平方差,完全平方公式的几何意义3.9

平方差,完全平方公式的几何意义3.9
平方差,完全平方公式的几何意义3.9

平方差,完全平方公式的几何意义

例1.已知大长方形两边长,面积定,求各类纸片张数

如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?

例2已知各类长方形张数,面积定,求大长方形边长

现有正方形甲图片1个、正方形乙图片3个和长方形图片丙4张.请你把它拼成一个长方形,并写出你的拼图思路.

巩固练习

1.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:

(1)写出图2中所表示的数学等式;

(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;(3)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2

(4)小明同学用2张边长为a的正方形,3张边长为b的正方形,5张边长分别为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?

(5)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,那么9(x+y+z)=.

(6)从﹣4,﹣2,﹣1,3,5这五个数中任取两个数相乘,再把所有的积相加,若和为m,求m的值.

例3特例:(从一般到特殊)

图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2

中阴影部分的面积.

方法1:

方法2:

(2)观察图2请你写出下列三个

代数式:(m+n)2,(m﹣n)2,

mn之间的等量关系.

(3)根据(2)题中的等量关系,解决如下问题:

①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;

②如果图3中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

③已知:,求:的值.

(4)如图3,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?

例4.平方差公式的几何意义

(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2;(2)请写出上述过程所揭示的乘法公式.

(3)设图3中阴影部分面积为S1,图4中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2;

请写出上述过程所揭示的乘法公式.

(4)比较图5、6两图的阴影部分面积,可以得到乘法公式(用式子表达).

(5)运用你所得到的公式计算:

①10.3×9.7

②(2m+n﹣p)(2m﹣n+p)

③a+2b﹣c)(a﹣2b﹣c).

④(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)

(6)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.

8.如图,有A、B、C三种不同型号的卡片若干,其中A型是边长为a的正方形,B型是长为b,宽为a 的矩形.C型是边长为b的正方形.

(1)请你选取相应型号和数量的卡片,在下图中的网格中拼出(或镶嵌)一个符合乘法公式的图形(要求三种型号的卡片都用上),这个乘法公式是;

(2)现有A型卡片1个,B型卡片6个,C型卡片10个,从这17个卡片中拿掉一个卡片,余下的卡片全用上,能拼出(或镶嵌)一个矩形(或正方形)的都是哪些情况?请你通过运算说明理由.

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

绝对值几何意义和绝对值方程

绝对值几何意义和绝对值方程 Ⅰ重点突破 重点针对复习 【重点知识点1】绝对值的几何意义 [针对训练1] (南雅-15)1.阅读材料,回答下列问题: 数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2; 在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7; 在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5; 在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;…… 如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|. (1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于; (2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x. ①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=; ②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.

2.先阅读,后探究相关的问题 【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离. (1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为; (3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等; (4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是. 3.结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=. (2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为; (3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是. (4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.

完全平方公式练习题一

完全平方公式为: 注:1.完全平方公式和平方差公式不同: 形式不同. 结果不同:完全平方公式的结果是三项,即 (a ?b )2=a 2 ?2ab+b 2 ; 平方差公式的结果是两项, 即(a+b )(a?b )=a 2?b 2. 2. 解题过程中要准确确定a 和b ,对照公式原形的两边, 做到不丢项、 不弄错符号、2ab 时不少乘2。 3. 口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。 例1 用完全平方公式计算: (1)(2x ?3)2 ; (2) (4x +5y )2 ; (3) (mn ?a )2 练习: 1、计算:2 )221 (y x - (n +1)2-n 2 (2x 2-3y 2)2 2、下列各式中哪些可以运用完全平方公式计算 (1)()()x y y x +-+ (2)()()a b b a -- (3)()()ab x x ab +--33 (4)()()n m n m +-- 例2.计算: (1)(-1-2x )2 (2)()()n m n m +--22 (3))432)(432(-++-y x y x (4)22)32 1()321(b a b a +-

练习: (1)()2c b a -+ (2) (-2x +1) 2 (3))4)(2)(2(22y x y x y x --+ (4)??? ??+-??? ??-b a b a 32132 1 拓展:1.已知31=+ x x ,则=+221x x ________________ 2. 已知131-=x y ,那么2323122-+-y xy x 的值是________________ 3、已知2216)1(2y xy m x +-+是完全平方公式,则m = 4、若22()12,()16,x y x y xy -=+=则=

完全平方公式变形的应用

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab

⑴若()()a b a b -=+=22 713,,则a b 22+=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++22,则a 为 ⑷如果2 2)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于 ⑹若N b a b a ++=-22)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ (三)整体代入 例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。 例2:已知a= 201x +20,b=201x +19,c=20 1x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .

完全平方公式(一)

1.6完全平方公式(一) ●教学目标 (一)教学知识点 1.完全平方公式的推导及其应用. 2.完全平方公式的几何背景. (二)能力训练要求 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力. (三)情感与价值观要求 1.了解数学的历史,激发学习数学兴趣. 2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力. ●教学重点 1.完全平方公式的推导过程、结构特点、语言表述、几何解释. 2.完全平方公式的应用. ●教学难点 1.完全平方公式的推导及其几何解释. 2.完全平方公式结构特点及其应用. ●教学方法 自主探索法 学生在教师的引导下自主探索完全平方公式的几何解释、代数运算角度的推理,揭示其结构特点,然后达到合理、熟练地应用. ●教具准备 投影片四张 第一张:试验田的改造,记作(§1.6.1 A) 第二张:想一想,记作(§1.6.1 B) 第三张:例题,记作(§1.6.1 C) 第四张:补充练习,记作(§1.6.1 D) ●教学过程 Ⅰ.创设问题情景,引入新课 [师]去年,一位老农在一次“科技下乡”活动中得到启示,将一块边长为a米的正方形农田改成试验田,种上了优质的杂交水稻,一年来,收益很大.今年,又一次“科技下乡”活动,使老农铁了心,要走科技兴农的路子,于是他想把原来的试验田,边长增加b米,形成四块试验田,种植不同的新品种. 同学们,谁来帮老农实现这个愿望呢? (同学们开始动手在练习本上画图,寻求解决的途径) [生]我能帮这位爷爷. [师]你能把你的结果展示给大家吗? [生]可以.如图1-25所示,这就是我改造后的试验田,可以种植四种不同的新品种.

平方差公式和完全平方公式基础拔高练习(含答案)汇编

学习-----好资料 1. _______________________ ( a 2+b 2) (a 2- b 2) = ( ) 2-( ) 2= . 2. ________________________________________ (-2x 2-3y 2) (2x 2-3y 2) = (__))-( ) 2= . 3. ________________ 20X 19= (20+ ______ ) (20- __ ) = ___ - = . 4. 9.3 X 10.7= ( ____ — ____ ) ( ____ + ___ ) = ____ — ___ . 5. 20062 — 2005X 2007 的计算结果为( )A . 1 B . - 1 C . 2 D . - 2 6. 在下列各式中,运算结果是 b 2- 16a 2的是()A. (-4a+b ) (-4a -b ) B . (-4a+b ) (4a - b ) 7. 运用平方差公式计算. (8) (a -1) (a -2) (a+1) (a+2) (1) 102X 98 3 1 (2) 2-X 3 4 4 (3)— 2.7 X 3.3 1007X 993 (5) 121 X 112 3 3 (6)— 19- X 201 5 5 C. (b+2a ) (b -8a ) .(—4a - b ) (4a - b )

学习-----好资料 (9) (a+b ) (a — b ) + (a+2b ) (a — 2b ) (10) (x+2y ) (x — 2y ) — ( 2x+5y ) (2x — 5y ) (12) (a+b ) (a — b ) — ( a — 3b ) (a+3b ) + (— 2a+3b ) (— 2a — 3b ) 8. _____________ ( 3a+b ) ( ) =b 2— 9a 2; (a+b — m )( 1 9. 先化简,再求值:(3a+1) (3a —1) — ( 2a — 3) (3a+2),其中 a=—-. (11) (2m- 5) (5+2m ) + ( — 4m — 3) (4m — 3) )=b 2—( a — m ) 2.

知识点057 完全平方公式几何背景(选择)

1、(2010?乌鲁木齐)有若干张面积分别为纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片() A、2张 B、4张 C、6张 D、8张 考点:完全平方公式的几何背景。 分析:由题意知拼成一个大正方形长为a+2b,宽也为a+2b,面积应该等于所有小卡片的面积.解答:解:∵正方形和长方形的面积为a2、b2、ab, ∴它的边长为a,b,b. ∴它的边长为(a+2b)的正方形的面积为: (a+2b)(a+2b)=a2+4ab+4b2, ∴还需面积为b2的正方形纸片4张. 故选B. 点评:此题考查的内容是整式的运算与几何的综合题,考法较新颖. 2、(2010?丹东)图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图② 的形状,由图①和图②能验证的式子是() A、(m+n)2﹣(m﹣n)2=4mn B、(m+n)2﹣(m2+n2)=2mn C、(m﹣n)2+2mn=m2+n2 D、(m+n)(m﹣n)=m2﹣n2 考点:完全平方公式的几何背景。 专题:计算题。 分析:根据图示可知,阴影部分的面积是边长为m+n的正方形减去中间白色的正方形的面积m2+n2,即为对角线分别是2m,2n的菱形的面积.据此即可解答. 解答:解:(m+n)2﹣(m2+n2)=2mn. 故选B. 点评:本题是利用几何图形的面积来验证(m+n)2﹣(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式. 3、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是() A、(a+b)(a﹣b)=a2﹣b2 B、(a﹣b)2=a2﹣2ab+b2

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

完全平方公式(完整知识点)

完全平方公式 完全平方公式即(a±b)2=a2±2ab+b2 该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 必须注意的: ①漏下了一次项 ②混淆公式(与平方差公式) ③运算结果中符号错误 ④变式应用难于掌握。 学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

这两个公式的结构特征: 1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方 和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右 边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内). 完全平方公式口诀 前平方,后平方,二倍乘积在中央。 同号加、异号减,符号添在异号前。(可以背下来) 即 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2(注意:后面一定是加号) 公式变形(习题) 变形的方法 (一)、变符号: 例1:运用完全平方公式计算: (1)(-4x+3y)2(2)(-a-b)2 分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。 解答: (1)原式=16x2-24xy+9y2 (2)原式=a2+2ab+b2 (二)、变项数:

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0);

(7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b| 【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

41完全平方公式(基础)知识讲解

完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解. 【答案】B ; 【解析】A 、221x x -++其中有两项-x 2、12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误; B 、2221(1)x x x -+-=--,符合完全平方公式特点,故本选项正确; C 、221x x --其中有两项x 2、-12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

绝对值几何意义知识点经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

苏教版七年级下册数学[完全平方公式(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 【400108 因式分解之公式法 知识要点】 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.

完全平方公式的几何背景专题训练试题精选附复习资料

完全平方公式的几何背景专题训练试题精选 一.选择题(共6小题) 1.(2010?丹东)图①是一个边长为()的正方形,小颖将图①中的阴影部分拼 成图②的形状,由图①和图②能验证的式子是() A.()2﹣(m﹣n)2=4 B.()2﹣(m22)=2 C.(m﹣n)2+222D ()(m﹣n)2﹣n2 . 2.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们 可以得到两数和的平方公式:()22+22.你根据图乙能得到的数学公式是() B.(a﹣b)22﹣22C.a()2D.a(a﹣b)2﹣A.()(a﹣b)2﹣ b2 3.如图,你能根据面积关系得到的数学公式是() A.a2﹣b2=()(a﹣b)B.()22+22C.(a﹣b)22﹣22D.a()2

4.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是() A.B.()2C.(a﹣b)2D.a2﹣b2 5.如图的图形面积由以下哪个公式表示() B.(a﹣b)22﹣22C.()22+22D.a2﹣b2=()(a﹣b)A.a2﹣b2(a﹣b)(a ﹣b) 6.如果关于x的二次三项式x2﹣16是一个完全平方式,那么m的值是()A.8或﹣8 B.8C.﹣8 D.无法确定 二.填空题(共7小题) 7.(2014?玄武区二模)如图,在一个矩形中,有两个面积分别为a2、b2(a>0,b>0)的正方形.这个矩形的面积为(用含a、b的代数式表示)

8.如图,边长为(2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是.(用含m的代数式表示) 9.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为. 10.如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a()2成立.根据图2,利用面积的不同表示方法,写出一个代数恒等式. 11.如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为

绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 例题精讲 绝对值的性质及化简

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

七年级下册数学完全平方公式的认识教案

6完全平方公式 第1课时完全平方公式的认识 【知识与技能】 理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算,了解完全平方公式的几何背景. 【过程与方法】 经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识. 【情感态度】 在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美. 【教学重点】 1.弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点; 2.会用完全平方公式进行运算. 【教学难点】 会用完全平方公式进行运算. 一、情景导入,初步认知 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗? (x+3)2=_________________, (x-3)2=_________________, 这些式子的左边和右边有什么规律?再做几个试一试: (2m+3n)2=_________________, (2m-3n)2=_________________.

【教学说明】 让学生运用多项式乘以多项式的法则进行计算,为本节课学习完全平方公式做准备. 二、思考探究,获取新知 1.观察下列算式及其运算结果,你有什么发现? (m+3)2 =(m+3)(m+3) =m2+3m+3m+9 =m2+6m+9 (2+3x)2=(2+3x)(2+3x) =4+2×3x+2×3x+9x2 =4+12x+9x2 2.观察上面的计算结果,回答下列问题: (1)原式的特点?两数和的平方. (2)结果的项数特点?等于它们平方的和,加上它们乘积的两倍. (3)三项系数的特点?(特别是符号的特点). (4)三项与原多项式中两个单项式的关系.3.再举两例验证你的发现.4.你能用自己的语言叙述这一公式吗? 【归纳结论】 两数和的平方,等于它们平方的和,加上它们乘积的两倍.即: (a+b)2=a2+2ab+b2 5.用不同的形式表示图形的总面积,并进行比较,你发现了什么? 6.议一议:(a-b)2=?你是怎样做的? 7.你能自己设计一个图形解释这一公式吗?并用自己的语言叙述这一公式. 【归纳结论】 两数差的平方,等于它们平方的和,减去它们乘积的两倍.即:(a-b)2=a2-2ab+b2上面的两个公式称为完全平方公式. 8.分析完全平方公式的结构特点,并用语言来描述完全平方公式. 结构特点:左边是二项式(两数和(差))的平方;右边是两数的平方和加上(减去)这两数乘积的两倍.

相关文档
最新文档