完全平方公式讲解

完全平方公式讲解
完全平方公式讲解

完全平方公式讲解

第一部分概念导入

1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

(2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______;

2.学生计算

3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1

(m+2)2=(m+2)(m+2)= m2+4m+4

(2)(p-1)2=(p-1)(p-1)= p2-2p+1

(m-2)2=(m-2)(m-2=m2-4m+4

4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。

推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】

得到公式,分析公式

(1).结论:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即:

两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.

(2)公式特征

左边:二项式的平方

右边:二项式中每一项的平方与这两项乘积2倍的和.

注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“+”,若这两项异号,则2ab的符号为“-”.

(3)公式中字母可代表的含义

公式中的a和b可代表一个字母,一个数字及单项式.

(4)几何解释

图1-5

图1-5中最大正方形的面积可用两种形式表示:①(a+b)2②a2+2ab+b2,由于这两个代数式表示同一块面积,所以应相等,即(a+b)2=a2+2ab+b2

因此,用几何图形证明了完全平方公式的正确性.

【学习方法指导】

[例1]计算

(1)(3a+2b)2(2)(mn-n2)2

点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.解:(1)(3a+2b)2=(3a)2+2·(3a)·(2b)+(2b)2=9a2+12ab+4b2

注意:(2)中n 2的指数2与公式中b 2的二次方所代表含义不同,所以在展开过程中不要漏掉“二次方”. [例2]计算

(1)(-m -n )2 (2)(-5a -2)(5a +2)

点拨:(1)可直接用完全平方公式.由于-m 与-n 是同号,所以公式中的2ab 取“+”.(2)中两个二项式虽然不同,但若将第一个括号中的“-”提出,则剩下的两个括号里的项完全相同,可利用完全平方公式进行计算.

解:(1)(-m -n )2

=(-m )2+2·(-m )(-n )+(-n )2

=m 2+2mn +n 2

(2)(-5a -2)(5a +2)

=-(5a +2)(5a +2)

=-(5a +2)2

=-(25a 2+20a +4)

=-25a 2-20a -4

小结:由(2)可知,将两个二项式相乘,两个括号里的每一项都相反的话,可先作适当调整,再利用完全平方公式进行计算.

[例3]计算

(1)(x -2y )2-(x -y )(x +y )

(2)(m -n )(m 2-n 2)(m +n )

点拨:(1)可分别应用平方差公式与完全平方公式进行乘法运算,再化简.(2)可先利用平方差公式将m -n 与m +n 相乘,再将所得结果m 2-n 2与中间括号里的m 2-n 2相乘,可利用完全平方公式.

解:(1)(x -2y )2-(x -y )(x +y )

=(x 2-4xy +4y 2)-(x 2-y 2)

=x 2-4xy +4y 2-x 2+y 2

=-4xy +5y 2

(2)(m -n )(m 2-n 2)(m +n )

=(m -n )(m +n )(m 2-n 2)

=(m 2-n 2)(m 2-n 2)

=(m 2)2-2·m 2·n 2+(n 2)2

=m 4-2m 2n 2+n 4

说明:这两题在能用公式的地方尽量用公式,是因为应用公式可以简化运算,若想不到,用多乘多也可.

[例4]计算:(x +2y )2-(x -2y )2

点拨:第一种方法是利用完全平方公式直接展开,第二种方法是可利用平方差公式逆运算:a 2-b 2=(a +b )(a -b ),将此题转化为平方差公式进行计算.

解法一:(x +2y )2-(x -2y )2 =(x 2+xy +42

y )-(x 2-xy +42y )

=x 2+xy +

42y -x 2+xy -42y

=2xy

解法二:

[例5]计算:(a -2b +1)(a +2b -1)

点拨:此题“三项式乘三项式”,且这两个括号中的三项只有符号不同.先找出两个括号中完全相同的项放在一起,再把互为相反数的项放在一起,构成(a +b )(a -b )的形式,利用平方差公式进行简化运算.

关键:此题最重要一步就是由①到②的过程转化,要保证代数式在形式发生变化的同时,大小不变! 随堂练习

一、选择题

1.下列运算中,正确的是( )

A .3a+2b=5ab

B .(a -1)2=a 2-2a+1

C .a 6÷a 3=a 2

D .(a 4)5=a 9

2.下列运算中,利用完全平方公式计算正确的是( )

A .(x+y )2=x 2+y 2

B .(x -y )2=x 2-y 2

C.(-x+y)2=x2-2xy+y2D.(-x-y)2=x2-2xy+y2

3.下列各式计算结果为2xy-x2-y2的是()

A.(x-y)2B.(-x-y)2C.-(x+y)2D.-(x-y)2 4.若等式(x-4)2=x2-8x+m2成立,则m的值是()

A.16 B.4 C.-4 D.4或-4 二、填空题

5.(-x-2y)2=_____.

6.若(3x+4y)2=(3x-4y)2+B,则B=_____.

7.若a-b=3,ab=2,则a2+b2=______.

8.(_____-1

3

y)2=

9

4

x2-xy+______;(_____)2=

9

16

a2-6ab+_____.

三、解答题

9.利用完全平方公式计算:(1)20082;(2)782.

10.先化简,再求值:(2x-1)(x+2)-(x-2)2-(x+2)2,其中x=-1 3

11.利用公式计算:1962

12.某正方形边长a cm,若把这个正方形的边长减小3 cm,则面积减少了多少?

13.已知x+y=1,求1

2

x2+xy+

1

2

y2的值.

14.已知a+1

a

=5,分别求a2+

2

1

a

,(a-

1

a

)2的值

15.为了扩大绿化面积,若将一个正方形花坛的边长增加3米,?则它的面积就增加39平方米,求这个正方形花坛的边长.

16.小明在计算2

222009200820092007200920092

+-时,找不到计算器,去向小华借,小华看了看题说根本不需要用计算器,而且很快说出了答案.你知道他是怎么做的吗?

17.已知:a +b =-5,ab =-6,求a 2+b 2.

18.利用公式计算:992-1

19.计算 (1))1)(1(+-ab ab ; (2))32)(32(---x x ;

(3)1022; (4)992.

(5))1)(1(-+++b a b a ;(6)2)2(p n m +

-.

20.一个正方形的边长增加3cm,它的面积就增加392cm ,这个正方形的边长是多少?

21.当2)2()23)(23(1,1b a b a b a b a

---+=-=时,求的值

22.求证:当n 为整数时,两个连续奇数的平方差22)12()

12(--+n n 是8的倍数

23.观察下列等式:

10122=-,31222=-,52322=-,73422=-,……

请用含自然数n 的等式表示这种规律为:________________.

24.已知2294y Mxy x

+-是一个完全平方式,求M 的值.

25.2005年12月1日是星期四,请问:再过20052天的后一天是星期几?

答案

一、

1.B

2.C 点拨:(x+y )2=x 2+2xy+y 2,所以A 不正确;(x -y 2=x 2-2xy+y 2,所以B 不正确;(-x+y )2=(-x )2+2(-x )·y+y 2=x 2-2xy+y 2,所以C 正确;

(-x -y )2=(x+y )2=x 2+2xy+y 2,所以D 也不正确,故选C .

3.D

4.D 点拨:因为(x -4)2=2-8x+16,所以若(x -4)2=x 2-8x+m 2成立,

则m 2=16,从而得m=±4,故选D .

二、

5.x 2+4xy+4y 2 点拨:(-x -2y )2=[-(x+2y )] 2=(x+2y )2=x 2+4xy+4y 2.

6.48xy 点拨:B=(3x+4y )2-(3x -4y )2=9x 2+24xy+16y 2-(9x 2-24xy+16y 2)?=?9x 2+?24xy+16y 2-92+24xy -16y 2=48xy .

7.13 点拨:因为a -b=3,ab=2,所以a 2+b 2=(a -b )2+2ab=32+2×2=9+4=13.

8.32x ;19y 2;34

a -4

b ;16b 2 三、

9.解:(1)20082=(2000+8)2=20002+2×2000×8+82=4000000+32000+64=4032064;

(2)782=(80-2)2=802-2×80×2+22=6400-320+4=6084.

10.解:(2x -1)(x+2)-(x -2)2-(x+2)2=2x 2+4x -x -2-(x 2-4x+4)-(x 2+4x+4)

=2x 2+3x -2-x 2+4x -4-x 2-4x -4=3x -10.

当x=-13时,原式=3×(-13

)-10=-1-10=-11. 11.思路:196接近整数200,故196=200-4,则此题可化为(200-4)2,利用完全平方公式计算. 解:1962 ①

=(200-4)2 ②

=2002-2×200×4+42

=40000-1600+16=38416

说明:Ⅰ.可转化为完全平方的形式的数必须较接近一个整数才较易进行计算.

12.思路:先分别表示出新旧正方形的边长,再根据“正方形面积=边长×边长”,表示出两个正方形的面积,用“大-小”即可得出所求.计算的关键在完全平方式的展开.

解:原正方形面积:a 2

现正方形面积:(a -3)2

面积减少了a 2-(a -3)2=a 2-(a 2-6a +9)=a 2-a 2+6a -9=(6a -9)(cm 2)

答:面积减少了(6a -9) cm 2.

13.解:因为x+y=1,所以(x+y )2=1,即x 2+2xy+y 2=1. 所以12x 2+xy+12y 2=12(x 2+2xy+y 2)=12×1=12.

点拨:通过平方将已知条件转化为完全平方公式,从而巧妙求值.

14.因为a+1a =5,所以a 2+21a =(a+1a )2-2·a·1a =52-2=23,

所以(a -1a )2=a 2+21a -2·a·1a =23-2=21.

点拨:注意公式的一些变形形式,例如:a 2+b 2=(a+b )2-2ab ,a 2+b 2=(a -b )2+2ab ,(a+b )2=(a -b )2+4ab ,(a -b )2=(a+b )2-4ab 等等.

15.解:设这个正方形花坛的边长为x 米,依题意列方程得,(x+3)2-x 2=39,?

即x 2+6x+9-x 2=39,6x=30,x=5.

答:这个正方形花坛的边长为5米.

点拨:适当引进未知数,?根据题中的相等关系得到方程,解方程即可.

16.解:知道,做法如下:

2

222009200820092007200920092+-=22220092008(200920081)(200920081)2

-++- =2

22200920082009200822009200812009200822009200812

-?+++?+- =2220092008220092008?=12.

点拨:由200920072=(20092008-1)2,200920092=(20092008+1)2,运用完全平方公式化简即可.

17.点拨:同时存在a +b ,ab ,a 2+b 2的公式为完全平方公式(a +b )2=a 2+2ab +b 2,将题目中所给条件分别看作整体,代入公式即可.

注意:Ⅰ.不要分别求出a 和b ,运算繁琐.

Ⅱ.若已知a +b (或a -b ),ab ,a 2+b 2中的二者,都可利用完全平方公式求出第三者.

解:a 2+b 2=(a +b )2-2ab

当a +b =-5,ab =-6时

原式=(-5)2-2×(-6)=25+12=37.

18.点拨:可分别用完全平方公式或平方差公式两种方法得到相同的答案.

19.【点拨】(1)符合平方差公式的特征,只要将ab 看成是a ,1看成是b 来计算.

(2)利用加法交换律将原式变形为)23)(23(x x --+-,然后运用平方差公式计算.

(3)可将102

2改写为2)2100(+,利用两数和的平方公式进行简便运算. (4)可将992改写为2)1100(-,利用两数差的平方公式进行简便运算.

解:(1))1)(1(+-ab ab =11)

(222-=-b a ab ; (2))32)(32(---x x

= )23)(23(x x --+-=22249)2()3(x x -=--; (3)102

2= 2)2100(+=1040444001000022100210022=++=+??+; (4)992=2)1100(-=98011200100001110021002=+-=+??-.

【点拨】(5,6)两个因式中都含有三项,把三项看成是两项,符号相同的看作是一项,符号相反的看作是一项,运用公式计算,本题可将)(b a +看作是一项.

先将三项看成是两项,用完全平方公式,然后再用完全平方公式计算.

解:(5))1)(1(-+++b a b a =121)(]1)][(1)[(222-++=-+=-+++b ab a b a b a b a ;

(6)2)2(p n m

+-=222)2(2)2(])2[(p p n m n m p n m +?-?+-=+- =2224244p np mp n mn m +-++-.

【点评】1.在运用平方差公式时,应分清两个因式中是不是有一项完全相同,有一项互为相反数,这样才可以用平方差公式,否则不能用;2.完全平方公式就是求一个二项式的平方,其结果是一个完全平方式,两数和或差的平方,等于这两个数的平方和,加上或减去这两个数乘积的2倍,在计算时不要发生:222)(b a b a +=+或222)(b a b a -=-这样的错误;

3.当因式中含有三项或三项以上时,要适当的分组,看成是两项,用平方差公式或完全平方公式.

20. 【点拨】如果设原正方形的边长为xcm,根据题意和正方形的面积公式可列出方程求解.

解:设原正方形的边长为xcm,则39)3(22+=+x x

即399622+=++x x x ,解得 x=5.

答:这个正方形的边长是5cm .

21. 【点拨】先用乘法公式计算,去括号、合并同类项后,再将a 、b 的值代入计算出结果.

解:)44(49)2()23)(23(22222b ab a b a b a b a b a +---=---+

=2222228484449b ab a b ab a b a

-+=-+--; 当时,1,1=-=b a

222848)2()23)(23(b ab a b a b a b a -+=---+=8(-1)81)1(42-?-+=-4.

22.【点拨】运用完全平方公式将22)12()12(--+n n

化简,看所得的结果是否是8整数倍. 证明:22)12()12(--+n n

=)144(14422+--++n n n n =n n n n n 814414422=-+-++,

又∵n 为整数,∴8n 也为整数且是8的倍数.

23.【点拨】本题是属于阅读理解,探索规律的题目,认真观察、分析已知的等式的特点,从中总结出规律.同学们相互研讨交流一下.答案为:n n n n n 且1(12)1(22≥-=--为整数).

24.【点拨】已知条件是一个二次三项式,且是一个完全平方式,

22y x 与项的系数分别为4和9,所以这个完全平方式应该是2)32(y x ±,由完全平方公式就可以求出M.

解:根据2)32(y x

±=229124y xy x +±得: 12±=-M . ∴12±=M

答:M 的值是±12.

25.【点拨】因为每个星期都有7天,要求再过2005

2天的后一天是星期几,可以想办法先求出20052是7的多少倍数还余几天.

解:20052=93)2867(2)2867()3286

7(22+???+?=+? =277)2866()2867(2++??+?.

显然2005年12月1日是星期四,再过20052天的后一天实际上要求星期四再过两天后的一天是星期日.

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

解析完全平方公式

解析完全平方公式 完全平方公式是进行代数运算与变形的重要的知识基础。该知识点重点是对完全平方公式的熟记及应用.难点是对公式特征的理解 (如对公式中积的一次项系数的理解).我在教学完全平方公式后反思学生中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式与;③运算结果中符号错误;④变式应用难于掌握。现我结合教授完全平方公式的实践经验对完全平方公式作如下解析: 一、理解公式左右边特征 (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性; (二)学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. (三)这两个公式的结构特征是:

1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内); 3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一: 因为 所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。 二、把握运用公式四步曲: 1、“察”:计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用相应乘法法则进行计算. 2、“导”:正确地选用完全平方公式,关键是确定式子中a、b分别表示什么数或式. 3、“算”:注意每步的运算依据,即各个环节的

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

因式分解——完全平方公式

14.3.2公式法(完全平方公式) 一、内容及内容解析 1.内容:本节课的主要内容是利用完全平方公式进行因式分解。 2.内容解析:本节是人教版八年级上册第十四章14. 3.2公式法的内容。主要是利用完全 平方公式进行因式分解。因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其 是多项式的乘法关系十分密切。因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因 式分解,是学生进一步学习数学不可或缺的工具。 基于以上分析,确定本节课的教学重点是:能准确判断全平方公式,会用完全平方公式进行因式分解。 二、目标及目标解析 1.目标: (1)知道完全平方式的特征,会用完全平方公式分解因式; (2)能综合运用提公因式法、完全平方公式分解因式。 2.目标解析: 达成目标(1)的具体标志是:学生通过自学,小组合作的方式,能准确说出完全平方式 的特征、并会判断一个式子是否是完全平方式,是哪两个数的完全平方和(或差),从而将这个式子进行因式分解。 达成目标(2)的具体标志是:学生能综合运用提公因式法、完全平方公式分解因式,并 且会判断一个式子是否已经分解到最简,还能否继续分解。从而培养学生的观察和联想能力。 再以课堂习题加以巩固,提高学生灵活运用知识的能力,使新知识得到巩固和升华。 三、教学问题诊断分析 在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因 式分解。这两种方法都是整式乘法的逆运用,所以应先复习整式乘法中的完全平方公式, 再学习用公式法分解因式,可以加强学生对公式的熟练使用。 在思想上:学生个体有所差异,所以应准备不同梯度的题目,让不同层次的学生 尝试完成不同难度的题目,从而达到让“差生吃好,优生吃饱”的教学效果。另外,平 方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。 基于以上分析,确定本节课的教学难点是:能准确判断完全平方式,并能综合运用提公因式法、完全平方公式分解因式。 四、教学过程设计: ●教学基本流程:课前回顾——揭示(学习)目标——指导自学——巡视自学——检查(自学)效果——讨论(学生),点拨(教师)——当堂训练——课后小结 ●教学情景: (一)课前回顾: 1.因式分解的定义: 把一个()化成几个()的积的形式。 练一练: 2a-2= ;a2-1= ;2a2-2= ; 因式分解要注意:有公因式先提公因式;分解因式要彻底

完全平方公式变形公式专题

半期复习(3)—- 完全平方公式变形公式及常见题型 一、公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二。常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A = (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a +b)2=m,(a—b)2=n,则a b等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x﹣y=1,x2+y 2=25,求xy 得值. 2。若x+y=3,且(x +2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x +y=3,xy=﹣8,求: (1)x2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值、 (四)整体代入 例1:,,求代数式得值、 例2:已知a = x +20,b=x +19,c=x+21,求a 2+b2+c 2-ab-bc-ac 得值 ⑴若,则= ⑵若,则= 若,则= ⑶已知a 2+b 2=6ab 且a 〉b >0,求 得值为

⑷已知,,,则代数式得值就是、 (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6= . (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=。 2、阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值。 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值。 (七)数形结合 1、如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形。 (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系不? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2。 (八)规律探求 15.有一系列等式:

完全平方公式

年级八年级课题完全平方公式课型新授教学媒体多媒体 教学目标知识 技能 1.经历探索完全平方公式的过程,使学生感受从一般到特殊的研究方法,进一 步发展符号感和推理能力. 2.会推导完全平方公式,能说出公式的结构特征,并能运用公式进行简单计算.过程 方法 进一步培养学生用数形结合的方法解决问题的能力. 情感 态度 了解数学的历史,激发学习数学的兴趣.鼓励学生自己探索算法的多样化,有意 识地培养学生的创新能力. 教学重点(a±b)2=a2±2ab+b2的推导及应用. 教学难点完全平方公式的推导和公式结构特点及其应用. 教学过程设计 教学程序及教学内容师生行为设计意图一、复习旧知 探究,计算下列各式,你能发现什么规律? (1)(p+1)2 =(p+1)(p+1)=_________; (2)(m+2)2=(m+2)(m+2)=_________; (3)(p-1)2 =(p-1)(p-1)=_________; (4)(m-2)2=(m-2)(m-2)=_________. 答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4. 二、探究新知 1.计算:(a+b)2 和(a-b)2 ;并说明发现的规律。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2. (a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab -ab+b2=a2-2ab+b2. 2.归纳完全平方公式 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,即学生利用多项式与 多项式相乘的法则 进行计算,观察计算 结果,寻找一般性的 结论,并进行归纳 教师让学生利用多 项式的乘法法则进 行推理. 教师让学生用自己 的语言叙述所发现 的规律,允许学生之 间互相补充,教师不 急于概括. 这里是对前边 进行的运算的 复习,目的是 让学生通过观 察、归纳,鼓 励他们发现这 个公式的一些 特点,如公式 左右边的特 征,便于进一 步应用公式计 算 公式的推导既 是对上述特例 的概括,更是 从特殊到一般 的归纳证明, 在此应注意向 学生渗透数学

数学教案的运用完全平方公式法

数学教案的运用完全平方公式法 1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法; 2。理解完全平方式的意义和特点,培养学生的判断能力。 3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力. 4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。 1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。 2。把下列各式分解因式: (1)ax4-ax2 (2)16m4-n4。 解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1) (2) 16m4-n4=(4m2)2-(n2)2 =(4m2+n2)(4m2-n2) =(4m2+n2)(2m+n)(2m-n)。 问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式。 请写出完全平方公式。 完全平方公式是: (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。 这节课我们就来讨论如何运用完全平方公式把多项式因式分解。 和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到 a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子 a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。 问:下列多项式是否为完全平方式?为什么? (1)x2+6x+9; (2)x2+xy+y2; (3)25x4-10x2+1; (4)16a2+1。

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

完全平方公式(含答案)

第2课时 完全平方公式 知识点 1 完全平方公式 1.填空:(1)(x +2)2=x 2+2·________·________+________2 =__________; (2)(2a -3b )2 =________2 +________+________2 =__________. 2.下列计算正确的有( ) ①(a +b )2 =a 2 +b 2 ; ②(a -b )2 =a 2 -b 2 ; ③(a +2b )2 =a 2 +2ab +2b 2 ; ④(-2m -3n )2 =(2m +3n )2 . A .1个 B .2个 C .3个 D .4个 3.若x 2 +16x +m 是完全平方式,则m 的值是( ) A .4 B .16 C .32 D .64 4.计算:(1)(2x +y )2 =______________; (2)? ?? ??12x -2y 2 =______________; (3)(-2x +3y )2=______________; (4)(-2m -5n )2 =______________. 5.计算:(1)(x +y )2-x (2y -x ); (2)计算:(a +1)(a -1)-(a -2)2 ; (3)(x +y -3)2 . 知识点 2 完全平方公式的几何意义 6.利用如图8-5-3①所示的长为a 、宽为b 的长方形卡片4张,拼成了如图8-5-3②所示的图形,则根据图②的面积关系能验证的恒等式为( ) 图8-5-3 A .(a -b )2+4ab =(a +b )2 B .(a -b )(a +b )=a 2-b 2 C .(a +b )2=a 2+2ab +b 2 D .(a -b )2=a 2-2ab +b 2 知识点 3 利用完全平方公式进行简便计算 7.计算:3012 =________. 8.用简便方法计算:20182-4036×2019+20192 . 知识点 4 与完全平方公式有关的化简求值问题 9.(1)[2018·宁波]先化简,再求值:(x -1)2 +x (3-x ),其中x =-12. (2)已知代数式(x -2y )2 -(x -y )(x +y )-2y 2 . ①当x =1,y =3时,求代数式的值; ②当4x =3y 时求代数式的值.

初中数学 完全平方公式的五种常见应用举例

完全平方公式的五种常见应用举例 完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明. 一、正用 根据算式的结构特征,由左向右套用. 例1 计算22 (23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22 [(2)3]m m =--222(2)6(2)9 m m m m =---+4322446129 m m m m m =-+-++43242129 m m m m =--++ 思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用 将公式逆向使用,即由右向左套用. 例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( ) 222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3 分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019 b x =+20172020 c x =+∴,,1a b -=-1b c -=-2 c a -=∴222 a b c ab bc ac ++---2221(222222)2 a b c ab bc ac = ++---2222221(222)2 a a b b b b c c c ac a =-++-++-+2221[()()()]2 a b b c c a =-+-+-2221[(1)(1)2]2=-+-+

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式讲解

完全平方公式讲解 第一部分概念导入 1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律? (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______; (2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______; 2.学生计算 3.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1 (m+2)2=(m+2)(m+2)= m2+4m+4 (2)(p-1)2=(p-1)(p-1)= p2-2p+1 (m-2)2=(m-2)(m-2=m2-4m+4 4.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。 推广:计算(a+b)2=_____ ___ (a-b)2=_____ ___ 【2】 得到公式,分析公式 (1).结论:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 即: 两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. (2)公式特征 左边:二项式的平方 右边:二项式中每一项的平方与这两项乘积2倍的和. 注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“+”,若这两项异号,则2ab的符号为“-”. (3)公式中字母可代表的含义 公式中的a和b可代表一个字母,一个数字及单项式. (4)几何解释 图1-5 图1-5中最大正方形的面积可用两种形式表示:①(a+b)2②a2+2ab+b2,由于这两个代数式表示同一块面积,所以应相等,即(a+b)2=a2+2ab+b2 因此,用几何图形证明了完全平方公式的正确性. 【学习方法指导】 [例1]计算 (1)(3a+2b)2(2)(mn-n2)2 点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式的变形与应用

完全平方公式的变形与应用 完全平方公式222222()2,()2a b a ab b a b a ab b +=++-=-+在使用时常作如下变形: (1) 222222()2,()2a b a b ab a b a b ab +=+-+=-+ (2) 2222()()4,()()4a b a b ab a b a b ab +=-+-=+- (3) 2222()()2()a b a b a b ++-=+ (4) 22221[()()]2 a b a b a b +=++- (5) 221[()()]2 ab a b a b =+-- (6) 2222221[()()()]2 a b c ab bc ca a b b c c a ++---=-+-+- 例1 已知长方形的周长为40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解 设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解 设长方形长为α,宽为b ,则α-b=4,αb=12. 由公式(2),有: (α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和,证明:这个整数的2倍也可以表示为两个整数的平方和. 证明 设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解 设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为S ,则由公式(4),有: S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2≥0, ∴当x=y 即(x-y)2=0时,S 最小,其最小值为64232 =128(cm 2). 例5 已知两数的和为10,平方和为52,求这两数的积. 解 设这两数分别为α、b ,则α+b=10,α2+b 2=52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb -bc-cα的值. 解 由公式(6)有: α2+b 2+c 2-αb -bc-αc =12 [(α-b)2+(b-c)2+(c-α)2] =12 [(-1)2+(-1)2+22] =12 ×(1+1+4)=3.

完全平方公式变形

完全平方公式变形 1.已知 ,求下列各式的值: (1) ; (2) . (3)4 41x x 2.已知x+y=7,xy=2,求 (1)2x 2+2y 2; (2)(x ﹣y )2.。 (3)x 2+y 2-3xy 3.已知有理数m ,n 满足(m+n )2=9,(m ﹣n )2=1.求下列各式的值. (1)mn ; (2)m 2+n 2

平方差公式的应用 1.(a+b﹣c)(a﹣b+c)=a2﹣()2. 2.()﹣64m2n2=(a+)(﹣8mn) 3.已知x2﹣y2=12,x﹣y=4,则x+y=. 4.(x﹣y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)=. 5..(﹣3x+2y)()=﹣9x2+4y2. 6.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=. 7.计算:=. 8.已知a﹣b=1,a2﹣b2=﹣1,则a4﹣b4=. 9.一个三角形的底边长为(2a+4)厘米,高为(2a﹣4)厘米,则这个三角形的面积为. 10观察下列等式19×21=202﹣1,28×32=302﹣22,37×43=402﹣32,…,已知m,n 为实数,仿照上述的表示方法可得:mn=. 11.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长 12如图,第一个图中两个正方形如图所示放置,将第一个图改变位置后得到第二个图,两图阴影部分的面积相等,则该图可验证的一个初中数学公式 为. 以下为提高题(请班级前20名学生会做) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“神秘数”.若60是一个“神秘数”,则60可以写成两个连续偶数的平方差为:60=. 14.20082﹣20072+20062﹣20052+…+22﹣12=. 15.(32+1)(34+1)(38+1)…(364+1)×8+1=. 16.(3a+3b+1)(3a+3b﹣1)=899,则a+b=. 17.化简式子,其结果是.

完全平方公式典型例题

典型例题 例1利用完全平方公式计算: (1);(2);(3). 分析:这几个题都符合完全平方公式的特征,可以直接应用该公式进行计算. 解:(1); (2); (3). 说明:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该公式;(2)在 进行两数和或两数差的平方时,应注意将两数分别平方,避免出现的错误. 例2计算: (1);(2);(3). 分析:(2)题可看成,也可看成;(3)题可看成,也可以看成,变形后都符合完全平方公式. 解:(1) (2)原式 或原式 (3)原式 或原式

说明:把题目变形为符合公式标准的形式有多种方式,做题时要灵活运用. 例3用完全平方公式计算: (1);(2);(3). 分析:第(1)小题,直接运用完全平方公式为公式中a,为公式中b,利用差的平方计算;第(2)小题应把化为再利用和的平方计算;第(3)小题,可 把任意两项看作公式中a,如把作为公式中的a,作为公式中的b,再两次运用完全平方公式计算. 解:(1) = (2) = (3) = 说明:运用完全平方公式计算要防止出现以下错误:, . 例4运用乘法公式计算: (1);(2); (3). 分析:第(1)小题先用平方差公式计算前两个因式的积,再利用完全平方式计算.第(2)小题,根据题目特点,两式中都有完全相同的项,和互为相反数的项b,所以先利用平方 差公式计算与的积,再利用完全平方公式计算;第三小题先需要利用幂的性质把原式化为,再利用乘法公式计算.解:(1)原式= (2)原式= = (3)原式= =.

说明:计算本题时先观察题目特点,灵活运用所学过的乘法公式和幂的性质,以达到简化运算的目的. 例5 计算: (1);(2);(3). 分析:(1)和(3)首先我们都可以用完全平方公式展开,然后合并同类项;第(2)题可以先根据平方差公式进行计算,然后如果还可以应用公式,我们继续应用公式. 解:(1); (2) ; (3) . 说明:当相乘的多项式是两个三项式时,在观察时应把其中的两项看成一个整体来研究.

相关文档
最新文档