调节阀执行机构的工作原理与分类研究

调节阀执行机构的工作原理与分类研究
调节阀执行机构的工作原理与分类研究

调节阀执行机构的工作原理与分类研究

摘要:调节阀是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围进行了探讨,为调节阀的选择提供指导作用。

1引言

调节阀广泛应用于火力发电、核电、化工等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。

2调节阀执行机构

按操作能源的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。

2.1气动执行机构

气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。

气动薄膜调节阀

将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程:

方程式(1)

式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;Ft为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。

图2系统运动受力模型

式(1)中的摩擦力是造成调节阀死区与滞后的主要原因[4]。对于气动执行机构而言,由于工作介质的可压缩性比较大,使得摩擦对其动态响应特性的影响更为显著。当生产过程受到扰动的影响,虽然调节阀控制器的输出产生了一个用于纠正偏差的控制信号,但由于摩擦的存在,使得该信号并没有产生相应的阀杆位移。这就要求控制器输出更大的信号,只有当控制信号超过一定范围,即死区,才能使阀杆产生位移。死区的存在使调节不能及时进行,有时还造成调节的过量,使调节阀的控制品质变差。

为了减小调节阀死区与滞后的影响,除了改进阀杆密封填料结构,采用合适密封材料等外,目前的主要改进措施是通过给气动调节阀配备气动阀门定位器[2],如图3所示。波纹管1的信号压力大小由调节阀控制器调节。当调节阀控制器的输出增大时,波纹管1的信号压力也增大,主杠杆2便绕支点3作逆时针转动,于是喷嘴5与挡板4的距离减小,喷嘴的背压升高,此背压经过放大器6放大后,进入薄膜气室7的压力也开始升高,阀杆8向下移动,并带动反馈杆9绕支点10作逆时针转动,与反馈杆9安装在同一支点的反馈凸轮11跟着作逆时针转动。与此同时,副杠杆12在滚轮13的作用下开始绕支点14作顺时针转动,反馈弹簧15被拉伸。当反馈弹簧15对主杠杆2的拉力与信号压力作用在波纹管1上的力达到力矩平衡时,调节阀气动执行阀杆达到平衡位置。因此,通过气动阀门定位器可以在输入信号与气动调节阀执行阀杆位移(即调节阀开口量)之间建立起一对应的关系。

图3带阀门定位器的气动薄膜调节阀工作原理

添加气动阀门定位器后可以在一定程度上减小气动薄膜调节阀的死区与滞后,但要彻底解决死区与滞后的影响,需从根本上解决调节阀的摩擦力补偿等问题。

除气动薄膜执行机构外,还有气动活塞式执行机构,调节阀执行阀杆通过气缸驱动。

2.2电动执行机构

电动执行机构是采用电动机和减速装置来移动调节阀门的执行机构,需与电动伺服放大器配套使用,其系统组成框图如图4所示。由于带有位移传感器实时检测执行阀杆的位移,故电动执行机构不需额外配备阀门定位器就可以组成位置反馈控制系统,以调节阀执行阀杆的位移信号作为调节阀控制器的反馈测量信号,将控制器输出的设定信号与反馈测量信号进行比较,当两者有偏差时,改变对伺服放大器的输出,使执行阀杆动作,从而建立起输入信号与调节阀执行阀杆位移(即调节阀开口量)一一对应的关系。通常电动执行机构的输入信号是标准的电流或电压信号,输出位移可以是直行程、角行程和多转式等类型[2]。

图4电动执行机构组成框图

2.3电液执行机构

电液执行机构将输入的标准电流或电压信号转换为电动机的机械能,然后通过液压泵,将电动机的机械能转化为液压油的压力能,并经管道和控制元件向前传递,最后借助液压执行元件(如液压缸)将液压油的压力能转化为机械能,驱动调节阀阀杆(阀轴)完成直线(回转角度)运动,控制调节阀阀门的开度。电液执行机构的组成及系统框图如图5所示,位移传感器所形成回路实际起着阀门定位器的作用,建立阀杆位移信号与调节阀控制器输出信号之间的一一对应关系。

图6是某类电液执行机构的工作原理图。工控机根据调节阀控制系统的设置,经D/A转换后以模拟信号的形式输出设定信号,使电液比例方向阀2的左位工作。液压泵1输出的压力油一路给蓄能器3充液,储备液压能,以备快速关闭或开启的应急功能,另一路经过电液比例方向阀2的左位进入液压缸6的左腔,推动活塞右移,调节阀门7打开。位移传感器实时检测调节阀开口量,经过A/D转换后将阀门开度信号输入工控机,经过调节阀控制器的处理后,又将信号输出给电液比例方向阀。电液比例方向阀根据传来的信号符号与大小确定活塞的移动方向和位移量,也就是调整调节阀开口的大小。

电磁换向阀4用于实现电液调节阀快速关闭或开启的应急功能,而手动换向阀5用于实现调节阀的机械手轮降级操作。

图5电液执行机构框图

图6电液调节阀系统原理

3调节阀执行机构的应用

气动执行机构具有结构简单、维修方便、价格低廉、抗环境污染等优点,在工业生产中得到了广泛的应用。但由于气动执行机构的气体工作介质具有较强的可压缩性,使气动执行机构的抗偏离能力比较差,给位置和速度的精确稳定控制带来很大的影响[5],不适于快速响应和大的执行速度场合,从而限制了气动执行机构在大型精确控制项目中的进一步推广。

电动执行机构动作迅速、响应快、所用电源取用方便、便于进行远距离的信号传递,特别是随着电子与计算机技术在工业控制过程中的广泛应用,电动执行机构具有很大的发展前途。但由于电动执行机构由电机、减速齿轮箱、控制箱等组成,当实现大推力时,电动执行机构体积太庞大,而且其封闭的结构会产生热,防火防爆差,降低了安全性。

液压传动以几乎不可压缩的高压液体作为传递动力的介质,能够输出大的力或力矩,动作灵敏,运行较为平稳,传动无间隙,可在高速下启动、制动、换向[6~7]。随着国家大型电站等工业项目的推进,对调节阀提出了大推力(推力矩)、长行程、高精度、快速响应等控制要求。电液执行机构结合了电子技术和液压技术两个方面的优势,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点,

有助于调节阀适应大型工业项目提出的控制要求,同时也适应了现代工业过程控制系统化、智能化不断提高的发展趋势。

4结束语

执行机构是调节阀的关键部件,执行机构类型不同的调节阀工作性能有很大的差异。控制过程是否平稳取决于调节阀能否准确动作。选择恰当的调节阀是管路设计的主要内容,也是保证调节系统安全平稳运行的关键所在。在选择调节阀前应充分了解不同执行机构类型调节阀的特点、适用范围,根据不同的需要选择不同执行机构类型的调节阀。

电动调节阀的工作原理

一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高压差等恶劣状态下,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事故。 为此,对于执行器的正确选用和安装、维修等各个环 节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有 限公司生产的智能型电动调节阀,其型号为 QSVP-16K ,图1是电动调节阀的典型外形,它由两 个可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或4~20mADC 信号,并将其转换成相应的直线位移,推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量轻,功能强、操作方便,已广泛应用于工业控制。 其直线行程电动执行器主要是由相互隔离的电气部分和齿轮传动部分组成,电机作为连执 行 机 构调节阀图1 电动调节阀外形机构

电动调节阀工作原理_secret

电动调节阀工作原理 电动调节阀工作原理:压力控制的叫电动调节阀,电动球阀啊、电动碟阀、智能调节阀,其实都是电动阀扭距电动阀大调节形式上电动阀可以粗略控制开度实现原理就是在电机转动过程中停止。 结构:由电动执行机构和调节阀连接组合后经过调试安装构成电动调节阀。 工作电源:AC22V 380V等电压等级。 通过接收工业自动化控制系统的信号(如:4~20mA)来驱动阀门改变阀芯和阀座之间的截面积大小控制管道介质的流量、温度、压力等工艺参数。实现自动化调节功能。 流量特性介绍:电动调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经电动调节阀的相对流量与它的开度之间关系。主要有:线性特性,等百分比特性及抛物线特性三种。 应用领域:电力、化工、冶金、环保、水处理、轻工、建材等工业自动化系统领域。 安装:电动调节阀最适宜安装为工作活塞上端在水平管线下部。温度传感器可安装在任何位置,整个长度必须浸入到被控介质中。 电动调节阀一般包括驱动器,接受驱动器信号(0-10V或4-20MA)来控制阀门进行调节,也可根据控制需要,组成智能化网络控制系统,优化控制实现远程监控。 类似产品:与电动调节阀功能相似的还有:自力式调节阀。 电动调节阀不需外加能源,通过调节设定点控制温度。当温度升高,阀门根据温度变化成比例的关闭。 电动调节阀包含一个控制阀和一个温控器(包含一个温度传感器、一个设定点调整器、一个毛细管和一个工作活塞),电动执行器依靠选择不同的温度状态应用。温度调节阀根据液体膨胀原理操作,如果在传感器上的温度升高,将使得液体填充物同时加热并膨胀,在工作活塞的作用下阀门关闭,此时将冷却介质。通过设定点键可以一步步调整,电动二通阀可以在标尺上读出。所有的温控器都配有一个超温安全保护设备。

自力式调节阀是如何调节温度及流量和压力

自力式调节阀是如何调节温度及流量和压力 自力式调节阀用于调节工业自动化过程控制领域中的介质流量、压力、温度、液位等工艺参数。根据自动化系统中的控制信号,自动调节阀门的开度,从而实现介质流量、压力、温度和液位的调节。 一、自力式温度调节阀工作原理(加热型) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。 阀开度大小与被控对象实际温度和设定温度的差值有关。 二、自力式温度调节阀工作原理(冷却型) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。 三、自力式流量调节阀工作原理

被控介质输入阀后,阀前压力P1通过控制管线输入下膜室,经节流阀节流后的压力Ps输入上膜室,P1与Ps的差即△Ps=P1-Ps称为有效压力。P1作用在膜片上产生的推力与Ps作用在膜片上产生的推力差与弹簧反力相平衡确定了阀芯与阀座的相对位置,从而确定了流经阀的流量。 当流经阀的流量增加时,即△Ps增加,结果P1、Ps分别作用在下、上膜室,使阀芯向阀座方向移动,从而改变了阀芯与阀座之间的流通面积,使Ps增加,增加后的Ps作用在膜片上的推力加上弹簧反力与P1作用在膜片上的推力在新的位置产生平衡达到控制流量的目的。 相关链接:https://www.360docs.net/doc/5914264907.html,/product/fmtjf/index.shtml

电动调节阀的结构与工作原理

课前准备:多媒体课件制作、演示实验设备调试、以4人/小组进行分组。 一、课程导引——执行器的作用 在过程控制系统中,执行器接受调节器的指令信号,经执行机构将其转换成相应的角位移或直线位移,去操纵调节机构,改变被控对象进、出的能量或物料,以实现过程的自动控制。在任何自动控制系统中,执行器是必不可少的组成部分。如果把传感器比拟成控制系统的感觉器官,调节器就是控制系统的大脑,而执行器则可以比拟为干具体工作的手。 执行器常常工作在高温、高压、深冷、强腐蚀、高粘度、易结晶、闪蒸、汽蚀、高压差等状态下,使用条件恶劣,因此,它是整个控制系统的薄弱环节。如果执行器选择或使用不当,往往会给生产过程自动化带来困难。在许多场合下,会导致控制系统的控制质量下降、调节失灵,甚至因介质的易燃、易爆、有毒而造成严重的事故。为此,对于执行器的正确选用和安装、维修等各个环节,必须给予足够的注意。 执行器根据驱动动力的不同,可划分为气动执行 器、液动执行器和电动执行器,本次课将结合实验装 置所用的智能电动调节阀使用知识进行介绍。 二、产品知识——电动调节阀 的结构与工作原理(20分钟) 1、电动调节阀的基本结构 在THJ-2的实验装置上,配置了上海万迅仪表有 限公司生产的智能型电动调节阀,其型号为 QSVP-16K ,图1是电动调节阀的典型外形,它由两个可拆分的执行机构和调节阀(调节机构)部分组成。 上部是执行机构,接受调节器输出的0~10mADC 或 4~20mADC 信号,并将其转换成相应的直线位移, 推动下部的调节阀动作,直接调节流体的流量。各类电动调节阀的执行机构基本相同,但调节阀(调节机构)的结构因使用条件的不同类型很多,最常用的是直通单阀座和直通双阀座两种。 2、电动执行机构的基本结构(部分摘自上海万迅仪表产品说明书) 执行机构采用了德国进口的PSL 电子式一体化的电动执行机构,该产品体积小、重量执 行 机 构调节阀图1 电动调节阀外形机构

调节阀执行机构的工作原理与分类研究

调节阀执行机构的工作原理与分类研究 摘要:调节阀是物料或能量供给系统中不可缺少的重要组成部分,而执行机构是调节阀的关键组成部件。针对执行机构对调节阀工作性能的影响,分析了调节阀的执行机构类型,讨论了不同类型执行机构的组成、工作原理和特点,在此基础上对不同类型的执行机构适用范围进行了探讨,为调节阀的选择提供指导作用。 1引言 调节阀广泛应用于火力发电、核电、化工等流体控制场合,是工业生产过程最常用的终端控制元件。执行机构和调节阀门是组成调节阀的两大部件,执行机构根据控制信号驱动调节阀门,对通过的流体进行调节,从而改变操纵变量的数值[1~2]。作为调节阀的驱动部分,执行机构在很大程度上影响着调节阀的工作性能。本文讨论了调节阀的执行机构,并对各种类型执行机构的性能特点进行了分析。 2调节阀执行机构 按操作能源的不同,调节阀执行机构可分为气动执行机构、电动执行机构和电液执行机构。 2.1气动执行机构 气动薄膜执行机构是最常用的气动执行机构[3],工作原理如图1所示。将20~100kPa的标准气压信号P通入薄膜气室中,在薄膜上便产生一个向下的推力,驱动阀杆部件向下移动,调节阀门打开。与此同时,弹簧被压缩,对薄膜产生一个向上的反作用力。当弹簧的反作用力与气压信号在薄膜产生的推力相等时,阀杆部件停止运动。信号压力越大,在薄膜上产生的推力就越大,弹簧压缩量即调节阀门的开度也就越大。

气动薄膜调节阀 将与执行阀杆刚性连接的调节阀运动部件视为一典型的质量-弹簧-阻尼环节,系统运动受力模型如图2所示。系统在运动过程满足以下方程: 方程式(1) 式中:m为与执行阀杆刚性连接的运动部件总质量;x为阀杆位移;c为阻尼系数;f为摩擦力;Fs为信号压力在薄膜上产生的推力;G为运动部件总重力;F t为调节阀所控流体在阀芯上的压力差产生的不平衡力;k为弹簧刚度系数。当阀杆由下往上运动时,式(1)等号左端各项符号变负。

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves) 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 13.1常用气动控制阀(Common pneumatic control valves) 和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 13.1.1.1 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。 1.截止式方向控制阀 芯的关系如图13.1 阀口开启后气流的流动方向。 点: 1) 构紧凑的大口径阀。 2 胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3)因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构; 2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀; 3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;

常见流量调节阀的种类解读

常见流量调节阀的种类 1、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,限制实际运行流量不要超过设计流量;换句话说,其作用就是克服供热系统近端的多余资用压头,使电动调节阀或温控阀能在一个许可的资用压头下工作。因此,手动平衡阀和自力式平衡阀,它们都是温控阀或电动调节阀的辅助流量调节装置,但又是非常重要的,如果选型不当,或设计不合理,电动调节阀或温控阀都不能很好工作。 1.1、手动平衡阀 手动平衡阀是一次性手动调节的,不能够自动地随系统工况变化而变化阻力系数,所以称静态平衡阀。手动平衡阀作用的对象是阻力,能够起到手动可调孔板的作用,来平衡管网系统的阻力,达到各个环路的阻力平衡的作用。能够解决系统的稳态失调问题:当运行工况不同于设计工况时,循环水量多于或小于设计工况,由于平衡阀平衡的是系统阻力,能够将新的水量按照设计计算的比例平衡的分配,使各个支路的流量将同时按比例增减,仍然满足当前负荷下所对应的流量要求 1.2、自力式平衡阀 自力式平衡阀则可在没有外接电源的情况下,自动实现系统的流量平衡。自力式平衡阀是通过保持孔板(固定孔径)前后压差一定而实现流量限定的,因此,也可称定流量阀。定流量阀作用对象是流量,能够锁定流经阀门的水量,而不是针对阻力的平衡。他能够解决系统的动态失调问题:为了保持单台制冷机、锅炉、冷却塔、换热器这些设备的高效

率运行,就需要控制这些设备流量固定于额定值;从系统末端来看,为了避免动态调节的相互影响,也需要在末端装置或分支处限制流量。 2、温控阀 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 3、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。

调节阀的基本知识

气动调节阀工作原理 已有76 次阅读2011-01-27 09:04标签: 气动调节阀电磁阀转换器动力源 气动调节阀 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、**等连接安装调试后形成气动调节阀。 气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门**、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 结构分类根据阀门动作方式可基本分为:直行程(薄膜调节阀、直行程气缸)和角行程(拨叉式、齿轮齿条式)两种方式。 维修检查气动调节阀准确正常地工作对保证工艺装置的正常运行和安全生产有着十分重要的意义。因此加强气动调节阀的维修是必要的。 一、检修时的重点检查部位 检查间体内壁:在高压差和有腐蚀性介质的场合,阀体内壁、隔膜阀的隔膜经常受到介质的冲击和腐蚀,必须重点检查耐压耐腐情况; 检查阀座:因工作时介质渗入,固定阀座用的螺纹内表面易受腐蚀而使阀座松弛; 检查阀芯:阀芯是调节阀的可动部件之一,受介质的冲蚀较为严重,检修时要认真检查阀芯各部是否被腐蚀、磨损,特别是在高压差的情况下,阀芯的磨损因空化引起的汽蚀现象更为严重。损坏严重的阀芯应予更换;检查密封填料:检查盘根石棉绳是否干燥,如采用聚四氟乙烯填料,应注意检查是否老化和其配合面是否损坏; 检查执行机构中的橡胶薄膜是否老化,是否有龟裂现象。 二、气动用调节阀的日常维护 当调节阀采用石墨一石棉为填料时,大约三个月应在填料上添加一次润滑油,以保证调节阀灵活好用。如发现填料压帽压得很低,则应补充填料,如发现聚四氟乙燥填料硬化,则应及时更换;应在巡回检查中注意调节阀的运行情况,检查阀位指示器和调节器输出是否吻合;对有**的调节阀要经常检查气源,发现问题及时处理;应经常保持调节阀的卫生以及各部件完整好用。 三、常见故障及产生的原因 (一)调节阀不动作。故障现象及原因如下: 1.无信号、无气源。①气源未开,②由于气源含水在冬季结冰,导致风管堵塞或过滤器减压阀堵塞失灵,③压缩机故障;④气源总管泄漏。 2.有气源,无信号。①调节器故障;③**波纹管漏气;④调节网膜片损坏。 3.**无气源。①过滤器堵塞;②减压阀故障I③管道泄漏或堵塞。 4.**有气源,无输出。**的节流孔堵塞。

十大类型的调节阀功能优缺点比较

1 调节阀结构型式的选择 1.1 从使用功能上选阀需注意的问题 1)调节功能 ①要求阀动作平稳;②小开度调节性能好;③选好所需的流量特性;④满足可调比;⑤阻力小、流量比大(阀的额定流量参数与公称通径之比);⑥调节速度。 2)泄漏量与切断压差 这是不可分割、互相联系的两个因素。 3)防堵 即使是干净的介质,也存在堵塞问题(管道内的不干净介质)、不干净介质更易堵卡。 4)耐蚀 它包括耐冲蚀、汽蚀、腐蚀。主要涉及到材料的选用和阀的使用寿命问题,同时,涉及到经济性问题。 5)耐压与耐温 这涉及调节阀的公称压力、工作温度的选定。 常用材质的工作温度、工作压力与公称压力的关系见下表5-1。 6)重量与外观 小型化、轻型化、仪表化 7)十大类调节阀的功能优劣比较:详见1-1表。 1.2 综合经济效果确定阀型 1) 高可靠性。 2)使用寿命长。 3)维护方便,备品备件有来源。 4)产品价格适宜,性能价格较好。 1.3 调节阀型式的优选次序 ①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀→⑧角形阀→⑨三通阀→⑩隔膜阀。

2 执行机构的选择 2.1 执行机构选择的主要考虑因素 ①可靠性;②经济性;③动作平稳、足够的输出力;④重量外观;⑤结构简单、维护方便。 2.2电动执行机构与气动执行机构的选择比较 1)可靠性方面 2)驱动源 3)价格方面 4)推力和刚度 5)防火防爆 2.3 推荐意见 (1)在可能的情况下,建议选用进口电子式执行机构 (2)薄膜执行机构虽存在推力不够、刚度小、尺寸大的缺限,但其结构简单。 (3)活塞执行机构选择 3 材料的选择 材料的选择主要根据介质的温度、腐蚀性、汽蚀、冲蚀四方面决定。 3.1 根据介质的腐蚀性选择 1)金属耐蚀材料的选择5-2。 2)氟塑料成功地用在耐腐蚀阀上 3.2 耐磨损材质的选择 对汽蚀、冲蚀严重的阀;切断类硬密封调节阀,也必须保护密封面。 4 作用方式的选择 气开、气闭阀的选择主要从生产安全角度考虑。 5 弹簧范围的选择 5.1 “标准弹簧范围”错误说法应纠正 弹簧是气动调节阀的主要零件。弹簧范围是指一台阀在静态启动时的膜室压力到走完全行程时的膜室压力,字母用Pr 表示。如Pr 为20~100KPa ,表示这台阀静态启动时膜室压力是20KPa ,关闭时的膜室压力是100KPa 。常用的弹簧范围有20~100KPa 、20~60KPa 、60~100KPa 、60~180KPa 、40~200KPa …由于气动仪表的标准信号是20~100KPa ,因此传统的调节阀理论把与气动仪表标准信号一致的弹簧范围(20~100KPa )定义成标准弹簧范围。调节阀厂家按20~100KPa 作为标准来出厂,这是十分错误的。 5.2 弹簧范围的选择 1) 阀的稳定性上选择 2) 从输出力上选择 3) 从综合性能上选定弹簧范围 4) 特殊情况弹簧范围的选择 6 流量特性的选择 6.1 调节阀理想流量特性 1)定义 调节阀的流量特性是指介质流过阀门的相对流量与相对开度的关系。数学表达式为: )(max L l F Q Q (5—1)

方向控制阀的原理和区别

今天为大家带来多种方向控制阀的原理和区别。控制阀由两个主要的组合件构成,阀体组合件和执行机构组合件(或执行机构系统),分为四大系列:单座系列控制阀、双座系列控制阀、套筒系列控制阀和自力式系列控制阀。四种类型阀门的变种可导致许许多多不同的应用结构,每种结构有其特点和优、缺点。我们一起来看吧~ 液压阀是用来控制液压系统中油液的流动方向或调节其流量和压力的。 方向控制阀作为液压阀的一种,利用流道的更换控制着油液的流动方向。 单向型方向控制阀是只允许气流沿一个方向流动的方向控制阀,如单向阀、梭阀、双压阀等。 换向型方向控制阀是可以改变气流流动方向的方向控制阀,简称换向阀。 按照控制方式还可分为电磁阀,机械阀,气控阀,人控阀。

单向型方向控制阀1.单向阀

单向阀是气流只能朝一个方向流动,而不能反向流动的阀。单向阀常与节流阀组合,用来控制执行元件的速度。 组成:阀体、阀芯、弹簧等。 作用:只允许液流一个方向流动,反向则被截止。 工作原理:正向导通、反向截止。 应用:常被安装在泵的出口,一方面防止压力冲击影响泵的正常工作,另一方面防止泵不工作时系统油液倒流经泵回油箱。被用来分隔油路以防止高低压干扰。

2.液控单向阀 液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。 液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。 当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 组成:普通单向阀+小活塞缸内泄式和外泄式。 工作原理: a. 无控制油时,与普通单向阀一样 b. 通控制油时,正反向都可以流动。 应用:a、保持压力。b、液压缸的“支承”。c、实现液压缸锁紧。d、大流量排油。 e、作充油阀。 f、组合成换向阀。

自立式调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。

3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。 4、自力式温度调节阀工作原理(冷却型)(如图4) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

阀的种类及图例

阀的种类及图例 闫涛 在现场我们见到最多的就是阀。汽包液位三冲量控制、锅炉的燃烧控制等,都是通过阀门开度和关度的大小来控制对象,我们通过算法的目的也是要控制阀门开度和关度的大小,从而达到自动控制。阀门的用途是广泛的,因此它起的作用也是很大的。例如:在发电厂中阀门能够控制锅炉和汽轮机的运转;在石油、化工生产中,阀门同样也起着控制全部生产设备和工艺流程的正常运转。尽管如此,阀门同其它产品比较往往被人们忽视。例如:在安装机器设备时,人们往往把重点放在主要机器设备方面,如:压缩机、高压容器、锅炉等,这些做法都会使整个生产效率降低或停产、或造成种种其它事故发生,所以我们有必要对阀门进行认识和了解。 阀门的分类 阀门产品的种类繁多,说法也不完全统一,有的按用途分(如化工、石油、电站等)、有的按介质分(如水蒸汽、空气阀等)、有的按材质分(如铸铁阀、铸钢阀、锻钢阀等)、有的按连接形式分(如内螺纹、法兰阀等)、有的按温度分(如低温阀、高温阀等)。 我国目前大多数习惯是按压力和结构种类来区分。即:按公称压力分:≤1.6MPa为低压阀、压力2.5、4.0、6.4MPa为中压阀、≥10MPa为高压阀、超过100MPa为超高压阀。 按结构种类分主要有: 旋塞阀、闸阀、截止阀、球阀—用于开启或关闭管道的介质流动。 止回阀(包括底阀)—用于自动防止管道内的介质倒流。 节流阀—用于调节管道介质的流量。 蝶阀—用于开启或关闭管道内的介质。也可作调节用。 安全阀—用于锅炉、容器设备及管道上,当介质压力趔过规定数值时,能自动排除过剩介质压力,保证生产运行安全。 减压阀—用于自动降低管道及设备内介质压力。系使介质经过阀瓣的间隙时,产生阻力造成压力损失,达到减压目的。 疏水器—用于蒸汽管道上自动排除冷凝水,防止蒸汽损失或泄漏。 按用途和作用分类 截断阀类——主要用于截断或接通介质流。包括闸阀、截止阀、隔膜阀、球阀、旋塞阀、碟阀、柱塞阀、球塞阀、针型仪表阀等。 调节阀类——主要用于调节介质的流量、压力等。包括调节阀、节流阀、减压阀等。

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

方向控制阀

.-方向控制阀

————————————————————————————————作者:————————————————————————————————日期:

教案首页课程名称液压与气动技术 课题 第5章液压控制元件5.1 液压控制元件的概述5.2 方向控制阀 课型理论 周次 学时 2 授课时间月日月日月日月日月日班级(人数) 教学目的【知识目标】了解液压控制阀的功用、分类和结构 掌握换向阀位通滑阀机能 【能力目标】掌握换向阀位、通、滑阀机能 【德育目标】培养学生用理论知识解决简单的实际问题的能力。 教学重点1、换向阀的位、通、滑阀机能的概念2、换向阀符号的含义 教学难点换向阀工作原理 教学方法讲授+练习 教具/设备 作业 教学后记 授课教师冯莉2012年月日审签年月日

组织教学:提示学生上课,集中学生注意力,检查学生出勤情况 复习旧课:1、液压缸的密封装置有哪些? 2、液压缸为什么要缓冲?缓冲方法有哪些? 讲授新课:第五章液压控制阀 5.1概述 一、定义:液压控制元件也叫液压控制阀(液压阀)。 二、功用:控制和调节液压系统中液体流动的方向、压力的高低、流量的大小,以满足执行元件的工作要求。 三、对液压控制阀的基本要求 ①动作灵敏、性能好、工作可靠、冲击振动和噪声小; ②油液通过阀时的液压损失要小;③密封性能好; ④结构简单、紧凑,体积小,重量轻,安装、维修方便,成本低。 四、分类 (1)按机能(用途)分类 压力控制阀:溢流阀、减压阀、顺序阀、卸荷阀、缓冲阀、限压切 断阀、压力继电器等 流量控制阀:节流阀、单向节流阀、调速阀、分流阀、排气节流阀 等 方向控制阀:单向阀、换向阀、行程减速阀、比例方向控制阀、快 速排气阀、脉冲阀等 (2)按连接方式分类 管式连接阀:将板式阀用螺钉固定在连接板(或油路板、集成块)上。 如:螺纹式联接、法兰式连接。 板式或叠加式连接:单层连接板式、双层连接板式、叠加阀、多路阀。 插装式连接:螺纹式插装(二、三、四通插装阀)、盖板式插装(二通)。 (3)按操纵方法分类: 手动阀:手把及手轮、踏板、杠杆 机动阀:档块及碰块、弹簧 液/气动阀:液动阀、气动阀 电液/气动阀:电液动阀、电气动阀 电动阀:普通/比例电磁铁控制、步进电动机控制、伺服电动机控制(4)按输出参数可调性分类: 开关控制阀:方向控制阀、顺序阀、限速切断阀、逻辑元件 输出参数连续可调的阀:溢流阀、减压阀、节流阀、调速阀、各类 电液控制阀(比例阀、伺服阀) 5.2 方向控制阀 作用:方向控制阀(简称方向阀),用来控制液压系统的油流方向,接通或断开油路,从而控制执行机构的启动、停止或改变运动方向。 分类:单向阀普通单向阀:只允许油液正向流动,不许反流。教学方法及授课要点随记

不同种类的阀门区别是什么

不同种类的阀门区别是什么 1.疏水阀疏水阀的品种很多,各有不同的性能。选用疏水阀时,首先应选其特性能满足蒸汽加热设备的最佳运行,然后才考虑其他客观条件,这样选择你所需要的疏水阀才是正确和有效的。疏水阀要能“识别”蒸汽和凝结水,才能起到阻汽排水作用。“识别” 蒸汽和凝结水基于三个原理:密度差、温度差和相变。于是就根据三个原理制造出三种类型的疏水阀:分类为机械型、热静力型、热动力型。 2.调节阀调节阀又名控制阀,通过接受调节控制单元输出的控制信号,借助动力操作去改变流体流量。调节阀一般由执行机构和阀门组成。如果按其所配执行机构使用的动力,调节阀可以分为气动调节阀、电动调节阀、液动调节阀三种,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体介质(如油等)压力为动力的电液动调节阀,另外,按其功能和特性分,还有水力控制阀、电磁阀、电子式、智能式、现场总线型调节阀等。 3.安全阀:安全阀是一种由进口静压开启的自动泄压防护装置,它是压力容器最为重要的安全附件之一,它的功能是:当容器内压力超过某一定值时,依靠介质自身的压力自动开启阀门,迅速排出一定数量的介质。当容器内的压力降到允许值时,阀又自动关闭,使容器内压力始终低于允许压力的上限,自动防止因超压而可能出现的事故,所以安全阀又被称为压力容器的最终保护装置。 4.截止阀:截止阀的阀杆轴线与阀座密封面垂直。阀杆开启或关闭行程相对较短,并具有非常可靠的切断动作,使得这种阀门非常适合作为介质的切断或调节及节流使用。 截止阀一旦处于开启状态,它的阀座和阀瓣密封面之间就不再有接触,因而它的密封面机械磨损较小,由于大部分截止阀的阀座和阀瓣比较容易修理或更换密封元件时无需把整个阀门从管线上拆下来,这对于阀门和管线焊接成一体的场合是很适用的。介质通过此类阀门时的流动方向发生了变化,因此截止阀的流动阻力较高于其它阀门。 5.水力控制阀:水力控制阀,从主阀结构形式到外接导阀形式,实在可以说是包罗万象,笼统的问水力控制阀原理,我觉得不太好回答,不过,简单的说,就是利用一个上下腔的压差,来控制通过阀杆与之相连的阀板动作。主阀结构多种多用,举例说有多功能式(或者说是Y型截止阀形式),有平头式,也有角式;主阀的控制有活塞式和膜片式;外接导阀我也一下子就说不清了,最常见的有,减压阀,泄压阀,浮球阀,流量控制阀几种。 6. 闸阀闸阀的启闭件是闸板,闸板的运动方向与流体方向相垂直,闸阀只能作全开和全关 , 不能作调节和节流。闸板有两个密封面 , 最常用的模式闸板阀的两个密封面形成楔形、楔形角随阀门参数而异 , 通常为 50, 介质温度不高时为2°52''。楔式闸阀的闸板可以做成一个整体,叫做刚性闸板;也可以做成能产生微量变形的闸板 , 以改善其工艺性 , 弥补密封面角度在加工过程中产生的偏差 , 这种闸板叫做弹性闸板。开启阀门时,当闸板提升高度等于阀门通径的1:1倍时,流体的通道完全畅通,但在运行时,此位置是无法监视的。实际使用时,是以阀杆的顶点作为标志,即开不动的位置,作为它的全开位置。为考虑温度变化出现锁死现象 , 通常在开到顶点位置上 , 再倒回 1/2-1圈 , 作为全开阀门的位置。因此 , 阀门的全开位置,按闸板的位置(即行程>来确定。

关于自力式调节阀的说明

关于自力式调节阀的说明 自力式调节阀又称自力式控制阀,是由阀体、阀座、阀芯、平衡弹簧等部件组成,是一种无需外加能源,利用被调节介质自身压力变化来进行自动调节的阀门,是根据力学原理将被控介质引入执行机构产生力作用推动,控制阀芯元件上下位移达到自动调节,使阀前(或阀后)压力稳定的节能型产品。例如,如果管道中压力升高,那么阀门输出端反馈信号通过信号管传递到执行机构驱动阀瓣使阀门开度变小,从而降低压力使其维持到恒定值,如果管道中压力降低,那么阀门输出端反馈信号通过信号管传递到执行机构驱动阀瓣使阀门开度变大,从而升高压力使其维持到恒定值。自力式调节阀是一种新的调节阀种类,功能原理与一般的调节阀相同,主要区别在于无需外界提供动力和不接受外来仪表控制信号。自力式调节阀按照功能和结构可分为压力自力式调节阀、差压自力式调节阀、温度自力式调节阀、液位自力式调节阀及流量自力式调节阀。该产品最大的特点是能在无电、无气的场所工作,压力设定值在运行中可随意调整。采用快开流量特性,动作灵敏、密封性能好,广泛应用于石油、化工等行业工业设备中气体、液体、蒸汽等介质的自动控制。 自力式调节阀与减压阀的主要区别: 1. 工作目的是不一样的,自力式调节阀重在调节,减压阀是单纯的减压; 2. 减压阀是可以主观进行压力调节,如果阀前压力波动大,调节需

比较频繁。而自力式调节阀是根据一个设定的、客观的数值自动进行动作的,调节后的压力可以是恒定的; 3. 减压阀需要手动调节压差,如果阀前压力变化,阀后压力也是变化的,不能自动调节到固定的压力。而自力式调节阀可以自动地做到背压稳定或者阀前压力稳定; 4. 自力式调节阀的主要目的是维持压力稳定,而减压阀主要作用是将压力降至一定数值之下; 5. 减压阀调节范围更广,而自力式调节阀则只能将压力调节到恒定值; 6. 减压阀调节精度更高,一般为0.5,而自力式调节阀的调节精度一般为8%-10%; 7. 自力式调节阀可以控制压力、差压、温度、液位、流量等,而减压阀功能比较单一,一般只起减压作用; 8. 自力式调节阀既可以调节阀前压力稳定,也可以调节阀后压力稳定,而减压阀只能调节阀后压力,起到减压作用; 9. 应用行业不同,自力式调节阀广泛应用于石油、化工等行业,减压阀主要应用于给水系统、消防系统、采暖系统、中央空调系统等。

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控制

电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

相关文档
最新文档