化学学科的前沿方向与优先领域

化学学科的前沿方向与优先领域
化学学科的前沿方向与优先领域

化学学科的前沿方向与优先领域基础学科在整个自然科学体系中占有十分重要的地位和作用。由基础科学研究产生的大量新思想、新理论、新效应等为应用科学提供了理论基础,对现代技术的发展有巨大的推动作用。国内外大量事实说明,"科学理论不仅更多地走在技术和生产的前面,而且为技术、生产的发展开辟着各种可能的途径"。基础研究是社会与科学发展的基础,而基础学科的建设与发展,是基础科学研究的基础。

化学和其它科学一样,是认识世界和改造世界重要学科。它与物理科学、生命科学等相互渗透,不断形成新的交叉学科。

学科的前沿方向与优先领域为:

(1)合成化学;

(2)化学反应动态学;

(3)分子聚集体化学;

(4)理论化学;

(5)分析化学测试原理和检测技术新方法建立;

(6)生命体系中的化学过程;

(7)绿色化学与环境化学中的基本化学问题;

(8)材料科学中的基本化学问题;

(9)能源中的基本化学问题;

(10)化学工程的发展与化学基础。

今日化学何去何从

今日化学何去何从?对于这个问题有两种回答:第一种回答:化学已有200余年的历史,是一门成熟的老科学,现在发展的前途不大了;21世纪的化学没有什么可搞了,将在物理学

与生物学的夹缝中逐渐消微。第二种回答:20世纪的化学取得了辉煌的成就,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。本文主张第二种回答。

1. 20世纪化学取得的空前辉煌成就并未获得社会应有的认同

在20世纪的100年中,化学与化工取得了空前辉煌的成就。这个“空前辉煌”可以用一个数字来表达,就是2 285万。1900年在Chemical Abstracts(CA)上登录的从天然产物中分离出来的和人工合成的已知化合物只有55万种。经过45年翻了一番,到1945年达到110万种。再经过25年,又翻一番,到1970年为236.7万种。以后新化合物增长的速度大大加快,每隔10年翻一番,到1999年12月31日已达2 340万种。所以在这11年中,化学合成和分离了2 285万种新化合物、新药物、新材料、新分子来满足人类生活和高新技术发展的需要,而在1900年前的历史长河中人们只知道55万种。从上面的数字还可以看出,化学是以指数函数的形式向前发展的。没有一门其他科学能像化学那样在过去的100年中创造出如此众多的新化合物。这个成就用“空前辉煌”来描述并不过分。但“化学家太谦虚”(这句话是Nature

杂志在2001年的评论中说的,参见文献[1]),不会向社会宣传化学与化工对社会的重要贡献。因此20世纪化学取得的辉煌成就,并未获得社会应有的认可。

2.20世纪发明的七大技术中最重要的是信息技术、化学合成技术和生物技术

报刊上常说20世纪发明了六大技术:

①包括无线电、半导体、芯片、集成电路、计算机、通讯和网络等的信息技术;

②基因重组、克隆和生物芯片等生物技术;

③核科学和核武器技术;

④航空航天和导弹技术;

⑤激光技术;

⑤纳米技术。

但却很少有人提到包括新药物、新材料、高分子、化肥和农药的化学合成(包括分离)技术。上述六大技术如果缺少一两个,人类照样生存。但如没有发明合成氨、合成尿素和第一、第二、第三代新农药的技术,世界粮食产量至少要减半,60亿人口中的30亿就会饿死。没有发明合成各种抗生素和大量新药物的技术,人类平均寿命要缩短25年。没有发明合成纤维、合成橡胶、合成塑料的技术,人类生活要受到很大影响。没有合成大量新分子和新材料的化学工业技术,上述六大技术根本无法实现。这些都是无可争辩的事实。

但化学和化工界非常谦虚,从来不提抗议。我们应该理直气壮地大力宣传20世纪发明了七大技术,即化学合成(包括分离)技术和上述六大技术。这七大技术发明可以按照人类需要的迫切性和由它们衍生的产业规模的大小来排序:

(1)从人类对七大技术发明的需要迫切性来看,化学合成和分离技术应当排名第一,已如前述,因为它是人类生存的绝对需要,没有它,全世界一半人口要饿死。它还为其余六大技术发明提供了不可或缺的物质基础。国外传媒把哈勃的合成氨技术(Haber process)评为20世纪最重要的发明,是很有道理的。排名第二的是信息技术,第三是生物技术,以下依次是航空航天技术,核技术,纳米技术和激光技术。也许有人会问汽车产业不是比飞机还重要吗?但第一辆内燃机汽车是德国人在1886年发明的,所以汽车、火车、炼钢等都是19世纪发明的重大技术。而合成氨技术是哈勃(Haber)在1909年发明,在1918年因而获得诺贝尔化学奖。高分子合成技术是20世纪50年代发展起来的。新药物、新材料的合成更是近50年的事。因此合成化学技术是20世纪的重大发明。

(2)从20世纪的七大技术发明衍生的产业规模及其对世界经济的影响来看,排名次序如下:第一是信息产业,第二是由化学合成(包括分离)技术衍生的石油化工、精细化工、高分子化工和药物、农药工业等产业,以及从空气中分离出氧气和氮气,从电解水中分离出氢气,作为电动汽车的燃料,为解决将来水资源缺少的海水淡化产业等。第三是飞机、航天、人造卫星及导弹产业,第四是核电站和核工业。这4个产业都是非常大的产业。其中在核产

业中,有很大一部分是化工产业,如核燃料的前处理和后处理工业,重氢、重水工业、稀有元素冶炼工业等,又如信息产业和航空航天导弹卫星产业中,都依靠冶金、稀有元素冶炼和高分子等化学合成产业。

相对于前述4个产业而言,排在第五的生物技术产业、排在第六的纳米技术产业和排在第七的激光技术产业这3个现在还是小产业。其中纳米产业实际上是化学家发明C60等巴基球和碳纳米管等衍生出来的合成化学产业,以及用各种方法把化学物质制成纳米尺度的合成产业。

所以20世纪和21世纪上半叶理应称为信息和化学合成时代,要到21世纪下半叶才能称为生物技术时代,因为目前生物技术的实际应用和产业规模还很小,远远不及信息产业和合成化工产业。

3.化学是一门中心科学

化学是一门中心科学,化学与生命、材料等八大朝阳科学有非常密切的联系,产生了许多重要的交叉学科,但化学作为中心学科的形象反而被其交叉学科的巨大成就所埋没。

(1)化学是一门承上启下的中心科学。科学可按照它的研究对象由简单到复杂的程度分为上游、中游和下游。数学、物理学是上游,化学是中游,生命、材料、环境等朝阳科学是下游。上游科学研究的对象比较简单,但研究的深度很深。下游科学的研究对象比较复杂,除了用本门科学的方法以外,如果借用上游科学的理论和方法,往往可收事半功倍之效。化学是中心科学,是从上游到下游的必经之地,永远不会像有些人估计的那样将要在物理学与生物学的夹缝中逐渐消亡。

(2)化学又是一门社会迫切需要的中心科学,与我们的衣、食、住(建材、家具)、行(汽车、道路)都有非常紧密的联系。我国高分子化学家胡亚东教授最近发表文章[2]指出:高分子化学的发展使我们的生活基本被高分子产品所包围。化学又为前述六大技术提供了必需的物质基础。

(3)化学是与信息、生命、材料、环境、能源、地球、空间和核科学等八大朝阳科学(sun-rise sciences)都有紧密的联系、交叉和渗透的中心科学。

化学与八大朝阳科学之间产生了许多重要的交叉学科,但化学家非常谦虚,在交叉学科中放弃冠名权。例如“生物化学”被称为“分子生物学”,“生物大分子的结构化学”被称为“结构生物学”,“生物大分子的物理化学”被称为“生物物理学”,“固体化学”被称为“凝聚态物理学”,溶液理论、胶体化学被称为“软物质物理学”,量子化学被称为“原子分子物理学”等。

又如人类基因计划的主要内容之一实际上是基因测序的分析化学和凝胶色层等分离化学,但社会上只知道基因学,看不到化学家在其中有什么作用。再如分子晶体管、分子芯片、分子马达、分子导线、分子计算机等都是化学家开始研究的,但开创这方面研究的化学家却不提出“化学器件学”这一新名词,而微电子学专家马上看出这些研究的发展远景,并称之为“分子电子学”。

又如化学家合成了巴基球C60,于1996年被授予诺贝尔化学奖,后来化学家又做了大量研究工作,合成了碳纳米管。但是许多由这一发明所带来的研究被人们当作应用物理学或纳米科学的贡献。

内行人知道分子生物学正是生物化学的发展。在这个交叉领域里化学家与生物学家共同奋斗,把科学推向前进。但在中学生或外行看来,“分子生物学”中“化学”一词消失了,觉得化学的领域越来越小,几乎要在生物学与物理学的夹缝中消亡。

这样,化学这门重要的中心科学(central science)反而被社会看作是伴娘科学(bridesmaid science)而不受重视。世界著名的Nature杂志也为化学家鸣不平,在2001年发表了社论[1]说:“化学的形象被其交叉学科的成功所埋没”。但化学家仍然很谦虚,居然不喊不叫也不抱怨。化学家的谦虚本是美德,但因此而在社会上造成化学是落日科学(sunset science)的印象,吸引不到优秀的年轻学生,这个问题就大了。

4.化学有没有理论?

有人说:“化学没有理论,只是一堆白菜,21世纪的化学没有什么可搞的了”。这也是化学不被认同的理由之一。对于这个问题,我国著名化学家唐敖庆院士有很好的回答,他指出19世纪的化学有三大理论成就:

①经典原子分子论,包括建筑在定比、倍比和当量定律基础上的道尔顿原子论,以及包括碳4价及开库勒提出的苯分子结构等工作为中心内容的分子结构和原子价理论。

②门捷列夫的化学元素周期律。

③C.M.古尔德贝格和P.瓦格提出的质量作用定律是宏观化学反应动力学的基础。

道尔顿的原子论和门捷列夫的化学元素周期律对于20世纪玻尔建立原子的壳层结构模型具有十分重要的借鉴作用。所以化学和物理学这两个姐妹学科是互相促进的。

20世纪的化学也有三大理论成就:

①化学热力学,可以判断化学反应的方向,提出化学平衡和相平衡理论。

②量子化学和化学键理论,量子化学家鲍林提出的氢键理论和蛋白质分子的螺旋结构模型,为1953年沃生和克里克提出DNA分子的双螺旋模型奠定了基础,后者又为破解遗传密码奠定基础。所以化学与生物学也是互相促进的。

③20世纪60年代发展起来的分子反应动态学。

没有这三大理论,要取得合成2 285万种化合物的辉煌成就是不可能的。因此,“化学没有理论,只是一堆白菜”的说法,是不公正的。

到了21世纪,世界数学家协会提出七大数学难题,筹集了700万美元,悬赏100万美元给每一个难题的解决者。

物理学提出了五大理论难题:

①4种作用力场的统一问题,相对论和量子力学的统一问题。

②对称性破缺问题。

③占宇宙总质量90%的暗物质是什么的问题。

④黑洞和类星体问题。

⑤夸克禁闭问题等。

21世纪的生物学也有重大难题和奋斗目标:

①后基因组学和人类疾病的消除。

②蛋白质组学。

③脑科学。

④生物如何进化?生命如何起源等。

但化学家又比较谦虚,好像没有人明确提出哪些是化学要解决的世纪难题。这样与物理学和生物学相比,就会显得化学没有什么伟大的目标了。其实化学家心目中是有自己的奋斗目标的,只是不愿多说。但这又造成“化学无理论”的错误印象。这是近年来在世界范围内出现的淡化化学的思潮的主观原因之一。那么化学果真提不出重大难题吗?作者曾经初步提出21世纪化学有四大难题[3]。

5.21世纪化学的四大难题

(l)化学的第一根本规律(第一个世纪难题):建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论。

化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。19世纪C.M.古尔德贝格和P.瓦格提出的质量作用定律,是最重要的化学定律之一,但它是经验的、宏观的定律。

H.艾林的绝对反应速度理论是建筑在过渡态、活化能和统计力学基础上的半经验理论。过渡态、活化能和势能面等都是根据不含时间的薛定愕第一方程来计算的。所谓反应途径是按照势能面的最低点来描绘的。这一理论和提出的新概念虽然非常有用,但却是不彻底的半经验理论。

近年来发展了含时Hartree-Fock方法,含时密度泛函理论方法,以酉群相干态为基础的电子-原子核运动方程理论,波包动力学理论等。但目前这些理论方法对描述复杂化学体系还有困难。

所以建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径?等等,是21世纪化学应该解决的第一个难题。

(2)化学的第二个世纪难题:分子结构及其和性能的定量关系。

这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等。虽然W.Kohn从理论上证明一个分子的电子云密度可以决定它的所有性质,但实际计算困难很多,现在对结构和性能的定量关系的了解,还远远不够。要大力发展密度泛函理论和其他计算方法。这是21世纪化学的第二个重大难题。例如:

①如何设计合成具有人们期望的某种性能的材料?

②如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个数量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的。又如目前高分子纤维达到的强度要比高分子中的共价键的强度小两个数量级。这就向人们提出如何挑战材料强度极限的大难题。

③溶液结构和溶剂效应对于性能的影响。

④具有单分子和多分子层的膜结构和性能的关系。以上各方面是化学的第二个根本问题,其迫切性可能比第一个问题更大,因为它是解决分子设计和实用问题的关键。

(3)化学的第三个世纪难题:生命现象中的化学机理问题。

充分认识和彻底了解人类和生物体内分子的运动规律,无疑是21世纪化学亟待解决的重大难题之一。例如:

①研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础。

②化学遗传学为哈佛大学化学教授Schreiber所创建。他的小组合成某些小分子,使之与蛋白质结合,并改变蛋白质的功能,例如使某些蛋白酶的功能关闭。这些方法使得研究者们不通过改变产生某一蛋白质的基因密码就可以研究它们的功能,为开创化学蛋白质组学,化学基因组学(与生物学家以改变基因密码来研究的方法不同)奠定基础。因此小分子配体与生物大分子受体的相互作用的机理,是一个重大的理论化学问题,值得人们关注。

③光合作用的机理──活分子催化剂叶绿素如何利用太阳能把很稳定的CO2和H2O分子的化学键打开,合成碳水化合物[CH2O]n,并放出氧气,供人类和其他动物使用。

④生物固氮作用的机理。

⑤搞清楚牛、羊等食草动物胃内酶分子如何把植物纤维分解为小分子的反应机理,为充分利用自然界丰富的植物纤维资源打下基础。

⑥人类的大脑是用“泛分子”组装成的最精巧的计算机。如何彻底了解大脑的结构和功能将是21世纪的脑科学、生物学、化学、物理学、信息和认知科学等交叉学科共同来解决的难题。

⑦了解活体内信息分子的运动规律和生理调控的化学机理。

⑧了解从化学进化到手性和生命起源的飞跃过程。

⑨如何实现从生物分子(biomolecules)到分子生命(molecular life)的飞跃?如何制造活的分子(make life),跨越从化学进化到生物进化的鸿沟。

⑩蛋白质和DNA的理论研究。

(4)化学的第四个世纪难题:纳米尺度的基本规律。

当尺度在十分之几到10 nm的量级,正处于量子尺度和经典尺度的模糊边界(fuzzy boundary)中,有许多新的奇异特性和新的效应,新的规律和重要应用,值得理论化学家去探索研究。下面举例说明纳米效应:

①如以银的熔点和银粒子的尺度作图,则当粒子尺度在150 nm以上时,熔点不变,为960.3 ℃,即通常的熔点。以后熔点随尺度变小而下降,到5 nm时为100 ℃。又如金的熔点为1 063 ℃,纳米金的熔化温度却降至330 ℃。在纳米尺度,热运动的涨落和布朗运动将起重要的作用。因此许多热力学性质,包括相变和“集体现象”(collective Phenomena)如铁磁性、铁电性、超导性和熔点等都与粒子尺度有重要的关系。

②纳米粒子的比表面很大,由此引起性质的不同。例如纳米铂黑催化剂可使乙烯催化反应的温度从600 ℃降至室温。这一现象为新型常温催化剂的研制提供了基础,有非常重要的应用前景。纳米催化剂能否降低反应活化能?这是值得研究的一个理论问题。

③当代信息技术的发展,推动了纳米尺度磁性(nanoscale magnetism)的研究。

④电子或声子的特征散射长度,即平均自由程,在纳米量级。当纳米微粒的尺度小于此平均自由途径时,电流或热的传递方式就发生质的改变。

⑤与微粒运动的动量p=mV相对应的de Broglie波长l=h/p,通常也在纳米量级,由此产生许多所谓“量子点”(quantum dots)的新现象。所以纳米分子和材料的结构与性能关系的基本规律是21世纪的化学和物理需要解决的重大难题之一。

6.化学家缺少品牌意识,没有在社会上树立化学的美好品牌

化学没有树立品牌,化学与化工被认为是污染源,这也是缺少生源的原因之一。其实,造成环境污染的不仅仅是化学,更重要的是森林破坏,水土流失,沙漠化和沙尘暴,汽车尾气排放,煤燃烧等。而分析、监测、治理环境污染的正是化学家。化学家已提出绿色化学的奋斗目标。化学家不但要认识世界、改造世界,还要保护世界。

参考文献

1.(自然)杂志社论:化学形象被与其交叉学科的成功埋没.科学时报,2001-6-8(3)

2.胡亚东.化学:串起生活每一刻.科学时报,2002-7-8(中学生科技-3)

3.徐光宪.科学通报,2001,46(24):2086

(北京大学化学与分子工程学院徐光宪院士

摘自《大学化学》2003年第1期)

惊人成果川大教授证明一诺奖化学理论有错

□“擂主”:

马尔古斯(美国化学家1992年诺贝尔化学奖获得者)

□目标:

非平衡溶剂化理论

□挑战者:

李象远、傅克祥(川大教授)

□攻关:

非平衡溶剂化理论违背了热力学基本原理,错误地对非可逆途径使用了可逆功积分方法,得到的非平衡自由能表达式是错误的。

□结论:

我国理论化学研究取得重大原创性突破,达到了国际领先水平

日前从四川大学传出一惊人消息,该校化工学院计算化学研究室博士生导师李象远教授与物理学院傅克祥教授已证明目前国际上流行的非平衡溶剂化理论存在重大基础错误!这不仅动摇了传统非平衡溶剂化理论的基石,而且建立起了全新的非平衡溶剂化理论新体系和一系列相关的理论模型,并对历史上一些理论预测和实验结果互相矛盾的重要遗留问题给予了

圆满解释。据悉,这是我国在理论化学基础研究领域近年来取得的一项重大原创性成果,达到了国际领先水平。

据悉,该理论的主要创立者、美国化学家马尔古斯(R.A.Marcus)正是凭借在电子转移及其溶剂效应理论方面的贡献获得1992年诺贝尔化学奖的。

昨天下午,记者获得这一消息后,第一时间赶往四川大学采访。几经周折,我们终于见到李象远教授,但他的第一句话就给我们泼了冷水:“我们搞基础理论研究的,不追求新闻效应,只想踏踏实实地弄清科学问题,还原科学事件的本来面目。”他认为,搞技术开发才需要引起公众的注意,因为那将有助于工作的开展。几经“游说”,李象远在他的办公室接受了记者的“非正式”专访。

挑战的起因

偶尔“误差”让他们大胆质疑

李象远教授在川大化工学院计算化学研究室工作,而傅克祥却是物理学院的教授,他们怎么会走到一起?

李象远说,一个偶然的机会促成了他们的“理化搭配”:研究化学的李象远20多年前就注意到了非平衡溶剂化理论,并时时为该理论应用在实验中偶尔出现的“误差”感到困惑。而一般科学家的做法是自己调整参数,以使实验“适应”国际上流行的研究模式、曾获得诺贝尔化学奖的非平衡溶剂化理论。但李象远却敏锐地意识到,该理论有缺陷,只是自己也不清楚缺陷究竟在什么地方。傅克祥了解到李象远的困惑后,以一个“外行”的身份和他进行了探讨,并从电动力学的角度进行了分析,进而从热力学的角度大胆猜想:马尔古斯在建立非平衡溶剂化理论时,是不是一开始便违背了热力学基本原理,错误地对非可逆途径使用了可逆功积分方法,因而得到的非平衡自由能表达式是完全错误的呢?

挑战的进程

6年时间枯燥乏味中艰苦攻关

“猜想”出来后,甚至连他们自己都吓了一跳。毕竟这是一项获得过诺贝尔化学奖的成果,况且在学界多年的应用中,尽管存在一些小的问题,但总体来说还是成功的。对科学真理的追求却让他们不能停步——1999年,李象远和傅克祥开始了艰苦攻关,后来连李象远读研究生时的导师也感到“这个课题很有意思”,而主动加入其中。

理论研究是枯燥甚至乏味的,反复地推算,不断地反驳……不像实验科学家还有实验室,他们只有纸、笔和电脑。他们发挥学科交叉的研究优势,从物理、化学两个方面进攻,通过大量细致的基础理论工作,最终证明了非平衡溶剂化理论存在重大基础错误,从而对这套理论体系提出了挑战,动摇了非平衡溶剂化理论的基石,并建立起了全新的非平衡溶剂化理论新体系和一系列相关的理论模型,对历史上一些理论预测和实验结果互相矛盾的重要遗留问题给予了圆满解释。

理化联动动摇原有理论基石

原有理论体系是由以诺贝尔化学奖获得者马尔古斯教授为代表的众多著名理论化学家在近50年的时间里建立起来的。李象远、傅克祥的最新研究表明,当年年仅32岁的马尔古斯在建立非平衡溶剂化理论时,一开始便违背了热力学基本原理,错误地对非可逆途径使用了可逆功积分方法,因而得到的非平衡自由能表达式是完全错误的。这一发现从根本上动摇了整套非平衡溶剂化理论的基石,使得基于此自由能表示建立起来的所有理论模型和计算方法失去了合理性。他们的理论推演表明,从定量角度看,目前流行的非平衡溶剂化理论高估溶剂效应一倍左右,这样的差别会在反应速率计算上产生达两个数量级的误差,从而在历史上遗留下很多理论预测和试验结果大相径庭的问题。

挑战的结果

多次受挫论文曾屡屡被“毙”

非平衡溶剂化理论从发展到广泛应用经历了半个世纪,质疑这样一套完整的理论体系,需要从不同角度进行论证,弄清不同科学家所发展的理论中存在的错误以及其相互联系。此

外,新理论本身首先必须完美自洽,同时还应能圆满解释实验事实。李象远、傅克祥的攻关直到2004年才算有了眉目,但他们并没有如释重负般的轻松感,他们还需要将新理论介绍出去,让全球化学界了解中国人的贡献。他们没想到的是,论文寄出去后,几乎没有发表的可能。原因是国际权威学术刊物刊登论文,总是会找本领域的权威专家审稿,而化学界的“大腕”多数都对非平衡溶剂化理论有贡献。曾为非平衡溶剂化理论作出过重要贡献、目前在国际化学界炙手可热的美国科学家牛顿(M.D.Newton)后来告诉李象远,他就曾5次“毙”了李象远、傅克祥的论文,因为他认为“这样的论文不值一看”。

苦尽甘来论文“荣登”顶级刊物

据介绍,李象远、傅克祥等建立新理论体系的约10篇研究论文已在重要国际期刊《计算化学学报》(《JournalofComputationalChemistry(IF=3.2)》)、《化学物理》(《ChemicalPhysics》)等连载发表,研究成果也多次应邀在美国化学会全国会议等国际会议上报告。国际刊物《理论与计算化学学报》(《JournalofTheoreticalandComputationalChemistry》)更是邀请李象远教授等就此新理论体系撰写综述文章在该刊发表,审稿人认为这项成就“是中国科学家对整个理论化学界的重大贡献。”据悉,《理论与计算化学学报》今年9月号将以80多页的篇幅刊载李象远等详细介绍新理论的文章。

挑战的延伸

学术争论网上“敌人”成朋友

学术的争论永远不会停止。牛顿、费沃德尔霍夫(U.B.Felderhof美国)等国际溶剂化理论权威科学家同李象远等开展了大量平等而友好的多方学术讨论和争论。通过论文发表、学术报告和学术讨论,计算化学研究室发展的新理论体系已经得到了国际同行越来越广泛的认可。著名溶剂化理论专家、德国科学家凯尔特(A.Klamt)教授专门向李象远致信承认自己“对非平衡化的处理是不合适的。”今年初,牛顿主动找到李象远索取

更详细的资料,并计划近期来川大与李象远、傅克祥等进行面对面的交流。

新的问题原创者要携手挑战者

通过学术交流,马尔古斯与李象远、傅克祥成了好朋友,并在北京和韩国等地多次会面进行探讨。另外,牛顿、费沃德尔霍夫、凯尔特等权威专家与李象远等在网上建立了密切的联系,常常“群发”电子邮件进行深入探讨,希望更加完善新理论。现年已80多岁的马尔古斯承认了新理论的观点,但他还有一点没有想通的是,1959年前苏联科学家曾用量子场论的方法做过类似研究,也得出了类似结论,“他们又错在哪里?”他也正积极与李象远一道进行分析,希望能得出一个最终结论。

挑战的心态

非为获奖望由此给中国人争光

最近,李象远、傅克祥更忙了!“不断地介绍,不断地完善,我们必须找出其他暗藏的问题。”他们还需要在学术界不断地争论,“现在几乎干不了其他事!”

按照推理,李象远、傅克祥“摧毁”了一个曾经获得诺贝尔奖的成果,他们是否可以因此获得诺贝尔化学奖?李象远说:“想都没想过!”他还打了一个形象的比喻——杀害肯尼迪的人并不能因此成为美国总统。李象远说,自己只满足于追求科学真理过程中的快乐,并希望由此能给中国人争光,仅此而已!

真情寄语强国须发展基础理论

李象远多次告诉记者:“我们运气比较好!”尽管国际上有人曾怀疑过旧理论体系,但最终没有做。他还将成功归功于“遇见了傅克祥这样的好伙伴!”有人曾给李象远开玩笑:“马尔古斯都80多岁了,你干吗要折磨好人?”——马尔古斯在学术界不仅威望极高,而且是公认的“好人”,非常慈祥、平易近人。李象远说,这就是科学的残酷,我们都追求真理,必须还科学一个本来面目。

李象远的办公室非常普通,窗明几净的办公室内,除了沙发和一张大大的办公桌外,几

乎别无它物,办公桌上也仅仅是一台手提电脑而已。谈到我国在基础理论研究领域的落后状况,他显得十分着急。他说:“你可以翻一翻书,近代以来,有几个公式是以中国人的名字命名的?”他认为,尽管我们在应用科学方面取得了一些成果,但国力强盛,科技的真正腾飞,还必须依赖于基础理论研究的发展。

本报记者周波

非平衡溶剂效应理论

电子转移和光谱等“快过程”的溶剂效应涉及溶剂低频响应滞后的问题,即所谓非平衡溶剂化问题。上世纪50年代,马尔古斯用可逆功方法建立了非平衡自由能的表达式,奠定了非平衡溶剂效应的理论基础,经过牛顿美国、海恩斯(Hynes,法国?雪、托玛斯(Tomasi,意大利、凯尔特德国等一批国际知名理论化学家的发展,逐渐形成了一套“近乎完善”的非平衡溶剂化理论体系,建立起了电子转移溶剂重组能的马尔古斯“双球模型”,液相光谱Stockes频移的Lippert-Mataga模型等一系列被理论和实验化学家广泛使用的解析表达式以及利用计算机技术的多种数值计算方法,主导了非平衡溶剂效应的理论和实验研究近50年。马尔古斯教授由于在电子转移及其溶剂效应理论方面的贡献,获得了1992年诺贝尔化学奖。

中国科学家打造铂金“纳米皇冠”

中新网3月12日电在中国国家自然科学基金委“纳米科技重大研究计划”以及中国科学院“百人计划”的支持下,中国科学家运用分子纳米技术打造出了一顶新颖的铂金“纳米皇冠”。

中新网3月12日电在中国国家自然科学基金委“纳米科技重大研究计划”以及中国科学院“百人计划”的支持下,中国科学家运用分子纳米技术打造出了一顶新颖的铂金“纳米皇冠”。

据中国科学院消息,日前出版的国际著名化学期刊《德国应用化学》报道了中国科学院化学所高分子物理与化学国家重点实验室于澍燕研究员领导的研究组在自组装纳米结构方面取得的重要进展。该工作报道了一系列尺寸可调、功能化的“纳米皇冠”,并发现了这些自组装体系在水介质中对阴离子的特征选择键合作用,以及在阴离子纳米传感器、模拟酶和绿色化学等方面的应用前景。

据介绍,金属在材料、蛋白酶、医药以及催化等领域中都起着非常重要的作用。根据新的概念,他们自组装出了前人一直探索但没有突破的“金属杯芳烃”类似物。有机杯芳烃是一类具有开放结构和诱导性质的杯状超分子,在超分子科学的诸多领域,如超分子催化、仿生、人工模拟酶、物质分离与分析以及纳米结构自组装等方面都具有相当诱人的应用前景。

消息说,作为中科院“百人计划”入选者的于澍燕研究员,在2001年12月回国后,短短的一年时间里,提出了“金属矢量”以及“金属原子的矢量操纵”新概念,并成功地运用于自组装以及分子纳米技术研究中。

富勒烯C60 / C70的制备化学

自1985年Kroto等在激光汽化石墨实验中偶然发现C60 / C70以来[1],为寻找高产率大

量C60的制备方法,人们进行了广泛的探索,直到1990年Kratschmer等使用电弧放电装置生产出mg量的产品,才有了突破性的进展。目前,g量级的富勒烯已被制备出来。富勒烯制备方法的进展促进了其物理、化学性质的深入研究及应用研究的广泛开展。目前世界上不少著名科学家和一流研究机构正致力于C60 / C70制备技术的研究,预计这一技术在不远的将来会有重大突破。本文旨在对过去10年中富勒烯的制备技术的演进作一回顾,对各种方法加以归纳和评述,并探讨了较大规模生产的可能性。

1、石墨激光汽化法

最初于室温下He气流中用脉冲激光技术蒸发石墨导致了C60 的发现,碳蒸气的快速冷却导致了C60分子的形成。由时间飞行质谱检测到的C60存在[1]。但它只在气相中产生极微量的富勒烯,经研究发现C60可溶于甲苯。随后的研究表明其中还包含着分子量更大的富勒烯。此后发现在一个炉中预加热石墨靶到12000C可大大提高C60的产率[3],但用此方法无法收集到常量的样品。

2、石墨电弧放电法

1990个由Kratschmer和Huffman等人报道[2]的电阻热放电技术是第一个产生出常量富勒烯的方法,这一技术仍然是目前知道的较高产率制造方法之一。许多研究小组对此方法加以改进,获得了可溶性富勒烯通常可占蒸发石墨的20%,有时可达30%以上[4~6]。对该方法主要的改进包括精确控制电极的缝间距,调节电源种类和强度、稀释气体种类和压力、装置的最佳热对流、碳棒尺寸、反应器大小及萃取剂的抽提效率等因素。踞遗憾的是由于内在原因,根本上限制了所使用碳棒的直径必须在3mm以内,因此只能小量生产。主要的困难是碳棒中部温度最高,碳的蒸发速度也最快,很快变细直到断裂,运行中断。此外,快速蒸发的温度很高(>30000C),整个碳棒黑体的辐射能量损失也大,经济上也不合算。

3 、利用太阳能加热石墨法

富勒烯的发现者之一Smalley等用聚焦太阳光直接蒸发碳高产率制备了富勒烯[8]。为了

提高富勒烯和掺杂金属富勒烯的产率,在广泛的探索中他们发现电弧光对富勒烯的光化学破坏可能是碳电弧技术中碳棒放大尺寸的主要障碍。据此,考虑了数种排除光化学分解,同时增加碳棒尺寸以扩大生产规模的方式后,他们认为最好的方法是利用太阳光。Smalley等认为:采用大型太阳炉装置也许是大量生产富勒烯的唯一途径,它不仅避免了强紫外线辐射对富勒烯的光化学破坏作用,同时使碳蒸气到达缓冷区之前不会形成凝块,解决了石墨电弧或等离子体法中遇到的产量限制问题。

4 、石墨高频电炉加热蒸发法

1992年Peter和Jansen等[10] 利用高频电炉在27000C,150K Pa He气氛中于一个氮化硼支架上直接加热石墨样品,得到产率为8%~12%的烟灰。这是一种直接加热石墨的方式,它与太阳能加热石墨法的共同点是:石墨尺寸比原先Kratschmer ~ Huffman法允许大得多。但是两者的辐射能量利用率和产率都不能与石墨电弧放电法竞争。

5、苯火焰燃烧法

在火焰中对多面体碳离子形成的观测证实了富勒烯可能在燃烧中形成的设想。1991年麻省理工学院的Howard等从苯/氧火焰中发现了鉴定了C60和C70的存在[11]。最近的研究[12]进一步明确了压力、C / O比值、温度稀释气体的种类和浓度等因素对预混合的苯/氧层流火焰也产生富勒烯,但比苯燃烧产率低。从苯/氧火焰可得到较大量的C60 / C70,得到产率高达20%的烟灰,按原料消耗计可得到0.5%的C60和C70。C60 / C70的最大生成速率出现在9199Pa 压力、C / O=0.989、25%氦稀释气体。燃烧合成法不仅提供了一条新的大量制备富勒烯的方法,而且能够在很大范围内控制产物的分布,还在火焰中发现了富勒烯亚稳态的异构体。苯火焰燃烧法有可能成为大规模工业生产富勒烯的方法,由此可制备出不同种类的富勒烯。

6 、有机合成法

富勒烯C60 / C70具有球面大电子体系的芳香性碳笼结构,它的发现也向有机合成化学家提出了艰巨的合成挑战。经过一段短暂的沉默和思考,合成化学家开始从理论和实验两方面

探求化学全合成分子C60 / C70的可能性和途径。C60的化学合成进展尽管尚不能与电弧放电法相比,但化学全合成研究对于C60等富勒烯的形成机理,C60的笼内外修饰是有重要意义的。有机合成的高难度和长途径是明显的,首先,与石墨电弧放电法的高温和混乱相比较,有机合成要在较低的温度下完成,要有明确次序的合成路线;其次,建设不含氢、封闭成球的富勒烯分子,要克服完全脱氢环稠合时存在张力的难题,有机合成的方向性和选择性控制问题及合成步的产率问题;然后,C60 / C70分子和与其相关的现有合成基础、现有合成物的差距甚远。合成路线是较长的,产物分离也是个难题。显然,需要一个高度出色的艺术化的合成特技,合理简洁的合成路线设计显得尤为重要。

7、结语

由于富勒烯的来源和价格对富勒烯化学的发展及应用起着制约作用,各国对富勒烯制备的研究愈加重视。目前主要还是通过石墨电弧法来获得富勒烯的,制备时并伴有更大的团簇分子的生成,在某些条件下还得到巴基管、巴基葱等。蒸发石墨法特别是太阳能加热石墨法虽然研究得不够完善,但为富勒烯的大量制备展示了良好的前景。如果将火焰燃烧法、热解萘法、有机合成法所获得的进展结合起来考虑,有理由相信,在不远的将来作为一个有机制备过程的产品,大批量的富勒烯会被合成出来,并且成为高新技术产品的基本原料。

别把纳米炒成“科学谎言”

纳米虽是一个尺度单位,但却成为近年来最时髦的商业炒作噱头,“纳米空调”、“纳米水”、“纳米服装”盛行一时,但9月5日在南京大学召开的第十二届“小颗粒与无机团簇系列国际会议”上,大会主席、南京大学王广厚教授表示,纳米技术真正民用起码还有20年的路要走。

此次会议是国际学术界关于纳米领域最高水平的盛会,也是第一次在中国召开。由于纳米材料的特殊性,本次大会成为一个物理、化学、材料、信息、环境、生物、能源等多学科交叉的学术论坛,内容涉及纳米科学技术的基础问题和前沿领域(团簇和小颗粒是纳米科技

(整理)化学未来的发展趋势.

白春礼:对化学未来的发展趋势的阐述以及对于广大化学工作 者的期望 发布时间:2011-06-07 【字 号:小中大】谈一下化学未来的发展,有四点趋势。化学将向更广度、更深层次的方向延伸;新工具的不断创造和应用促进化学创新发展;绿色化学将引起化学化工生产方式的变革;化学在解决战略性,全局性,前瞻性重大问题当中将继续发挥更大的作用。 化学向更广更深的层次延伸体现在几个方面,对原子,分子的认识将更为深入,多层次分子研究更为系统,创造新分子,新材料的基础上更加注重功能性。超分子是一个分子结构与宏观性能的关键纽带,是产生更高级结构的基础。如何设计超分子结构和材料,对复杂生命体系的理解和模拟及调控都是前沿的课题。这是化学向更深层次,更复杂拓展的延伸。 新工具的创造和应用会促进化学的发展,随着技术能力和仪器设备的不断进步,空前准确和灵敏的仪器不断被创造和应用,科学家不仅能在原子,分子甚至电子层次观察并研究微观世界的性质,而且能够对其物质结构和能量过程进行操控。1981年,人类实现了观察单个原子的愿望,实现了移动单个原子和单个分子,促进了化学的创新和发展。同步辐射及各种实验方法和技术的改进,使同步辐射光源在化学研究领域中发挥重要的作用,比如真空紫外辐射光可以在量的水平上观察化学共振态。原位气固反应X射线吸收精细结构谱实验新方法,各种应用促进了化学向更深层次的发展。 绿色化学将促进化学化工生产方式的变革,绿色化学不仅是对现有过程的改进和新过程的研究,未来化学的研究将更加注重绿色产品设计的理念。绿色化学将注重经济,高效,制备与人类生活相关的物质,绿色化学不仅是创造可持续的化学产品,也需要变废为宝,将今天的废弃物变为明天有用的资源,将引起化学化工的变革。美国在1995年设立了总统绿色化学挑战奖,07年通过了绿色化学研究和发展法案。日本在上世纪90年代旨在防止全球气候变暖,在21世纪重建绿色地球的新阳光计划开始实施,主要内容为能源和环境技术研究开发。97年德国提出为环境而研究的计划。化学家开发了大量的化学合成反应,制备人类息息相关的物质,超过80%的化学生产需要催化剂,70%以上的化学化工过程使用溶剂。我们现在考虑如果从合成方法学来讲,原子经济学,计算化学,绿色化学结合,合成方法学的角度上进行绿色化学的研究。80%化学品的生产需要催化剂,如何通过发展新型的高效催化剂高稳定性,并且在制造的过程中对环境是无害,使用的过程可以回收再利用,使催化剂不污染环境这也是一个非常重要的方面。70%以上的化学化工过程要使用溶剂,我们要采用绿色的溶剂,二氧化碳做溶剂,离子液体,聚乙二醇等等使之更加清洁和可持续。绿色化学还需要变废为宝,把引起气候变暖的二氧化碳转化利用,通过开发新的技术进行转化应用。前不久我们曾经在宝钢与新西兰研究一个新的技术,利用钢厂的尾气对二氧化碳进行转化研究。秸秆,树木,藻类转化为燃料,重要化学品核材料,木质素,纤维素为原料的新化学反应,粘土等天然无毒原料在材料科学中的应用,不仅是创造新一代的可持续的化学产品,还要考虑如何变废为宝,这是下一步发展的重要方面。 第四方面,化学在解决全局性,前瞻性,战略性的重大问题中会发挥重要的作用,社会的发展不断对化学发展提出新的需求,比如能源危机要求我们如何像光合作用那样高效的利用太阳能。前不久有仿造树叶的光合作用来高效利用太阳能。环境保护方面如何控制降解驱除污染,资源利用方面必须做到合理高效的利用资源,最大显著的利用资源,材料方面绿色化及智能化,可再生循环利用,社会安全方面防患于未然,比如易燃品,爆炸品的检查和防护,有很多的工作需要化学家发挥更大的作用。 刚才讲了环境,能源,资源利用等方面,在材料化学方面,要设计铸造分子,生命科学方面不仅是研究生命起源,调控机制,疾病发生机制和药物的作用机制,在脑科学和认知科学方面,如何在生物分子的水平上认识结构,化学都有十分重要的作用。

当代无机化学研究前沿与进展研究

化学前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的 基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温 和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中 占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料 性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。

化学学科发展前沿

当代无机化学发展前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科 学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶 化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究 领域中占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化 材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础

化学前沿综述

化学前沿综述报告 摘要:催化剂的概念以及在新能源和环境治理中的应用,如:煤燃烧、废水处理。关键字:催化剂煤燃烧废水处理 化学前沿综述课不是一门只是教授书本知识的课程。在这里我学到了很多新鲜、实际的知识,大大拓宽了知识面。从中了解了当前化学各学科大致的发展方向以及如何在实际中将所学到的化学专业知识应用起来。在“化学反应动力学前沿简介”报告中我了解到了固体表面特征、固体表面孔的类型、固体表面力与吸附的关系、以及吸附原理、吸附平衡及其表征方法。在“自组装与光子晶体”报告中我了解了光子晶体是将两种或两种以上介质材料排列成具有光波长量级的一维、二维或三维周期结构的人工晶体。由于光子晶体具有光子带隙,光子局域等特性, 所以它具有巨大的应用前景。在“过渡金属催化的碳氢键活化”报告中我了解了碳氢键活化反应都需要对底物进行卤化或金属化等预活化步骤,因此过渡金属催化的通过碳氢键活化直接构筑碳-碳键的方法就成为构筑碳-碳键的绿色经济的途径。在这门课中也是我对催化剂有了新的了解和认识,催化剂在实际应用是广泛的,如在新能源和环境治理中。 当前新能源问题和环境治理是社会关注的热点,而催化剂在这两个领域将是很有作为的。新能源领域:我国是能源消耗大国,而在我国能源消耗结构中,煤占有重要地位。所以合理有效开发利用煤是一个具有现实意义的课题。环境治理方面:我国和全球都面临着严重的环境问题,其中水污染尤为严重,治理也就尤为迫切。所以利用催化剂在治理水污染具有长远意义。下面就简述一下催化剂的概念和在工业实际中的应用。 催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行反应。催化剂在工业上也称为触媒。化学催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生物化工中,可以说,催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机碱。催化剂对化学反应速率的影响非常大,有的催化剂可以使化学反应速率加快到几百万倍以上。催化剂一般具有选择性,它仅能使某一反应或某

物理化学-化学前沿与进展资料

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

化学学科的前沿方向与优先领域

化学学科的前沿方向与优先领域基础学科在整个自然科学体系中占有十分重要的地位和作用。由基础科学研究产生的大量新思想、新理论、新效应等为应用科学提供了理论基础,对现代技术的发展有巨大的推动作用。国内外大量事实说明,"科学理论不仅更多地走在技术和生产的前面,而且为技术、生产的发展开辟着各种可能的途径"。基础研究是社会与科学发展的基础,而基础学科的建设与发展,是基础科学研究的基础。 化学和其它科学一样,是认识世界和改造世界重要学科。它与物理科学、生命科学等相互渗透,不断形成新的交叉学科。 学科的前沿方向与优先领域为: (1)合成化学; (2)化学反应动态学; (3)分子聚集体化学; (4)理论化学; (5)分析化学测试原理和检测技术新方法建立; (6)生命体系中的化学过程; (7)绿色化学与环境化学中的基本化学问题; (8)材料科学中的基本化学问题; (9)能源中的基本化学问题; (10)化学工程的发展与化学基础。 今日化学何去何从 今日化学何去何从?对于这个问题有两种回答:第一种回答:化学已有200余年的历史,是一门成熟的老科学,现在发展的前途不大了;21世纪的化学没有什么可搞了,将在物理学

与生物学的夹缝中逐渐消微。第二种回答:20世纪的化学取得了辉煌的成就,21世纪的化学将在与物理学、生命科学、材料科学、信息科学、能源、环境、海洋、空间科学的相互交叉,相互渗透,相互促进中共同大发展。本文主张第二种回答。 1. 20世纪化学取得的空前辉煌成就并未获得社会应有的认同 在20世纪的100年中,化学与化工取得了空前辉煌的成就。这个“空前辉煌”可以用一个数字来表达,就是2 285万。1900年在Chemical Abstracts(CA)上登录的从天然产物中分离出来的和人工合成的已知化合物只有55万种。经过45年翻了一番,到1945年达到110万种。再经过25年,又翻一番,到1970年为236.7万种。以后新化合物增长的速度大大加快,每隔10年翻一番,到1999年12月31日已达2 340万种。所以在这11年中,化学合成和分离了2 285万种新化合物、新药物、新材料、新分子来满足人类生活和高新技术发展的需要,而在1900年前的历史长河中人们只知道55万种。从上面的数字还可以看出,化学是以指数函数的形式向前发展的。没有一门其他科学能像化学那样在过去的100年中创造出如此众多的新化合物。这个成就用“空前辉煌”来描述并不过分。但“化学家太谦虚”(这句话是Nature 杂志在2001年的评论中说的,参见文献[1]),不会向社会宣传化学与化工对社会的重要贡献。因此20世纪化学取得的辉煌成就,并未获得社会应有的认可。 2.20世纪发明的七大技术中最重要的是信息技术、化学合成技术和生物技术 报刊上常说20世纪发明了六大技术: ①包括无线电、半导体、芯片、集成电路、计算机、通讯和网络等的信息技术; ②基因重组、克隆和生物芯片等生物技术; ③核科学和核武器技术; ④航空航天和导弹技术; ⑤激光技术; ⑤纳米技术。

机械学科前沿技术

《机械学科前沿技术》 ——综述报告 《机械学科前沿技术》综述报告 摘要:机械学科前沿技术学科综合性强,技术要求高;能够促进国民经济的发展,提升中国制造业的技术水平,促进中国从制造大

国到制造强国的转型,提升在国际上的竞争力;在计算机辅助的基础上,制造技术便捷民众的生产与生活,提高国家的国防能力,同时可以帮助人类向更远的外太空和更深的海洋系统进行探索;符合现代科技的发展潮流。在工业4.0的背景下,人类的活动对机械前沿技术提出了更高的要求:需要更高的智能化、集成化、微型化,能够在更加极端的环境背景正常运行。今日之世界以非昨日之世界,在人类已经有能力毁灭地球的前提下,利用前沿技术提升制造业已经成为时代发展主流。中国虽已经是今非昔比,但高新技术空白区依然较大,我们肩负着复兴中华民族的伟大中国梦,任重而道远! 那么什么是先进制造技术?先进制造技术是在传统制造技术上不断吸收机械、电子、信息、材料、能源以及现代管理技术的成果,将其综合应用于产品设计、加工装配、检验测试、经营管理、售后服务乃至回收的全过程,以实现优质、高效、低耗、清洁、灵活的生产,提高对动态多变市场的适应能力和竞争能力的制造技术的总称。它包括现代设计方法、先进制造工艺、制造自动化技术、现代生产管理技术和先进制造生产模式及系统。人类进入21世纪以来,以信息技术为代表的高新技术不断发展,市场需求逐渐个性化和多样化,制造业面临着新的机遇和挑战,其发展的重要特征是全球化、网络化、虚拟化。为了适应经济全球化,适应高新技术发展的需求,适应愈加激烈的市场竞争环境,未来先进制造技术发展的总趋势是精密化、柔性化、虚拟化、网络化、智能化、敏捷化、绿色化、集成化以及创新管理的方向发展。

当代无机化学研究前沿与进展

当代无机化学研究前沿与进展 【摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 【关键词】:无机化学;研究前沿;研究进展 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。

应用化学专业前沿应化11-2

应用化学学科前沿 高分子材料

前言: 高分子材料也称聚合物材料,它是以高分子化合物(树脂)为基体,再配以其他添加剂(助剂)所构成的材料。高分子材料包括天然高分子材料,如棉、麻、丝、毛等;由天然高分子原料经过化学加工而成的改性高分子材料,如粘胶纤维、醋酸纤维、改性淀粉等;由小分子化合物通过聚合反应合成的合成高分子材料,如聚丙烯树脂、顺丁橡胶、丙烯酸涂料等。由于高分子材料概括性太大,先介绍几种不同高分子材料的发展现状。

高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。高分子材料与其他的各种材料(如木材、陶瓷、金属、水泥、棉、毛、丝、皮革、纸张等)并驾齐驱,在各种工业部门得到了广泛的应用,这主要是高分子材料本身具有许多的优良特性,例如塑料质地轻盈、加工成型方便,可以制成各种生活用品;工程材料具有较高强度,可以代替金属,由于高分子材料的相对密度为1.0~1.4,是钢铁相对密度的1/8、铝的1/2,这对于要求减轻自重的应用,有特殊的意义。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人们將其称为高分子、大分子或高聚物. 高分子的种类繁多,随着化学合成工业的发展和新聚合反应和方法的出现,种类不断增加,就要进行分类。可以根据来源、性质、用途、结构等不同的角度进行多种分类。依据材料的性能和用途,可以将聚合物分为塑料、纤维、橡胶、涂料、粘合剂、功能高分子、离子交换树脂等;按应用功能分类可以分为通用高分子如塑料、纤维、橡胶、涂料、粘合剂等,功能高分子如具有光电磁等物理功能的高分子、高分子药物等,特殊功能高分子如耐热、高强度的聚碳酸酯等,仿生高分子如高分子催化剂、模拟酶等。 高分子材料可以人为合成,那是不是代表着人们可以随心所欲的合成自己需要的材料呢?答案当然是否定的。就目前人类的科学发展水平来看,想随心所欲的合成高分子材料是不可能的。先来看看目前高分子材料的发展现状以及发展前景吧。 随着高分子材料合成与加工的技术进步,塑料在各行业得到广泛、深入的应

化学前沿报告

化学前沿报告 化学前沿这门课让我领略了化学的力量与魅力,学到了一些新的知识,这是课本和课堂上所学不到的,使我对化学有了全新的了解,加深了我学习化学的兴趣。下面介绍一下我对一些化学前沿的现状以及我的理解: 一、量子化学 它是现代化学科学的理论基础。近30多年来,量子化学的发展呈现出一个很有希望的趋势。这就是量子力学和化学实践的进一步结合。这种结合反映在量子化学的基础研究中具有下列特点,即为解决复杂的化学反应理论问题,而运用的都是简单的模型,尽量不依赖那些高深的数学运算。它们均以简单分子轨道理论为基础,力求提出新概念、新思想和新方法,使之能在更加广泛的范围中普遍适用。例如,“前线轨道”、“等瓣类似”等概念的提出已经显示出重大的意义。多粒子体系问题的处理方法也在不断深入探索。其中密度矩阵理论、多级微扰理论以及运用格林函数方法的传播子理论等则是当前精确求解多粒子体系薛定谔方程的几条值得重视的途径。 量子力学和化学的结合,不仅在化学键理论、多体理论、计算方法的理论等量子化学基础研究方面不断取得进展,而且在量子化学的应用研究方面,即在把量子化学的理论与化学实际中的一些重大应用课题相结合方面展现出广阔的发展前景。这主要突出表现在合成具有指定性能的超导体、染料及其它色料、炸药、催化剂、药物等分子及新材料提供依据上;在光谱、波谱、能谱等各种谱图的解析以及其它精密测定实验的结果分析上;在对化学反应微观机理的研究及反应线路预测上等等。 二、化学反应动力学 这是一门在诸种因素的具体作用下研究化学反应速率的化学学科。这些因素主要有分子的状态、浓度、压力、介质、表面、空间取向、电磁场等。化学动力学研究的重点是基元反应,因为它是代表真正发生的化学反应的动力学过程的。目前,化学动力学的发展已进入微观层次,分子反应动力学的研究有着远大前景。具体而言,化学动力学大体有以下几个发展方向:(1)量子化学的理论计算将在微观反应动力学研究中承担更重要的角色。随着超大型计算机的发展,量子化学的理论计算可望得到精确结果,进而了解很多简单反应体系的性质。 (2)多原子自由基化学性质的深入研究。这方面的研究包括多原子自由基的能量、光谱、反应性和光化学。 (3)激光在促进化学反应方面将得到更有效的利用。激光技术最近较显著的进步是真空紫外激光的发展。利用激光有选择地打断分子内某个化学键,这个前景很有吸引力。有朝一日,也许可通过电子跃迁的途径来实现“分子裁剪”的科学幻想。此外,把激光和分子束技术相结合,有可能进行非常精细的工作,例如能研究原子轨道和分子空间定向的反应等。三、合成化学与催化科学 化学合成是化学研究的基本实验方法。从1828年德国化学家维勒以无机物合成出简单有机物尿素到当代合成维生素B12、红霉素等复杂化合物,化学合成有了一个极大的飞跃,业已形成一门系统化和应用性相当强的合成化学学科。如今,化学合成正在向“分子设计”这个战略目标进军。所谓“分子设计”,即是按预定性能要求设计新型分子,并按科学理论计算得出的合成路线,运用各种手段与技巧把它合成出来,如同造房设计、服装设计那样。这样,分子设计可以从根本上改变化学中传统的“配方炒菜”式的落后方法,从而为材料科学等开辟出众多新的方向(诸如高分子设计、药物设计、催化剂设计及合金设计等)。 要实现化学合成的重大突破其关键在于设计新反应途径,有效控制化学反应性能。如今,在下列诸方面颇引人关注:一是实施无机和有机的交叉,即将研究新无机物的方法应用于有

化学专业前沿讲座

专业前沿讲座感想 正如第一节课老师所讲的,这个课上一个丰富我们化学知识,让我们增加对自己专业了解,接触化学前沿,扩宽化学视野的一个课程。的确,经过大半学期的专业前沿讲座课,我知晓了很多以前在课堂上,没有接触或者接触很少的化学方面的知识,了解了很多的化学原理和过程,而且在这个过程中,我也知道了很多著名的国内外化学家,了解了很多与化学有关的趣事和化学用品的用途。总而言之,这门课丰富了我在化学方面的知识,增加了我对化学的兴趣,大大扩宽了的化学视野。 从第一节课到最后一节课,每次课我们的老师都是不一样的,但他们都有一个共同的特征,那就是他们都特别特别的优秀。每次在听他们自我介绍的时候,我除了是兴奋的,羡慕的,我还特别的激动,因为他们的学历都很高,都毕业于很有名的大学,在各自的研究方面都有一定的成果,我很希望自己有一天在自我介绍时也可以这般让人睁大眼睛,这般自信。都成了我的榜样,虽然我现在还只是化学系一名默默无闻的学生,但是我相信通过努力,有一天,我也可以成为像他们一样优秀的人。这么优秀的老师就在我们身边,以身边的人为榜样,我相信我可以逐渐进步,最终成为一个优秀的化学工作者。 每次课上,老师都会向我们介绍与他们自己的研究方向相关的知识,如有机化学物质,纳米材料,金属有机化学等等。而在整个过程中,让我最记忆深刻的就是雷老师的一句话和王光伟老师关于金属有机化学的介绍。

雷老师来给我们上专业前沿讲座课的时候,因为多媒体设备出了一些问题,所以他选择了口述和手写。虽然和其他老师上课不一样,没有了图片,视频这些用于介绍的工具,但他的讲座依然生动,黑板上也是写满了各种反应机理。而在整个过程中,他的一句话却让我记住最深。“如果你迷茫了,说明了已经开始思考人生了。”这句话真是戳总务的心,我的确非常迷茫,有时候甚至不知道自己究竟该做什么。有时候我会想,化学对我的人生会有什么影响?我学化学去干什么?我以后会做与化学相关的工作吗?我学化学究竟是对是错?太多的问题困扰着我,而我却不知道该如何解开这些问题。按雷老师所说的,我好像真的开始思考人生了。虽然我是迷茫的,但我做事一直有一个原则,那就是做自己喜欢的事情,这也正是我来到我们天津大学化学系的原因。我爱化学,这是不用怀疑的。至于未来,我可能还需要思考一段时间。我曾想过以后去化妆品公司做化妆品,因为我喜欢那种液体的味道和质感。我也想过以后去制药,因为感觉那是和女孩子。在我众多的想法中,我得出了一个结论,我很喜欢化学,我心中的工作都是和化学有关的,特别是有机化学,虽然我现在依然有些迷茫,但是大体的方向好像出来了,就是我依然想走化学之路。现在最重要的就是学好有机(感觉好难),这是以后化学之路的基础。 王老师关于金属有机化学的讲题让我印象深刻,或许是因为上学期见过他,或许是因为老师讲得太好,或许是因为对金属有机化学的兴趣。总之,我很喜欢这个方向的研究。经过他的介绍,我知道了什么是有机化学,金属有机化学的发展史,金属有机化学的应用,金属

无机化学研究前沿系列讲座

无机化学研究前沿系列讲座 固体电解质材料的合成、性能及应用 马桂林教授 固体电解质是在一定温度下具有较高离子电导率的固体物质,是一类新型的功能材料,在能源、环保、催化、医疗、物质制备等领域中有着广泛的应用。 本课题组主要从事固体电解质材料的合成、结构、性能及应用研究。部分研究内容及成果如下: 1、新型固体电解质材料的合成、结构及性质研究。 (1)开拓性地合成了非化学计量组成的系列高温(600―1000 ℃)钙钛矿型质子导体:Ba x Ce0.8M y O3-α (M = Y3+, Er3+, Dy3+, Sm3+; x < 1, x = 1, x > 1; y = 0, 0.1, 0.2),系统研究了这类材料特殊的缺陷结构及导电性能,为定向合成优良质子导体提供了可行方法。 (2)开拓性地合成了系列中温(100―600 ℃)离子导体:Sn1-x M x P2O7 (M = Ga3+, Sc3+; x:掺杂金属离子的摩尔分数),深入研究了它们在中温下的质子、氧离子导电特性,为发展中温固体氧化物燃料电池提供了重要参考。 (3)镓酸镧基陶瓷长期被公认为是优良的纯氧离子导体、是最有希望的固体氧化物燃料电池的氧离子电解质材料之一,但未见到它们具有的质子导电性报道。本课题组首次报道了镓酸镧基陶瓷在氢气气氛中是优良的纯质子导体,在氢/空气燃料电池条件下是混合离子(质子+氧离子)导体,为这类材料的燃料电池应用开发提供了重要依据[1]。 2、固体电解质材料的应用研究。 (1)固体氧化物燃料电池。成功设计了一种简易、高效中温固体氧化物陶瓷膜燃料电池制备方法[2],该方法可广泛应用于相关燃料电池制备。(2)常压合成氨。(3)化学传感器。参考文献 1. Guilin Ma*, Feng Zhang, Jianli Zhu, Guangyao Meng. Chem. Mater. 2006, 18, 6006-6011. 2. Wenbao Wanga, Zhijie Yang, Hongtao Wang, Guilin Ma*,Weijian Gao, Zhufa Zhou*. J. Power Sources, 2011, 196, 3539-354 3.

化学前沿领域的简介与发展历程

龙源期刊网 https://www.360docs.net/doc/5913161535.html, 化学前沿领域的简介与发展历程 作者:林彬彬赵耀金青霞 来源:《科学与财富》2017年第25期 摘要:传统的肿瘤治疗方法如手术、放疗和化疗等由于其各自的局限性,有时治疗效果并不令人满意。光热治疗技术作为一种新型的治疗策略,已经在肿瘤治疗方面引起了高度关注。本文概述了纳米材料、光热治疗及光热剂;综述了基于前沿领域光热治疗的纳米材料的发展。 关键词:前沿;光热治疗;肿瘤;纳米材料 在全球范围内,癌症已经成为导致死亡的主要原因之一。现有的临床治疗手段,包括放射治疗、化疗、激素治疗等,经常会引起一些副作用。光热治疗(PTT)是近年来发展起来的一种治疗癌症的方法,具有较高的选择性和较小的侵害性。通过给予光热转换剂一定时间的近红外光照射,PTT治疗可以特异性的消融肿瘤组织,并且不会对周围正常组织产生明显伤害。 1 简介 1.1 肿瘤与纳米材料 恶性肿瘤已经成为导致人类死亡的主要疾病之一,据2011年世界卫生组织最新的统计结果显示,预计到2020年,全球癌症发病率将增加50%,即每年将增加1500万癌症患者。因而,采用新技术提高现有癌症预警与早期诊断、转移检测、疗效预测及有效治疗的临床方法是目前我国公共卫生领域亟待解决的重大问题之一。 纳米科学与技术被誉为当今三大前沿领域之一。随着纳米颗粒材料、高生物兼容性表面修饰处理技术和手段的快速发展,如何应用纳米特性如小尺寸效应、纳米表面效应、量子效应、纳米结构独特的光、电、热、磁等特殊性质来改进癌症的体外检测、活体影像以及药物的靶向递送与治疗等方法,是目前生命科学对纳米科技提出的最具挑战性的问题。 1.2光热治疗 光热热疗(Photo-thermal Therapy,PTT)是通过加温的方法,采用具有超强组织穿透力的近红外光(NIR),利用毒性低的光热剂对光的吸收和转换能力来改变肿瘤细胞所处环境,使肿瘤细胞变性、坏死,达到治疗的目的。 1.3光热剂 理想的光热剂在近红外光区具有很强的吸收,并且能够有效地将近红外光转换成热量。此外,用于光热治疗的光热剂还应具有低毒性和较高的肿瘤靶向性。无机纳米材料,主要包括不

交叉学科前沿概述讲课稿

交叉学科前沿概述 20世纪下半叶,各类交叉学科的应用和兴起为科学发展带来了一股新风,许多科学前沿问题和多年悬而未决的问题在交叉学科的联合攻关中都取得了可喜的进展。随着越来越多交叉学科的出现及其在认识世界和改造世界中发挥作用的不辩事实,交叉学科在科学领域中的生命力都得到了充分的证明。 一、交叉学科的概念 交叉学科是指由不同学科、领域、部门之间相互作用,彼此融合形成的一类学科群。其宽泛的含义也包括:边缘学科、综合学科、横断学科等在内。交叉学科既是一个学科概念,同时一又是一个历史范畴。从学科发展的历史长河来看,新学科的产生大都是传统或成熟学科相互交叉作用产生的结果。新学科在经历一段时一期的发展之后,将成为成熟的学科,进而有可能再与其他学科交叉作用发展而产生新的交叉学科。 1.交叉学科名词的起源 为了追溯“交叉学科”名词出现的时间,应该首先确定“交叉学科”的词源。形容词“跨学科的”( Interdisciplinary)是美国哥伦比亚大学心理学家伍德沃斯(R. S. Woodworth)于1926年首创的一个专门术语,用于指称超过一个学科范围的研究活动。在1926年新成立的SSRC(美国社会科学研究理事会)上,伍德沃斯建议说,理事会是几个学科的集合,要努力促进不仅仅是一个学科进行的研究,理事会的任务是促进被专业化所隔离的两个或多

个学科之间跨学科的综合研究。当时,Interdisciplinary就是SSRC 会议使用的记录文字,但未普及。1930年,SSRC在一份文件中正式使用了“跨学科的活动’,这样一种说法。1937年,《新韦氏大词典》、《牛津英语辞典》(增补本)首次收入“跨学科”一词。到了50年代,这一术语己在社会科学界被普遍使用,到了60年代,这个词变得时髦起来,自然科学家、教育学家等广泛使用,此后又相继出现了交叉学科研究(Interdisciplinary Researcher ),交叉学科理论(Interdisciplinarytheory ),交叉学科特征(Interdisciplinary characteristics)等,还出现了一些首字母组成的缩写词,如IDE(Interdisciplinary Education)、IDR(Interdisciplinary Research)、IDU(Interdisciplinary Union) ,IGPH(Interdisciplinary Graduate Progxarn in Humanity) ,IDS( Interdisciplinary Survey)。自20世纪60年代以来,国际上交叉科学研究日趋繁荣,各种交叉科学研究机构、研究中心和学术团体纷纷成立。1970年9月在法国召开了“大学的跨学科问题”国际学术讨论会,会后出版了文集《跨学科—大学中的教学和研究问题》,1976年,在英国创办了国际性的交叉科学杂志《交叉科学评论))( Interdisciplinary Science Review),1980年,国际跨学科学陇会i1,式成立,以跨学科科研和跨学科竹理的研究为中心,迄今为止己经成功地组织了多次跨学科国际学术研讨会。范岱年先生早在1981年就指出,自然科学、社会科学之间存在着一条鸿沟。1984年,国务院通过了《关于科学工作的六条方针》,其中特别提到“自然科学中有

有机化学的发展前沿

有机化学的发展前沿 余敏 145924 有机化学的研究对象是有机化合物, 它研究有机化合物的组成、结构、性质、合成、变化,以及伴随这些变化所发生的一系列现象。 20世纪的有机化学,从实验方法到基础理论都有了巨大的进展,显示出蓬勃发展的强劲势头和活力。世界上每年合成的近百万个新化合物中约70%以上是有机化合物。其中有些因具有特殊功能而用于材料、能源、医药、生命科学、农业、营养、石油化工、交通、环境科学等与人类生活密切相关的行业中,直接或间接地为人类提供了大量的必需品。与此同时,人们也面对着天然的和合成的大量有机物对生态、环境、人体的影响问题。展望未来,有机化学将使人类优化使用有机物和有机反应过程,有机化学将会得到更迅速的发展。 有机化学的迅速发展产生了不少分支学科,包括有机合成、金属有机、元素有机、天然有机、物理有机、有机催化、有机分析、有机立体化学等。下面就其中的一部分分支学科来说,了解有机化学的发展前沿和研究热点。 (1)有机合成化学 这是有机化学中最重要的基础学科之一,它是创造新有机分子的主要手段和工具,发现新反应、新试剂、新方法和新理论是有机合成的创新所在。1828年德国化学家维勒用无机物氰酸铵的热分解方法,成功地制备了有机物尿素,揭开了有机合成的帷幕。100多年来,有机合成化学的发展非常迅速。 有机合成发展的基础是各类基本合成反应,不论合成多么复杂的化合物,其全合成可用逆合成分析法分解为若干基本反应,如加成反应、重排反应等。每个基本反应均有它特殊的反应功能。合成时可以设计和选择不同的起始原料,用不同的基本合成反应,获得同一个复杂有机分子目标物,起到异曲同工的作用,这在现代有机合成中称为“合成艺术”。在化学文献中经常可以看到某一有机化合物的全合成同时有多个工作组的报导,而其合成方法和路线是不同的。那么如何去评价这些不同的全合成路线呢?对一个全合成路线的评价包括:起始原料是否适宜,步骤路线是否简短易行,总收率高低以及合成的选择性高低等。这些对形成有工业前景的生产方法和工艺是至关重要的,也是现代有机合成的发展方向。 (2)金属有机化学和有机催化

无机化学的发展前景(可编辑修改word版)

无机化学的发展前景 无机化学的现代化始于化学键理论的建立和新型仪器的应用,使无机化合物的研究由宏观深入微观,从而把它们的性质和反应同结构联系起来。又由于特种技术对无机特种材料生产的需要也有力地推动了无机化学研究。到五十年代,国际上无机化学已进入蓬勃发展时期,有人称之为“无机化学的复兴”。近三十多年来,无机化学研究新发展主要是许多新型化合物如夹心、笼状、簇状和穴状等化合物的合成和应用,以及新的边缘学科如生物无机化学、有机金属化学和无机固体化学等的开拓和发展。我国无机化学的研究仍多属传统的课题,使用经典的方法。在上述新领域中,有的尚未有人问津、仍属空白,有的只是初步涉足,还没有深入系统的工作。〖新型化合物的重要作用〗 总之,无机化学研究的对象是所有的化学元素和它们的化合物,除掉碳氢化合物及其衍生物,范围极为广泛,以上所提及是无机化学在国际上正在发展的具体基础理论意义和实际意义的几个方面和在国内有关矿物资源有效利用而急需解决的一些问题,这些似为我国无机化学界主要致力的方向,以求对祖国四化的建设和对化学学科的发展有所贡献。 无机化学是一个近年来非常活跃的研究领域,它涉及到几乎各个学科。从本世纪50年代起,随着科学水平的提高,对无机化合物微观结构和反应机理有了更深入了解,而理论模型的发展又促进了无机化学研究的系统化和理论化。科学研究的新兴领域及交叉学科如材料、生命等几乎都涉及无机化学。无机化学家还面临着环境、能源等领域提出的问题。这当中也涉及到相当多的无机化学前沿课题。 在世纪之交,展望未来10年化学事业和化学对人类生活的影响,我们充满信心,倍感兴奋,化学是无限的,化学是至关重要的,它将帮助我们解决二十一世纪所面临的一系列问题,化学将迎来它的黄金时代。 1

相关文档
最新文档