片段,无外加取代基使其更加安全(图1)[30]。

图1肝素的五糖片段

Fig 1 Pen tose fragme nt of Hepari n

福建医科大学学报2010年2月第44卷第1期许慧等:植物多糖生物活性的研究进展 2.2 一级结构与生物活性不同种类的多

糖,其主链糖基组成和糖苷键类型不同,生物学活性存在较大差异。如香菇多糖是以(1 -3)葡聚糖为主链结构,具有抗肿瘤作用及免疫调节功能,而主链同为葡聚糖的淀粉,因其糖苷键为(1 -4)键型而没有生物学活性。银耳多糖主要成分为u拟(1 -3)拟糖苷键连接的甘露聚糖(图2),具

有免疫调节、抗肿瘤、抗凝血、抗血栓等作用,而从酵母细胞壁中得到的甘露聚糖主要以(1 -6)连接为主链,(1 - 2)或(1 -3)连接为支链连接而成,主要发挥抑制细胞突变和抗氧化等活性(图3)。

2.3空间构象与生物活性一般认为,呈屈状螺旋的多糖活性较高,而呈可拉伸带状或皱纹型带状的多糖活性一般较低甚至没有活性。单线螺旋结构不具活性,三股螺旋构型是多糖最具活性的空间构像[31]。另外,X拟,衍射分析表明,具有抗肿瘤活性的香菇多糖呈三股螺旋结构,具有免疫活性的裂图 2 "拟(1 -3)拟甘露聚糖的结构

单元褶多糖也能形成类似三股螺旋的对称螺旋结构。当向香菇多糖中添加尿素或二甲亚砜,使其失去其三股螺旋构像,改变空间构型,其生物活性也随之消失。而向水不溶的裂褶多糖中添加尿素或氢氧化钠,则可诱导产生规则的空间构像,从而表现出抗肿瘤活性。这些都说明,规则的空间构像与多糖的生物学活性密切相关[32]。

2.4分子修饰与生物活性目前对多糖进行分子修饰的常见方法有硫酸化、磷酸化、乙酰化、烷基化、磺酰化、羧甲基化等。此外,其它修饰方法,如酶法、超声波、酸降解等在多糖分子修饰中也有较好的运用。多糖经过分子修饰后,其生物活性有一定程度的提高,溶解性改变易吸收,甚至还可能增加新的功能。如Xu等将灵芝多糖羧甲基化后在体外研究其水溶性、化学特征和抗氧化活性的变化

[33]

其中羧甲基灵芝多糖的水溶解度明显提高,产生抗氧化活性或者说其抗氧化活性显著提高,特别是清除羟基自由基和H2O2自由基的能力提高,推测是较高的溶解度使原本较弱的抗氧化活性得到更大程度的发挥。

随着对多糖构效关系研究的不断深入,针对多糖的化学修饰也显得越来越重要,如果能找出它们之间的规律性,就可以更全面的解释多糖化学结构和生物活性之间的关系,这样就为寻找具有生物活性的多糖和多糖药物及多糖功能性食品开发奠定了基础。

3植物多糖的应用前景和展望

我国多糖资源丰富,尤其是来源于中草药的植物多糖。植物多糖作为一类重要的天然活性物质,其最大的优点是毒副作用小,来源广泛,并且在咼温下性质稳定,不易变性失活,因此被广泛应用于咼效低毒药物的研发。目前已有香菇多糖、猪苓多糖、云芝多糖、牛膝多糖等多种植物多糖应用于临床,它们在抗肿瘤、抗病毒、抗衰老、抗氧化、抗溃疡、降血糖等方面都表现出积极作用。然而,由于多糖本身结构复杂,种类繁多,结构测定和分离纯化有很大的难度,有些多糖在天然植物中的含量较低且不易分离,其药理作用会受到诸多因素的影响,这些都将为多糖的研究和应用带来挑战。

另外,多糖类化合物的研究与蛋白质、核酸类物质相比,起步晚,差距大,不够深入,多糖的生物活性机理、功效因子以及量效和构效关

酶在植物多糖的提取方面的应用现状

酶在植物多糖的提取方面的应用现状 植物的有效成分大多包裹在细胞壁中,对这些有效成分的提取,传统的热水、酸、碱、有机溶剂浸提法,受细胞壁主要成分纤维素的阻碍,往往提取效率较低,恰当地利用植物精提复合酶处理这些中药材,可改变植物细胞壁的通透性,降解杂质(如蛋白,果胶,鞣质,灰分和粘性物质等)对中药有效成分提取的干扰,沉清提取液,易于滤过,提高药效成分的提取率。本文就植物精提复合酶的作用机理,影响酶促反应的因素及目前用于中药有效成分的提取的研究情况作一概述。 1. 植物精提复合酶水解作用机理 1.1纤维素分子是由许多吡喃型的D-葡萄糖残基通过β-1,4葡萄糖苷键连接而成的多糖链,天然纤维素为直链式结构,链与链之间有晶状结构和排列次序较差的无定形结构;纤维素分子以结晶或非结晶方式组合成微原纤维,微原纤维集束形成微纤维,以微纤维为基本构造构成纤维素。 纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase),又称纤维二糖水解酶(cellobiohydrolase,CBH)或C1酶;(3) β-葡萄糖苷酶(β-glucosidase,EC3-2-1-21),简称BG。 纤维素酶解是一个复杂的过程,其最大特点是协同作用。内切葡聚糖酶首先作用于微纤维素的无定型区,随机水解β-1,4-糖苷键,产生大量带非还原性末端的小分子纤维素,外切葡聚糖酶从这些非还原性末端上依次水解β-1,4糖苷键,生成纤维二糖及其它低分子纤维糊精。 1.2果胶酶可分为作用于甲酯键的果胶脂酶(PE)和分解α-1.4-半乳糖醛键的解聚酶,解聚酶中的内切果胶酶(endo-pl)和内切聚半乳糖醛酸酶(cndo-pl)对中药提取液有极好的澄清效果,彻底分解果胶,降低提取液粘度。 1.3半纤维素酶能裂解植物细胞壁,释放出更多的有效成分,可快速分解果胶和其它阿拉伯糖长键分子,降低果汁粘度。 1.4木聚糖酶作用于戊聚糖链,降解葡聚糖及戊聚糖等高分子粘性物质,其降解产物为糊精,纤维二糖及昆布二糖等。 1.5中温α-淀粉酶能够水解淀粉分子的β-1,4-葡萄糖苷键,任意切割成长短不一的短链糊精及少量的低分子糖类、直链淀粉和支链淀粉,均以无规则形式进行分解,从而使淀粉糊的粘度迅速下降。 夏盛集团技术中心专门开发出植物提取专用复合酶,有SPE-001、SPE-002、SPE-005、SPE-006、SPE-007A、SPE-007B、SPE-008等复合酶以及食品级的纤维素酶、木聚糖酶、β-葡聚糖酶、蛋白酶、淀粉酶等一系列植物提取用单酶。经本研发中心试验及国内大的植提厂家中试及大试表明,植物精提复合酶各酶系之间有极强的协同作用,相互促进,一方面破坏植物细胞壁,使有效成分最大限度溶出,降解植物提取液

植物多糖的研究进展

植物多糖的研究进展 【摘要】多糖又称多聚糖,是由单糖缩合成的多聚物,广泛分布于自然界中,是一类重要的活性物质。从20世纪50年代对真菌多糖抗癌效果的发现以来,人们开始了对多糖的化学、物理、生物学系列的研究。目前已有报道的天然多糖化合物约有300多种,广泛存在于植物、动物和微生物组织中。近年来,由于植物多糖具有免疫调节、抗肿瘤、抗衰老、降血糖等多种生物活性、毒副作用小和不易造成残留等优点[1-2],对植物多糖的研究呈现逐渐增多的趋势。中国幅员辽阔,自然条件复杂,孕育着丰富的植物资源,为开发利用植物多糖奠定了深厚的物质基础。目前,对植物多糖的研究多集中在药理作用等方面,而对植物多糖进一步的分离纯化、结构测定、结构和功能关系及在食品、农业、工业方面的开发应用等研究工作较少。笔者参阅了部分资料,对植物多糖的结构、提取方法、药理作用及在保健品、食品、农业等领域的应用作一简要综述,旨在为今后中国植物多糖的综合利用和开发奠定技术和理论基础。 【关键词】多糖;功能;提取纯化 1 植物多糖的组成和结构 多糖是由超过10个以上、通常由几百甚至几千个单糖分子聚合而成的一类化合物。由醛糖或酮糖通过糖苷键连接而成,糖苷键分为α型和β型2种。植物多糖的糖链结合以β-1,3或β-1,6键为主,有的多糖还带有分支,带有分支链的多糖具有抗肿瘤活性。而α型连接的多糖生理活性较弱。但有研究表明[3],α型连接的多糖也具有较强的抗肿瘤活性。多糖与蛋白质一样具有一、二、三、四级结构。一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。三级和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。研究表明,同是β-1,3连接的多糖即使其一级结构完全相同,但由于二级和三级结构不同,其生理活性差异也很大[4-5]。因此,多糖的活性与其高级结构密切相关。 2 多糖提取纯化方法的研究进展 2.1植物多糖的提取方法 2.1.1水煎煮法 水煎煮法是多糖提取的传统方法,是用水作为溶剂煎煮提取多糖。因为多糖在冷水中溶解度较低,一般要在70-90热水中回流提取2~3h,将提取液真空浓缩后加入乙醇将多糖析出。目前多数国内文献采用水煎煮法提取多糖,如盛家荣等[6]采用此法从板蓝根中提取多糖,李志洲等[7]采用该法提取大枣多糖。该法

绿藻多糖的研究进展

综述 绿藻多糖的研究进展 海藻是生长于海洋中的低等植物,是海洋生物的重要组成之一。主要由褐藻、红藻、绿藻、蓝藻四大类海藻组成,其中,褐藻和红藻已经被大规模的人工养殖和工业利用,广泛应用于生产和实践中,在食品工业、纺织工业、医药卫生等领域发挥重要作用,而绿藻则未被广泛开发和利用,只有部分产量高的绿藻被用作饲料、饵料、肥料等,绿藻被人类认识和利用的程度远不如褐藻和红藻。然而,绿藻却是种类最多的一类海藻,绿藻是藻类植物中最大的一门,约有350个属,7500~8000种。绿藻的分布很广,在淡水和海水中均有分布,海产种类约占10%,淡水产种类约占90%。海产种多分布在海洋沿岸,往往附着在10公尺以上浅水中的岩石上。绿藻营养价值很高,含有大量糖、蛋白质、脂肪、无机盐和各种维生素,人们通过不断的提取、分离、鉴定,得知藻类中具有较高活性的物质是海藻多糖类。20世纪60年代初,英国的Percival研究组开始对孔石莼所含的碳水化合物进行研究,1961年,日本的三田对石莼的水提多糖水解后进行了纸色谱分析,结果表明含有D-葡萄糖、L-鼠李糖、D-木糖、和D-葡萄糖醛酸等。至此揭开了人类研究绿藻多糖的序幕,此后相继有学者投入到绿藻多糖的研究中来,取得了很多令人鼓舞的成果,迄今为止,日本和法国对绿藻多糖的研究报道较多[1],而我国对绿藻多糖的研究则较少。大量的研究证明,从绿藻中提取的天多 糖来源广泛、品种多、毒副作用低、安全性高、具有多种生物活性,成为近年来研究开发的热点。 1绿藻多糖的组成与结构 目前,人们只对绿藻门中某些种属的多糖进行了较为详尽的研究,这些种属的多糖表现出了较强的生物活性。总体来看,对多糖研究较多的绿藻种属主要有石莼属(Ulva)、松藻属(Codium)、浒苔属(Enteromorpha)、礁膜属(Monostroma)、小球藻属(Chlorella)、刚毛藻属(Cladophora)等等。绿藻多糖主要位于细胞间质中,多为水溶性硫酸多糖。它也存在于细胞壁之中,细胞壁微纤维主要不是由纤维素组成,而是由木聚糖或甘露聚糖构成,另外,细胞质内尚有少量的多糖存在。水溶性硫酸多糖是绿藻多糖的主要成分,其组分和结构随绿藻种类的不同而不

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

天然植物多糖的结构及活性研究进展

2007年第1期 3月出版 李尔春* (陕西师范大学食品工程系,西安710062) 天然植物多糖的结构及活性研究进展 Rsearchprogressonnaturalplant polysaccharidestructureandbiologicalactivity *李尔春,男,1984年出生,陕西师范大学食品科学与工程系 在读生。 收稿日期:2006-12-14 LiEr-chun* (Departmentoffoodengineering,Shanxinormaluniversity,Xi'an710062,China) 摘要主要介绍了天然植物多糖的结构及生物活性功能,如抗肿瘤、免疫调节、抗疲劳、降血糖、抗病毒、抗氧化等,展望了其发展前景。关键词 植物多糖 结构 生物活性 AbstactsThenaturalplantpolysaccharidestructureandthebiologicalactivityfunctionweremainlyintro-duced,liketheanti-tumor,theimmunoregulation,an-tifatigue,hypoglycemic,theanti-virus,antioxidationandsoon.Itsprospectsfordevelopmentwerealsoforecasted.keywordsPlantpolysaccharidesStructureBiolog-icalactivities 多糖是指由十个以上单糖通过苷键连接而成的聚合物,他们除了作为植物的贮藏养料和骨架成分外,有些植物体内的多糖类化合物还在抗肿瘤、抗心血管疾病、抗衰老等方面具有独特的生理活性。多糖是重要的高分子化合物,但由于其单糖的组成种类和连接位置多,再加上端基碳的构型等问题,使得对多糖类化合物的研究难度加大,长时间以来未受到重视,发展比蛋白质和核酸晚。近年来由于多糖类化合物的特殊生理活性,使得对于糖复合物和多糖类化合物的研究得到了快速发展。 1多糖的结构与测定方法 从自然界分离得到的多糖是非常复杂的大混合 物,包括生物大分子的混合、不同多糖(中性多糖、酸性多糖或杂多糖) 的混合、同种多糖大小分 子的混合,因此必须采取适合特点的方法分离分级纯化,否则结构不易确定。同一样品采用不同分级方法,常有不同结果。植物的不同部位,因功能不同,其中的多糖也是各色各样的,必须分开来研究。例如人参的根、茎、叶、果中的多糖,虽都含有中性杂多糖、酸性杂多糖组分,但其组成与结构却是不同的。 多糖与蛋白质一样也具有一、二、三、四级结构。多糖的一级结构是指糖基的组成,糖基排列顺序,相邻糖基的连接方式,异头碳构型以及糖链有无分支,分支的位置与长短等。多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象。多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象。多糖的结构测定包括纯度测定、分子量测定、单糖组成的鉴定、糖连接位置的测定、糖链连接顺序的测定、苷键构型及氧环的测定。 多糖一级结构的分析方法很多,主要分为三大 类, 即化学分析法、仪器分析法和生物学方法。① 化学分析方法。主要有:水解法、高碘酸氧化、 Smith降解、甲基化反应等。②仪器分析法。与化 学分析法相比,仪器分析法具有快速、准确、灵敏、操作方便等优点,是糖链分析不可缺少的手段。用于糖链结构分析的仪器方法主要有紫外光谱法、红外光谱法、气相色谱法、高效液相色谱法、质谱法、核磁共振法等。除了传统的分析技术,现代分析技术的出现和发展以及仪器之间的联用,大大推动了糖链结构的研究工作。③生物学分析法。主要包括:酶学方法和免疫学方法。 食品工程FOODENGINEERING 44

多糖抗肿瘤活性的最新研究进展

多糖抗肿瘤活性的最新研究进展 李 松1,吴青华1,陈 畅2,顾 黎1 (1.山东大学生命科学学院,山东济南250100;2.北京化工大学生命科学与技术学院, 北京100029) 摘 要:此文综述了对多糖抗肿瘤活性的最新研究进展,包括多糖抗肿瘤作用途径、影响多糖抗肿瘤作用的因素以及多糖在肿瘤治疗上的应用现状,并对多糖抗肿瘤研究进行了展望。 关键词:多糖;抗肿瘤;免疫调节;直接作用 中图分类号:R979.1 文献标识码:A 文章编号:100521678(2007)0320213203 R ecent research progress on anti -tumor activity of polysaccharides LI S ong 1,W U Qing 2hua 1,CHE N Chang 2,G U Li 1 (1.School o f Life Science ,Shandong Univer sity ,Jinan 250100,China ;2.School o f Life Science and Technology ,Beijing Univer sity o f Chemical Technology ,Beijing 100029,China ) 收稿日期:2006209225;修回日期:2006210223基金项目:国家自然科学基金课题(N o.30470399) 作者简介:李松(19832),女,安徽宿州人;顾黎(19752),女,博士,通信作者,研究方向为糖生物学与糖化学,T el :0531288366153,E 2 mail :yehe.gl @https://www.360docs.net/doc/5912677862.html, 。 多糖(polysaccharide )是由20个以上的单糖通过糖苷键连接形成的含醛基或酮基的多羟基聚合物及其衍生物,广泛分布于动物、植物及微生物的细胞壁中。多糖具有广泛的生物学功能[123],它不仅可以作为体内的供能物质及某些物质的基本组分,还参与细胞间的识别、机体免疫功能的调节、细胞间物质的运输、细胞的转化、肿瘤细胞的凋亡等过程。自 1988年牛津大学Dwek 教授提出糖生物学的概念以来,多糖 的研究已成为热点之一。其中,对多糖抗肿瘤活性研究最为引人瞩目。本文将从多糖抗肿瘤作用的机理、影响其抗肿瘤作用的因素以及目前在肿瘤治疗上的应用现状等方面进行综述。 1 多糖抗肿瘤作用的机理 1.1 通过调节免疫系统发挥抗肿瘤作用 1.1.1 对免疫器官的调节 肿瘤细胞会诱导淋巴细胞凋 亡,导致胸腺与脾脏等免疫器官萎缩,从而降低宿主免疫力,产生危害。郑维发等 [4] 以S180肉瘤细胞为肿瘤模型探讨了 嗜盐隐杆藻胞外多糖(EPAH )的抗肿瘤活性。以75mg/(kg ? d )的剂量对荷瘤小鼠给药,小鼠的胸腺指数、脾指数和血液 淋巴细胞的数量都有明显的提高。这表明EPAH 能够显著提高荷瘤小鼠的脾脏和胸腺质量,进而提高机体免疫力,实现抑瘤功能。 1.1.2 对巨噬细胞的影响 作为机体重要的免疫细胞,巨 噬细胞几乎参与体内的一切免疫反应。近年来的研究发现, 许多种类的多糖都能通过对巨噬细胞的调节来实现抗肿瘤功能。据报道,一些自22个科的35种植物中分离出来的多糖都有增强巨噬细胞活性的功能,包括增强巨噬细胞对肿瘤细胞的毒性、激活巨噬细胞的吞噬能力、提高活性氧(ROS )和一氧化氮(NO )产量、促进α肿瘤坏死因子(T NF 2α)、粒/巨噬细胞集落刺激因子(G M 2CSF )、白细胞介素(I L )21β、I L 26、I L 28、I L 212、 γ干扰素(IFN )(IFN 2γ)以及IFN 2β等趋化因子和细胞因子的分泌。如从落矶山园柏(Juniperus scopulorum )松果中提取的含阿拉伯半乳聚糖的多糖对人和鼠的巨噬细胞都有免疫调节作用,能够促进巨噬细胞iNOS 的表达以及升高NO 产量、引发ROS 产生、增强炎性(I L 21,I L 26,I L 212和T NF 2α)及非炎性(I L 210)细胞因子的分泌等[5]。自中华芦荟(Aloe vera L. var.chinensis )中提取的富含甘露糖的多糖生物反应调节剂 PAC 2I 能够促进巨噬细胞移向腹腔,增强主要组织相容性复 合物II (MHC 2II )以及免疫球蛋白G 的Fc 受体(Fc γR )的表达、促进细胞的内吞作用及噬菌作用、诱导NO 的产生及T NF 2α的分泌,并明显延长了荷瘤的小鼠的寿命[6]。Im 等[7]研究发现,自盐角草(Salicornia herbacea )中分离出的一种多糖,不仅可以促进T NF 2α、I L 、NO 的分泌,而且能够通过激活单核细胞活性并促进单核细胞向巨噬细胞的分化来实现对巨噬细胞的免疫调节,进而发挥抗肿瘤作用。 除植物以外,K itazawa 等发现,注入自保加利亚乳杆菌 O LL 1073R 21中分离出的细胞外磷脂多糖后,小鼠巨噬细胞 的数量是注入等量磷酸盐缓冲液的对照组的3倍[8]。在糙 皮侧耳(Pleurotus ostreatus )的菌丝体中得到的一种蛋白聚糖,能够明显激活植有S180肉瘤小鼠的巨噬细胞产生NO 以及 NK 细胞产生细胞毒素,具有很好的应用前景[9]。 1.1.3 对T 、B 淋巴细胞及NK 细胞的影响 Park 等[10]发 现,自黄皮树(Phellodendron.chinese Schneid )中分离出来的多 3 12中国生化药物杂志Chinese Journal of Biochemical Pharmaceutics 2007年第28卷第3期

植物多糖的研究进展

植物多糖的研究进展 11食品科学余勇 11720525 摘要:植物多糖具有多种生物活性,近年来已成为研究热点。本文综述了植物多糖的提取分离、结构鉴定的方法及其主要生物活性,并展望了其发展前景。 关键词:植物多糖提取分离生物活性 多糖是普遍存在于自然界中的由许多相同或不同的单糖通过糖苷键连接在一起的多聚化合物,是维持生命活动正常运转的基本物质之一。根据单糖的组成可分为同多糖和杂多糖。同多糖指由相同单糖构成的多糖,如淀粉、纤维素等;杂多糖由不同的单糖组成,结构上还可能与蛋白质或者核酸等结合形成结合型多糖。植物多糖是多糖的重要组成部分。植物多糖在早期的天然产物化学研究中,因活性不明显,常作为无效成分弃去。由于生物学、化学等学科的飞速发展,自2O世纪8O年代来,人们对植物多糖的生物活性有了新的认识。科学实验研究显示,植物多糖具有许多生物活性功能,包括免疫调节、抗肿瘤、降血糖、降血脂、抗辐射、抗菌、抗病毒、保护肝脏等,且对机体毒副作用小。因此,对植物多糖的研究开发已成为医药保健品行业热门领域。如香菇多糖、灵芝多糖、云芝多糖已在国内临床上广泛应用。而其他一些植物多糖正在深入研究,如桑黄多糖、猪苓多糖、人参多糖、枸杞多糖等。 1 植物多糖的提取、分离和鉴定 1.1 植物多糖的提取 多糖是极性大分子,所以从植物中提取多糖,一般采用不同温度的水稀碱或稀盐溶液提取。由于水提时间长且效率低,酸碱提易破坏多糖的立体结构及活性。因此,发展高效,维持多糖结构和生物活性的方法至关重要。涂国云等采用酶法提取多糖,即采用复合酶一热水浸提相结合的方法,复合酶多采用一定的果胶酶、纤维素酶及中性蛋白酶,此法具有条件温和、杂质易除和提高效率等优点。同一原料,分别用水、酸、碱、盐或酶法提取,所得多糖往往是不同的。 1.2 植物多糖的分离纯化 利用不同多糖分子大小和溶解度不同而分离。常用季铵盐沉淀法和有机溶剂沉淀法。如安络小皮伞粗多糖的纯化方法,在多糖溶液中加入不同浓度乙醇溶液。得到多个多糖;还可用葡聚凝胶(Sephadex)琼脂糖凝胶(Sepharose)以不同浓度的盐溶液和缓冲溶液作为脱色剂,采用凝胶柱层析法使不同大小的多糖分子得到分离纯化,但该方法不适宜粘多糖分离。

植物多糖提取分离检测

植物多糖提取、分离及检测 实验目的 学习并掌握植物多糖提取、分离及检测的原理和方法 实验原理 植物多糖(polysaccharide)是由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖高分子碳水化合物,可用通式(c6h10o5)n表示。由相同的单糖组成的多糖称为多糖,如淀粉、纤维素和糖原;以没的单糖组成的多糖称为杂多糖,如阿拉伯胶是由戊糖和半乳糖等组成。多糖不是一种纯粹的化学物质,而是聚合程度不同的物质的混合物。多糖类一般不溶于水,无甜味,不能形成结晶,无还原性和变旋现象。多糖也是糖苷,所以可以水解,在水解过程中,往往产生一系列的中间产物,最终完全水解得到单糖。多糖普遍存在于自然界植物体中,其分子量一般为数万甚至数百万,是构成生命活动的四大基本物质之一,同维持生命功能密切相关。 多糖的提取分离,含色素较高的根、茎、叶、果实类需进行脱色处理,然用水、盐或稀碱水在不同温度下提取,应避免在酸性条件下提取,以防引起糖苷键的断裂。一般植物多糖提取多采用热水浸提法,所得多糖提取液可直接或离心除去不溶物。在多糖的检测方面采用单糖衍生物的GC/ MS 分析可以对多糖中的具体结构进行定性分析。 实验材料 材料山茶叶片 仪器组织粉碎机、烘箱、超声波提取机、恒温水浴锅、索氏提取器、旋转蒸发仪、冰箱、离心机、分液漏斗、GC/ MS 分析仪 试剂活性炭、95%乙醇、Sevag 试剂、无水乙醇、丙酮、无水乙醚、2mol·L - 1的硫酸、BaCO3 粉末、盐酸羟胺、吡啶、乙酸酐、氯仿 实验步骤 1、多糖提取分离称取粉碎、干燥好的山茶叶150g ,加入1500mL 蒸馏水,超声波提取20min ,于90 ℃恒温浸泡2h ,提取两次;得棕色滤液, 用活性炭对其脱色,活性炭量为活性炭:溶液=0.5%。过滤脱色后的滤液用旋转蒸发仪浓缩至50mL ,抽滤,加入200mL 95 %乙醇沉淀多糖,于冰箱醇析24h ,得棕色絮状物,离心,收集沉淀。 Sevag 法去蛋白Sevag 试剂的配制:用氯仿与正丁醇以4∶1 混合。取上述粗多糖加水溶解,于溶液中加入溶液1/ 3 倍体积的Sevage 试剂,剧烈震荡至无白色絮状物析出,离心15min ,除去水相与有机相交界处的变性蛋白,Sevage 法脱蛋白重复3 次。剩余液体加入200mL 无水乙醇,充分振荡摇匀,于冰箱静置24h ,得棕色絮状物,离心收集沉淀。沉淀经无水乙醇、丙酮、无水乙醚洗涤两次,干燥,得棕色多糖211g。 2 、多糖的检测 (1)、多糖水解称取50mg 山茶叶多糖,加入浓度为2mol·L - 1的硫酸10mL ,封管,超声振荡3~5min 至多糖完全溶解后,在100 ℃恒温水浴振荡水解2h ,然后将试管置于烘箱中于110 ℃反应6h。反应完成后冷却至室温,加BaCO3 粉末中和至中性, 离心, 过滤, 真空干燥, 得到水解后的单糖混合物10.5mg。 (2)糖腈乙酸酯衍生物的制备称取10mg 单糖样品和10mg 盐酸羟胺,用20mL 吡啶溶解,封管,95 ℃恒温水浴振荡30min 后冷却至室温;加入016mL 乙酸酐,封管,95 ℃恒温水浴振荡30min ,反应完成后冷却至室温,得糖腈乙酸酯衍生物。加入2mL 蒸馏水破坏乙酸酐,氯仿萃取,待测。 (3)单糖衍生物的GC/ MS 分析色谱条件:RTX25 石英毛细管柱(30m ×0125mm ×0125μm) ;载气为高纯氦气。柱箱初始温度100 ℃,进样口温度240 ℃,流速0166mL·min - 1 ,分流比30∶1 ,进样量1μL 。程序升温:初始温度为100 ℃,以10 ℃·min - 1升至250 ℃,保持1min。 (4)质谱条件:离子源为EI 源,灯丝电流016mA ,离子源温度200 ℃,电离能量70eV ,接口温度250 ℃,电子倍增管电压1120kV ,扫描周期015s ,扫描范围30100~400100m/ z ,溶剂延迟3min。

植物多糖及其提取方法

植物多糖及其提取方法 1 前言 多糖是自然界和生物体中广泛存在的物质,它是生物体内除蛋白质和核酸以外的又一类重要的信息分子。它具有多种生物活性,与生物机能的维持密切相关,与蛋白质、脂类形成的糖蛋白、脂多糖在细胞的识别、分泌以及在蛋白质的加工、转移方面起着不容忽视的作用。近年来,植物、海洋生物及菌类等来源的多糖已作为有生物活性的天然产物中的一个重要类型出现,各种多糖所具有的抗肿瘤、免疫、抗凝血、降血糖和抗病毒活性已相继被发现。我国对多糖研究始于20世纪70年代,植物多糖由于它们独特的功能和低毒性,作为新药发展的方向具有广阔的应用前景,越来越多的研究人员将目光投向植物多糖。 2 植物多糖的结构 植物多糖是由许多相同或不同的单糖以a或p一糖苷键所组成的化合物,普遍存在于自然界植物体中,包括淀粉、纤维素、多聚糖、果胶等。多糖有复杂的四级结构,一级结构指糖基的组成、排列顺序、相邻糖基的连接方式、异头碳构型及糖链有无分支、分支的位置与长短等;二级结构指多糖主链以氢键为主要次级键而形成的有规则构象;三、四级结构是指以二级结构为基础,糖单位之间的非共价相互作用,导致二级结构在有序地空间产生规则构象。植物多糖的

主链与支链形成了特殊的构型一凹形槽。凹形槽是一级结构与构象的体现。凹形槽的支链与活性关系为:支链度越大,凹形槽越多,生物活性越大。近年来,人们对多糖的结构和活性的研究不断深入,进一步阐明了多糖作用机制与结构的关系,其多样性的生理活性更加受到重视。 3 植物多糖的功能 多糖与蛋白质一样,具有生物大分子的复杂结构,具有一定的生理和生物学活性,概括起来多糖的生物活性包括:免疫调节性、抗肿瘤活性、降血糖活性、降血脂活性、抗病毒活性、抗衰老活性(抗氧化活性)、抗疲劳、抗突变活性,除此之外,还具有其他生物活性,包括抗凝血、抗炎、抗菌、抗惊厥、镇静、止喘及降血压等作用。 (1)免疫调节功能。由于现代医学、细胞生物学及分子生物学快速发展,人们对免疫系统的认识越来越深入。免疫系统紊乱,会导致人体衰老和多种疾病的发生。植物多糖是一种免疫调节剂。多糖对肌体的免疫调节作用,包括激活巨噬细胞,激活网状内皮系统,激活T和B细胞,激活补体,进干扰素的生成,促进白细胞介素的生成,诱生肿瘤坏死因子等。 2)抗肿瘤活性植物多糖主要是通过增强机体的免疫功能来达到杀伤肿瘤细胞的目的,许多高等植物中都含有抗肿瘤活性的多糖,如芦荟多糖、香菇多糖提取物、人参多糖具有

植物多糖的研究现状和发展展望

植物多糖的研究现状和发展展望 摘要:本文阐述了植物多糖提取分离纯化主要的方法,简要叙述了植物多糖生物活性的研究现状,并对植物多糖未来的研究方向进行了建议。 关键词:植物多糖,研究现状,发展展望 Abstract: This paper describes the plant polysaccharide extraction separation purification method, briefly describes theresearch status of biological activities of plant polysaccharide,and some suggestions for future research direction of plant polysaccharides. Keywords: plant polysaccharide,research situation, development prospect 多糖研究开始于20世纪40年代,经过几十年的努力人们对于多糖这一类重要的生命物质有了较为深刻的认识,也使这一学科成为当今生命科学研究最为活跃的领域之一。多糖根据来源可分为动物多糖、植物多糖、微生物多糖,广泛存在于动植物体内和微生物的细胞壁中。植物多糖因其来源广泛,无细胞毒性,应用生命体后毒副作用小、药物质量可通过化学手段进行控制等优点成为当今新药及功能性保健食品和绿色食品添加剂发展的新方向。目前对于植物多糖的研究大体分可分为以下几个方面:植物多糖的测定、植物多糖生物活性的研究、植物多糖的应用。 1、植物多糖的测定 植物多糖的测定包括提取和分离纯化的研究、植物多糖的纯度鉴定及相对分子量的测定、植物多糖的含量测定、植物多糖的结构分析。 1.1提取及分离纯化 1.1.1提取 由于大多数植物多糖都是极性大分子化合物,对于植物多糖的提取通常是用水、盐或者稀酸液、稀碱液在不同温度下进行提取。采用不同溶剂提取的多糖成分不同,其生物活性也有较大差异。 水提醇沉法提取多糖操作简单且效果较佳,在中药有效成分提取中应用已久,大多是作为澄清液体的一种方法,但由于其提取多糖纯度不高,且随着新的活性多糖的发现,水提醇沉法的单独使用已难以满足提取要求。而有些多糖更适合用酸碱溶液进行提取,但是需对酸碱度进行严格的控制以防酸碱度过高使多糖糖苷键被破坏而失去生理活性,且容易引入杂质,这一操作要求提高了提取操作和后续分离的复杂性,限制了应用范围。总体来说,从成本及操作安全方面来看,溶剂提取多糖中水法提取更为简单宜用。 现在随着科学技术的发展,酶法提取、微波提取法、超声提取法等新兴提取方法也开始广泛应用于多糖提取中。 酶提取法是利用酶对细胞结构的破坏作用,是存在于细胞内部的多糖释放出来,从而提高多糖的提取率。在使用酶提取多糖的过程中,酶可降低提取条件,在温和的条件下分解植物组织,加速多糖的释放或提取。植物中除含有多糖外,还含有一定量的蛋白质、淀粉、胶质、粗纤维及脂肪,使用酶还可分解提取液中的这些物质,从而有利于多糖的分离和纯化。酶提取法多糖具有条件温和、杂质易除、提取率高和生物活性高等特点。常用的酶有蛋白酶、纤维素酶、果胶酶等。在实际使用酶对多糖提取操作时,有时根据提取物质的不同和多糖提取难易度将几种酶结合起来共同使用,可大大提高提取率,这种方法称为复合酶提取法。超声波提取法是利用超声辐射产生的空化作用、机械作用和热学作用对植物细胞进行破碎,之后再用水醇沉法对多糖进行提取,这一方法及有效缩短了提取时间又提高了多糖提取率。微波提取法是一种新型萃取技术,利用高频电磁波穿透萃取介质,细胞液吸收微波能,细胞内温度迅速升高,压力增大,使细胞壁破裂,有效成分被释放出来进入溶剂中,从而被提取。

植物多糖的提取、分离和含量测定的研究

论文题目:植物多糖的提取、分离和含量测定的研究 姓名:刘通 班级:08级药学1班 学号:200810720071 1、利用百度搜索引擎查找相关资料 2、利用中国知网的期刊全文数据库查期刊中发表的论文的相关结果

3、利用中国知网学位论文全文数据库查找论文相关资料

4、利用读秀查图书馆收藏的与论文有关资料 5、利用图书馆OPAC查我馆收藏的印刷型图书

植物多糖的提取、分离和含量测定的研究文献综述 对多糖的研究, 最早是在20 世纪40 年代, 但其作为广谱免疫促进剂而引起人们的极大重视则是在60 年代, 经过40 余年的不断发展, 人们对多糖这一类重要生命物质产生了新的认识, 使这一学科成为目前生命科学中研究最活跃的领域之一[ 1 ]。越来越多的研究发现多糖对人体具有极大的利用价值, 按其来源可分为三类: 动物多糖、植物多糖和微生物多糖L 其中植物多糖如人参、黄芩、刺五加、红花、芦荟等所含多糖均具有显著的药用功效, 如免疫增强作用, 抗肿瘤作用, 抗辐射作用等L据文献[ 2 ]报道, 已有近100 种植物的多糖被分离提取出来L 这类多糖来源广泛且没有细胞毒性, 应用于生物体毒副作用小,因此对植物多糖的研究已成为医药界的热门领域。 1 植物多糖的提取分离纯化 多糖的提取分离纯化是指多糖研究中获取研究对象的过程L一般这一过程包括提取分离、纯化和纯度鉴定3 步L其中纯化是多糖研究的关键, 其成 功与否、效果的好坏都会直接影响后续研究的可行性与可信度[ 3 ]。

1.1 提取分离 一般植物细胞壁比较牢固, 需在提取前进行专门的破细胞操作, 包括 机械破碎(研磨法、组织捣碎法、超声波法、压榨法、冻融法)、溶胀和自胀、化学处理和生物酶降解L因此常用的提取方法有: 热水浸提法、酸浸提法、碱浸提法和酶法L 其中前3 种为化学方法, 酶法为生物方法。此外, 更有研究者[ 4, 5 ] 在细胞破壁方面进行研究, 利用超声波、微波等技术有效地提高多糖的提取率和产品质量, 并缩短了反应时间。 1.2 纯化 分离沉淀后获得的多糖提取物中, 常会有无机盐、蛋白质、色素及醇不溶的小分子有机物(如低聚糖) 等杂质, 必须分别除去L 多糖的纯化就是指将粗多糖中的杂质去除而获得单一多糖组分。一般是先脱除非多糖组分, 再对多糖组分进行分级L而脱除非多糖组分是先脱除蛋白质再去除小分子杂质。 1.2.1除蛋白天然植物中多糖与蛋白质 两种高分子成分共存, 且分子量相近, 另外糖常常与蛋白形成糖蛋白 复合物, 使蛋白质的脱除更加困难。但也许正是结合了这部分蛋白质, 多糖才具有众多独特的生理功能, 如各种蛋白质聚糖、糖蛋白具有生理功能一样L常用的除蛋白质的方法有Sevage 法、三氯乙酸法、三氟三氯乙烷法、酶法等。Sevage 法为实验室常用法, ,该法以正丁醇与氯仿混合再进行萃取; 蛋白酶法是目前认为较好的方法, 将蛋白质水解再透析去除。 1.2.2 脱色 对于植物多糖可能会有酚类化合物而颜色较深, 对其进行脱色可使其 应用范围更加广泛。常用的脱色方法有: 离子交换法、氧化法、金属络合物法、吸附法(纤维素、硅藻土、活性炭等) LDEA E- 纤维素是目前最常用的脱色剂, 通过离子交换柱不仅达到脱色的目的, 而且还可以分离多糖。 1.2.3 除小分子杂质 通过逆向流水透析除去低聚糖等小分子杂质,这样得到的就是多糖的半精品。

多糖各种提取方法

一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与

酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。

1.4 生物酶提取法 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 1.5 超声提取法 超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。另外,超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。超声提取的影响因素有:超声时间、超声频率(一般低频中提取效率高,但也有例外)、料液比和温度等。 1.6 微波提取 微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波技术应用于植物细胞破壁,有效地提高了收率。具有穿透力强、选择性高、加

植物多糖的功能..提取及纯化

植物多糖的功能 多糖与蛋白质一样,具有生物大分子的复杂结构,具有一定的生理和生物学活性,概括起来多糖的生物活性包括:免疫调节性、抗肿瘤活性、降血糖活性、降血脂活性、抗病毒活性、抗衰老活性(抗氧化活性)、抗疲劳、抗突变活性,除此之外,还具有其他生物活性,包括抗凝血、抗炎、抗菌、抗惊厥、镇静、止喘及降血压等作用。 植物多糖的提取 一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅

植物多糖生物活性的研究进展

植物多糖生物活性的研究进展(作者: _________ 单位:___________ 邮编: ___________ ) 【关键词】多糖类;植物,药用;生物类 多糖广泛分布于自然界的多种生物体中,尤其是动物细胞膜、植物细胞壁和微生物细胞壁中,是一类由醛糖或酮糖通过糖苷键连接而成的天然高分子多聚物,是构成生命体的分子基础之一。多糖在自然界中储量丰富,主要分为植物多糖、动物多糖以及微生物多糖3类[1]。自I960年以来,人们陆续发现多糖具有多种药理活性,它不仅可以作为广谱免疫促进剂调节机体免疫功能,还可以在抗肿瘤、抗病毒、抗氧化、降血糖、抗辐射等方面发挥广泛的药理作用[2拟.7]。迄今为止,已有300多种多糖类化合物从天然产物中分离出来,其中从植物中提取的水溶性多糖最为重要[8]。因为它药理活性强,来源广泛,细胞毒性低,安全性强,毒副作用较小,已引起医药界的广泛关注,并成为当今生命科学研究的热点之一。 1植物多糖的生物学功能 1.1免疫调节作用Yang等研究发现,在针对小鼠腹腔巨噬细胞的体内和体外试验中,当归多糖均可显著提高一氧化氮(NO )生成

量, 提高细胞溶酶体酶活性[9]。另外,他们还发现L拟硝基拟精氨酸甲酯(NG A nitro 拟L拟arginine methyl ester , L拟NAME)即一种诱导 型NC合酶(iNOS)抑制剂,可有效抑制巨噬细胞中当归多糖诱导的NO 的增殖,说明当归多糖是在iNOS基因表达的诱导下刺激巨噬细胞产生NO的。Cheung等从冬虫夏草中提取得到虫草多糖(UST2000)并对产物进行了成分分析和体外药理活性研究[10]。虫草多糖主要由葡萄糖、甘露糖和半乳糖组成,比例为 2.4 : 2 : 1;体外试验中,虫草多 糖可显著促进细胞增殖和白细胞介素的分泌;另外,虫草多糖可短暂诱导胞外信号调控酶的磷酸化而使其激活、提高巨噬细胞的吞噬活性 并提高酸性磷酸酯酶的活性。结果表明,虫草多糖在触发免疫应答方面具有极其重要的作用。 1.2抗肿瘤活性自从1950年发现酵母多糖具有抗肿瘤活性以来,研究人员已分离出许多具有抗肿瘤活性的植物多糖。Lins等经 过血液实验、生物化学实验和组织病理学分析得知,在体外实验中,红藻硫酸多糖无显著细胞毒性,但体内实验显示出明显的抗肿瘤活性,并且可以增强5拟氟尿嘧啶诱发的免疫应答,说明红藻硫酸多糖由于它的免疫学性质而具有抗肿瘤活性[11]。Yamasaki等通过体外实验研究发现,云芝多糖可增强肿瘤细胞的生长抑制和细胞凋亡,降低肿瘤细胞的扩散能力,从而发挥抗肿瘤功效[12]。 1.3抗菌抗病毒活性Wang等研究发现,匍扇藻粗多糖具有显著抗I

相关文档
最新文档