生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究
生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究

生物大分子药物(包括多肽、蛋白质、抗体、聚糖与核酸等)多用于治疗肿瘤、艾滋病、心脑血管病、肝炎等重大疾病,被认是为21世纪药物研究开发中最有前景的领域之一。欲使中国跻身于国际医药开发大国之列,从事生物大分子药物高效化的基础研究己明显成为在竞争中必须抢攻的战略制高点。

日前在北京香山饭店召开了以“生物大分子药物高效化的基础研究”为主题的香山科学会议第282次学术讨论会。天津大学王静康教授、中国医学科学院医药生物技术研究所甄永苏研究员、美国密歇根大学、天津大学杨志民教授以及四川大学张志荣教授担任本次会议执行主席,来自全国近30个单位的40余位专家学者参会。会议中心议题为生物大分子药物在重大疾病方面的应用前景与展望,生物大分子药物高效传送系统,生物大分子药物形态学及其稳定性基础研究等。

杨志民教授作了“生物大分子药物高效化的意义与研究展望”的主题评述报告。他指出,生物大分子药物已被国际公认为21世纪药物研究开发中最有前景的领域之一,在重大疾病的治疗中已经取得重要的进展。但是,目前在生物大分子药物的施用方面仍存在亟待解决的难题与障碍:如难以穿透细胞膜、强免疫原性、难以有效地穿透实体瘤、形态学复杂(存在多晶型、多构象和多尺度问题)、分离纯化困难、稳定性低等问题。因此破解现存问题,实现“生物大分子药物高效化”是当前国际科技界竞相研究的前沿,在从事生物大分子高效化的过程中,除了致力于传送系统的研究、设计与构建外,药物本身的分子结构导致的特殊性质也不容忽视,如目前在使用的依靠高分子聚合物载体(像PLGA,PLA等)来传送生物大分子药物(如蛋白质疫苗、激素等)的系统中,因为其中所包含的药物形成聚合体而丧失药物活性或是无法从载体中完全释放出来的例子层出不穷。另外有关生物大分子药物在纯化与分离过程中因界面/表面与溶剂或分离物质相互作用而引起的结构和活性的缺损以及免疫原性增强方面的报告也屡见不鲜。因此在生物大分子药物高效化研究的过程中,特别是蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化以及在分离纯化过程中的高效复性也均是需要重点研究的科学问题。

克服存在的问题,实现生物大分子药物高效化是当前研究的发展趋向。而设计与构建高效化的生物大分子药物传送系统无疑是解决问题的关键所在。

生物大分子药物在重大疾病方面的应用前景与展望

生物大分子药物目前主要用于治疗癌症、艾滋病、冠心病、糖尿病和一罕见的遗传疾病等,天津医科大学郝希山教授在“恶性肿瘤流行趋势分析及生物大分子药物的应用”的报告中,指出临床治疗癌症的方法主要是手术切除、放疗和化疗,而近十年来,肿瘤的生物治疗及靶向治疗已经成为目前最有前景和最活跃的领域。生物大分子药物作为其中最有发展前途的生物治疗和靶向治疗的手段之一,已经在肿瘤治疗中得到了广泛认可。他强调:生物大分子药物因为其反应性明确及作用的高效率,在肿瘤治疗领域具有较强的优势,显示出强大的应用前景。寻找新的治疗靶点,对生物大分子药物的改造与修饰,以及高效化药物传送系统的创建是亟待解决的问题。

天津药物研究院刘昌孝研究员在“生物大分子药物的生物医学评价”的报告中,强调

应该从药物创新研究的概念上来认识基础研究的重要性,并从生物大分子、药物与高效化三个方面来理解本次香山科学会议学术讨论会的主题意义。对于生物大分子药物的高效化,他指出在药学研究阶段主要指的是高稳定性和高表达,而在“生物医学”阶段则指的是高活性、高靶向性、高生物利用度、高安全性等。而生物医学评价研究又是生物大分子药物高效化的关键,根据药物的三大要素:安全、有效和质量控制的原则来制定生物医学评价研究要点,坚持比较研究原则来制定评价方案,并秉承“下游(指药物使用)必须认识上游(指药物创制)”评价策略。

甄永苏研究员在“抗肿瘤抗体药物的高效化途径探讨”报告中,指出作为生物大分子药物的成员,抗体药物以其高度特异性、丰富多样性以及可定靶制备等特性保证了其具有广阔的应用前景,将药物靶点的选择、抗体药物分子的小型化以及抗体药物效应功能的高效化作为抗体药物高效化的三大途径。他在报告中指出抗体药物的小型化的多项优点,包括有利于提高穿透肿瘤细胞外间隙的能力,较易到达实体瘤的深部;可降低HAMA反应;具有优于完整抗体的药物动力学特征;减少药物在网状内皮系统的积聚,提高体内的分布特异性。最后指出,选择具有关键作用的分子靶点,制备分子小型化的抗体,使用高效的“弹头”药物,以及用DNA重组和分子重建等方法作为技术平台来制备新型的抗体药物是抗肿瘤抗体高效化的主要策略。

北京大学张礼和教授在“修饰的寡核苷酸在核酸药物中的研究”的报告中,指出反义核酸(AS ONs)与小分子干扰RNA(siRNA)已经成为两种调控特定基因表达的重要工具,并已经或有望成为一类新型生物大分子药物。天然的寡核苷酸存在稳定性差、跨膜能力低等缺点,对天然寡核苷酸进行合理的化学修饰,以期改善其生物活性,已经成为人工合成寡核苷酸的一个研究热点。异核苷掺入寡核苷酸的端基时,对寡核苷酸与互补DNA的亲和能力影响较小。酶稳定性研究结果表明,异核苷掺入寡核苷酸后,稳定性大大提高。初步的活性结果显示部分异核苷掺入的反义寡核苷酸具有诱导RNase H的活性和抑制靶基因的能力。异核苷不但可以掺入siRNA正义链的两端,而且可以在正义链的两端和中间位置掺入最多达4个异核苷,同时保持较好的生物活性。

中国医学科学院熊冬生研究员、北京安波特基因工程技术有限公司张众研究员、中科院大连化物所杨凌研究员等分别就“基于肿瘤相关抗原及其表位的抗体类药物设计”、“抗体药物研发的热点和趋势”、“生物大分子药物评价体系及标准、规范”进行了发言。

与会专家建议并且期盼国家能将发展前沿性、创新性和具有自主知识产权的生物大分子药物高效化的尖端技术及传送系统的基础研究列入国家在药物方面的重点研究领域之一;并能够凝聚国内外医药科研的专家与精英,培养和造就一支从事生物大分子药物高效化研究的创新队伍;实施重点跨越和突破,全面推动跨部门、跨学科、跨专业的交叉综合科学与技术的发展,促进我国药剂创新能力的迅速提升;大幅提升我国在国际药物市场的竞争力,使中国不但成为世界主要的制药市场之一,同时也成为药物基础研究和技术应用的先进国家;在未来国防、医药与科技竞争中处于领先地位,为全世界特别是中国人民的健康和幸福做出卓越贡献。

生物大分子药物高效传送系统

21世纪的药物研究发展模式己由传统型的新药开发的“单一”模式逐渐转变为包含

药物传送系统(Drug Delivery System,DDS)齐头并进的“复合”创新模式。最近美国FDA 批准的新药中,大约有一半是属于新型药物制剂——也就是创新型的药物传送系统。

杨志民教授在报告中指出,生物大分子药物在使用中存在诸如无法穿透细胞膜、缺乏靶向选择性、具有强抗原性、血液中生命半衰期甚短等瓶颈问题。欲解决上述瓶颈问题,必须加速发展创新高效的生物大分子药物传送系统。研究证明,现有的针对小分子药物的传送系统不能有效地解决生物大分子药物传送中的瓶颈问题。目前全球释药系统市场上在针对生物大分子高效化传送方面的研究,尚属起步阶段,中国在参与此项国际竞争中与国际发达国家相比差距较小,而且爆发力强,抢占国际主要制药市场的成功率极高。故欲使中国能迅速并成功地由全球制药的原料大国转型并跻身于全球精品药物大国的重要成员,发展生物大分子药物高效化的传送系统研究己成为我国必须抢攻的战略制高点。

张志荣教授在报告中指出,使用载体给药系统,也是实现生物大分子药物传输的关键之一,制备载体型传递系统的研究思路主要包括载体材料包裹、提高生物黏附性、使用吸收促进剂以提高药物的细胞通过性等。纳米材料的潜在毒性、载体材料生物相容性问题、给药途径问题、靶向性问题、传递过程中活性保持问题以及体内检测问题等。这些问题的解决方法将成为未来研究工作的重点之一。

北京大学张强教授在报告中指出,生物大分子药物载体给药系统高效化的科学问题为:载体药物分子与载体分子的相互作用和对体内外过程的影响;载体系统与生物膜的相互作用和对体内过程的影响;以及药物分子与生物膜的相互作用和对体内过程的影响。故主要研究内容应归纳为:药物分子与载体分子的相互作用及影响;载体给药系统(CDDS)与生物膜的相互作用及影响;药物大分子与生物膜的相互作用及影响。

中国科技大学温龙平教授、国家纳米技术与工程研究院孙永达教授、复旦大学陆伟跃教授等分别就生物大分子药物透皮传送系统、生物大分子药物粒子设计与超临界流体结晶技术、叶酸介导广谱肿瘤靶向的药物递释作了阐述。

与会专家认为:生物大分子药物传送系统有别于小分子药物的传送系统;国际关于此课题的研究依然处于初期探索阶段,国内在此领域与国际差距不大,具有较大竞争优势;国内同行须尽快抢占此领域的战略制高点。与会专家认为生物大分子药物高效传送系统的研究应包括如下内容:多肽药物、蛋白药物、抗体药物小疫苗控释,长效传递系统研究;多肽药物、蛋白药物、抗体药物靶向传递系统研究;治疗基因高效转染传递系统研究;生物大分子药物传递系统的评价体系及其相关问题研究;生物大分子药物、载体、人体组织细胞相互作用研究等。

生物大分子药物形态学及其稳定性基础研究

由于大分子药物分子结构多级化的复杂性,药物分子形态学的同质多晶行为更为突出,不同的晶体结构对于药物生物利用度、活性(治疗效果)及药物传送系统的实施功能有着极重要的影响。生物大分子药物高效化的研究中,在致力于传送系统的设计与建立的同时,药物本身和在传送系统制备与使用过程中如何维持最适当的结晶形态、最高的结构稳定和活性恢复,甚至有关的药代/药动学及药物在组织和器官上的分配特性等均为不可缺少的研究与考虑因素。

王静康教授在“生物大分子药物的形态学研究进展”的报告中,从晶体学角度分析指出,现今生物大分子因其多级结构学复杂性,其结晶学研究仍处于前期阶段,其结晶热力学行为近似I型结晶物系;其动力学特征,一次成核能垒很高,二次过程影响突出,成长速率比一般小分子药物低几个数量级。目前对其结晶方法学研究极不充分,重复性也不理想。也就是说,对于生物大分子药物本体,其各种形态药物的分子组装与构筑的基本规律与调控方法学,以及其药物分子形态与生物利用度及生物活性之间影响规律的研究,都还极不充分,亟待强化与提升。

天津大学孙彦教授在“生物大分子药物分离过程的高速化”的报告中指出,现代生物技术的发展历程表明,生物大分子的分离纯化是其生产过程的制约环节,分离过程的高速化以及药物在过程中的活性复收是生物大分子药物纯化研究的主要目标。

中科院过程工程所苏志国教授在“蛋白质的体外修饰与微囊化”的发言中指出,通过对蛋白质药物进行PEG的修饰可以提供保护的屏障,避免被蛋白水解酶和免疫系统所破坏。修饰以后还可以提高蛋白质的分子量,分子表面的电荷会发生改变,避免分子在血管壁或是一些特异性的位点聚集。

中科院生物物理所龚为民教授在“蛋白质结构的稳定性与运动性”的报告中指出,蛋白质晶体学在提高大分子药物效率方面的作用主要体现在提高蛋白质结构的稳定性(根据三维结构引入更多化学键)以及维持蛋白质结构必要的运动性(指导蛋白质化学修饰的位点)两个方面。

与会专家认为,对于生物大分子药物形态学及其稳定性(包括分离与复性),特别是对各种形态药物的分子组装与构筑的基本规律与调控方法学,以及形态学与药物稳定性相互影响规律的研究还极不充分,亟待深化研究与揭示,否则它会成为生物大分子药物及其新型传送系统高效化开拓创新的主要瓶颈之一。

在与会专家讨论的基础上,执行主席王静康教授对会议进行了小结,概括了生物大分子药物高效化研究所亟待研究和解决的基础研究课题,以及与会专家为开展上述研究、进一步推进工作所提出的建议:

(1)围绕“成药高效化”的重大科学需求,研究、设计与构建高效化的生物大分子药物不同途径的传送系统;

(2)根据现有生物大分子药物本身的缺陷问题,研究解决药物本身高效化的瓶颈的科学问题,如蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化,以及在分离纯化过程中的高效复性也都是需要重点研究的科学问题。

专家建议:

(1)生物大分子药物高效化意义重大,建议国家加大对相关领域学科的支持力度,并加快针对生物大分子药物的审批制度的规范化以及标准化,以适应最新的世界生物大分子药物制药潮流。

(2)加强生物大分子药物相关研究领域、学科的交叉与融合,组织与凝聚一支强大的国际性专家组合的研究梯队;实现生物大分子药物及其传送系统的上下游规律的认知与融合;从生物大分子药物的制备、分离、纯化、药物及其传送系统和药代动力学方面,进行全程有序的“生物大分子药物高效化”的基础与应用基础研究。

(3)建议将生物大分子药物高效化的基础与应用基础研究纳入国家“973”计划,给予强有力的资金、政策等方面的支持,建立能获得突破性进展的基础研究平台,供以实现多学科交叉集成研究,奠定具有国际影响的科学基础,目标为抢先占领生物大分子药物高效化开拓创新研究的国际制高点。

大分子药物的前景

大分子药物的前景 目前,世界上所开展的所有最尖端、最先进的重大疾病治疗方法,如艾滋病、肿瘤等均与生物大分子药物有关,欧、美、日等国家均认同生物大分子药物将是 21世纪药物研究开发中最有前景的领域之一。在日前举行的以“生物大分子药物 高效化的基础研究”为主题的第282次香山科学会议上,与会学者就如何通过多学科交叉合作,实现生物大分子药物的高效化等基础科学问题进行了研讨。 服务重大疾病防治 会议执行主席、天津大学化工学院长江学者讲座教授杨志民作了题为《生物大分子药物高效化的意义与研究展望》的评述报告。杨志民说,生物大分子药物包括多肽、蛋白质、抗体等,目前主要用于治疗肿瘤、艾滋病、心脑血管病等重大疾病。生物大分子药物的主要优点是,对反应物的选择性及作用具有其他药物无法比拟的高效性;大部分生物大分子药物,如酶类或基因药物等均具有可反复作用的药物活性;大部分生物大分子药物易于用生化方法大量生产;生物大分子药物一般均具有高水溶性,因此易于制备成各型液态药剂。 中国工程院院士、天津医科大学教授郝希山介绍说,近年来,随着对肿瘤研究的不断深入,肿瘤的生物治疗及靶向治疗正日渐成为一个活跃的研究领域,生物大分子药物作为最有发展前途的肿瘤治疗手段之一,已在肿瘤治疗中得到广泛应用。(潘锋) 我国高度重视对生物大分子药物的研究,在《国家中长期科学和技术发展规划纲要(2006,2020年)》中已将“蛋白质药物”列入第四项“重大科学研究计划”中;将“释药系统创制关键技术”列入重点领域中的第八项“人口与健康”的发展思路中,并将生物大分子药物防治的心脑血管病、肿瘤等疾病列入“重大非传染疾病的防治”中。

生物药物分析知识点总结

题库一 1、什么是药物? 药物是指用于预防、治疗、诊断人的疾病,有目的地调节人的生理功能并规定有适应证和用法、用量的物质。 2、药物的学科包括哪些? 药物分析(pharmacenticalanalysis)、药理学(pharmacology)、药剂学(pharmaceutics)、药物化学(pharmacentical chemistry) 3、什么是生物药物? 生物药物是利用生物体,生物组织或组成生物体的各种成分,综合应用多门学科的原理和方法,特别是采用现代生物技术,进行加工、制造而形成的一大类用于预防、治疗和诊断的药物。广义的生物药物包括:(1)从动植物和微生物中直接提取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4、生物药物的性质(Properties of biological) (1)结构相近;(2)药理有效;(3)医疗效果好;(4)浓度低,杂质高;(5)大分子稳定;(6)有一定的敏感性(对热、重金属、酸碱和ph变化等敏感) 5、药典的定义?药典的简称、版本、三部和内容? (1)定义:记载着各种药品标准和规格的国家法典,是国家管理药品生产与质量的依据,一般由一个国家的卫生行政部门主持编写、实施颁布。 (2)简称:Ch.P (3)版本:1953、1963、1977、1985、1990、1995、2000、2005、2010 (4)三部:中药、化学药、生物制品。 (5)内容:凡例,正文,附录,索引。6、什么是ADME?各代表什么单词? ADME:药代动力学;A:吸收(absorption);D:分布(distribution);M:代谢(metabolism);E:排泄(excretion) 题库二 1、标准物质的定义 标准物质是一种或多种确定了高稳定度的物理、化学和计量学特性,并经正式批准,可作为标准使用,用来校准测量器具、评价分析方法或给材料赋值的物质或材料。包括化学成分分析标准物质、物理性质与物理化学特性测量标准物质,工程技术特性测量标准物质。 2、精密度控制图及准确度控制图的上下警告限及 上下控制限是怎样定义的? (1)精密控制图,即均值控制图。以测定结果的平均值X为控制图的中心线,并计算出测量值的标准偏差S,以X ±2S作为上下警告限,用虚线表示;X±3S作为上下控制限绘成。(上警告限:UWL,下警告限:LWL,上控制限:UCL,下控制限:LCL) (2)准确控制图,也称回收率控制图,向不同浓度的样品中加入不同的已知量的标准物,积累测得的回收率数据,计算百分平均回收率品p及其标准偏差sp,以p±2sp为上下警告限,p±3sp为上下控制限。 3、计量、认证、标准化及质量管理的英文 计量:measurement认证:accreditation 标准化:standardization 质量管理:Quality Management QM 4、药物分析论文的发表包括那几个项目?

生物大分子药物讲课讲稿

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学 生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、仅供学习与交流,如有侵权请联系网站删除谢谢2

易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择 由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗 仅供学习与交流,如有侵权请联系网站删除谢谢3

药物分析知识点总结

国家药品标准是《中国药典》(缩写Ch.P)和局颁标准。 药品质量标准:是药品现代化生产和质量管理的重要组成部分,是药品生产、经营、使用和行政、技术监督管理各部门应共同遵循的法定技术依据。 药典内容分:凡例、正文、附录、索引。 药品质量管理规范(5个G)《药品非临床研究质量管理规定GLP》《药品生产质量管理规范GMP》《药品经营质量管理规范GSP》《药品临床试验质量管理规范GCP》《中药材生产质量管理规范GAP》。 标准品:用于生物检定、抗生素或生化药品中含量或效价测定的标准物质,按效价单位计,以国际标准品进行标定。 对照品除另有规定外,均按干燥品(或无水物质)进行计算后使用。 药品检验工作的基本程序一般为取样、鉴别、检查、含量测定、写出检验报告。 杂质两个来源:一是由生产过程中引入,二是贮藏过程中引入。 杂质按照来源分:一般杂质和特殊杂质;按毒性分:毒性杂质和信号杂质;按理化性质分:有机杂质、无机杂质和残留杂质。 杂质限量:药物中含杂质的最大允许量。 杂质限量%=杂质最大允许量/供试品量*100% 杂质限量%=标准溶液的浓度*标准溶液的体积/供试品量*100%即L=CV/S*100% 1.氯化物检查,在硝酸酸性条件下与硝酸银反应,生成氯化银胶体微粒而显白色浑浊,与一定量的标准氯化钠溶液在相同条件下产生的氯化银浑浊程度比较,浊度不得更大。加硝酸目的:避免弱酸银盐如碳酸银、磷酸银及氧化银沉淀的干扰,且可加速氯化银沉淀的生产并产生较好的乳浊,酸度以50ml供试溶液中含稀硝酸10ml为宜。 2.硫酸盐检查,在稀盐酸酸性条件下与氯化钡反应,与一定量标准硫酸钾溶液在相同条件下产生的硫酸钡浑浊程度比较。 3.铁盐检查,硫氰酸盐法,铁盐在盐酸酸性与硫氰酸盐作用生产红色可溶性硫氰酸铁配离子 4.重金属检查,硫代乙酰胺法适用于溶于水、稀酸和乙醇的药物;炽灼后的硫代乙酰胺法适

最新药物分析与检验试卷

药检 一、名词解释 1.药品 指用于预防、治疗、诊断人的疾病,有目的地调节人的生理机能并规定有适应证、用法和用量的物质,是一种关系人民生命健康的特殊商品。包括药材、中药饮片、中成药、化学原料药、抗生素、生化药品及其制剂、放射性药品、血清制品和诊断药品等。 2.药品质量检测 即药物分析,主要是运用化学、物理化学或生物化学的方法和技术研究化学结构已经明确的合成药物或天然药物及其制剂的质量控制方法,同时也研究中药制剂和生化药物及其制剂的质量控制方法。 3.生物药物(4分) 生物药物是指运用生物学、医学、生物化学等研究成果,从生物体、生物组织、细胞、体液等,综合利用物理学、化学、生物化学、生物技术、药学等学科的原理和方法制造的一类用于预防、治疗和诊断的制品。广义的生物药物包括:(1)从动植物和微生物中直接制取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4.生物制品 是以微生物、细胞、动物或人源组织和体液等为原料,应用传统技术或现代生物技术制成,用于人类疾病的预防、治疗和诊断。人用生物制品包括:细菌类疫苗(含类毒素)、病毒类疫苗、抗毒素及抗血清、血液制品、细胞因子、生长因子、酶、体内及体外诊断制品,以及其他生物活性制剂,如毒素、抗原、变态反应原、单克隆抗体、抗原抗体复合物、免疫调节剂及微生态制剂等。 5.国家生物标准品 系指用国际生物标准品标定的,或由我国自行研制的(尚无国际生物标准品者)用于定量测定某一制品效价或毒性的标准物质,其生物学活性以国际单位(IU)或以单位(U)表示。

6.国家生物参考品 系指用国际生物参考品标定的,或由我国自行研制的(尚无国际生物参考品者)用于微生物(或其产物)的定性鉴定或疾病诊断的生物试剂、生物材料或特异性抗血清;或指用于定量检测某些制品的生物效价参考物质,如用于麻疹活疫苗滴度或类毒素絮状单位测定的参考品,其效价以特定活性单位表示,不以国际单位(IU)表示。 7.生物检定法 生物检定属生物法分析,是利用药物对生物体(整体动物、离体组织、微生物等)的作用以测定其效价或生物活性的一种方法。它以药物的药理作为基础,统计学为工具,)选用特定的实验设计,在一定条件下比较供试品和相当的标准品所产生的特定反应,通过等反应剂量间比例的计算,从而测得供试品中活性成分的效价。 8.动物保护力试验 是将疫苗或类毒素免疫动物后,再用同种的活菌、活毒或毒素攻击,从而判定制品的保护水平。 9.恒重 除另有规定外,系指供试品连续两次干燥或炽灼后的重量差异在0.3mg以下的重量;干燥至恒重的第二次及以后各次称重均在规定条件下继续干燥1小时后进行;炽灼至恒重的第二次称重应在继续炽灼30分钟后进行。 10.空白试验 系指在不加供试品或以等量溶剂替代供试液的情况下,按同法操作所得的结果;含量测定中的“并将滴定的结果用空白试验校正”,系指按供试品所耗滴定液的量(ml)与空白试验中所耗滴定液量(ml)之差进行计算。 11. 药品质量 药品的物理、化学、生物药剂学、安全性、有效性、稳定性、均一性等指标符合规定标准的程度。 12.药品质量标准

生物大分子相互作用分析仪的 可应用领域

BioNavis生物大分子相互作用分析仪MP-SPR最新应用领域 传感器(MP-SPR) 生物传感器、气体传感器、食品安全、环境监测、免疫响应、实验开发 ◆应用BioNavis生物大分子相互作用分析仪MP-SPR技术测量气体导致的表面变化 BioNavis生物大分子相互作用分析仪-MP-SPR仪器用于表征由不同气体导致的聚合物薄膜变化。不同的湿度显示了与聚合物相互作用的浓度依赖性,并且乙醇蒸气看起来渗入了聚合物层。 ◆应用BioNavis生物大分子相互作用分析仪MP-SPR技术测定生物化功能层的结合能力: 临床诊断正在从中心实验室移近病人,进入医生的办公室,药房,千家万户。这一类临床检测设备(POC)的要求与中心实验室的要求大大地不同。POC设备应该为临床相关性分析物的快速分析提供低成本和易操作的工具。 许多纸制电子器件为制作便宜的、可丢弃的和可回收的应用电子平台打开了机会,可用于生物传感器或者医学诊断领域。 C-活性蛋白(CRP)是一种身体中常见的炎症标记物。监测CRP的水平可以用于跟踪疾病的过程或者治疗效果。

当发展一类新的生物传感器时,通常最主要的是评估此生物传感技术相对于已经建立的方法的性能。生物大分子相互作用分析仪-表面等离子共振技术SPR已经用于生物传感器领域的研究超过了20年的时间,并且是一个优秀的对照办法。 选择增强型SPR ◆选择增强型SPR-一种新的标记方法用于增强生物传感器性能 增强小分子模型系统的灵敏度和特异性。选择增强型SPR(SAMP-SPR)的使用大大增强了应用生物大分子相互作用分析仪SPR技术对小分子量复合物的分析。 改进包括: ·灵敏度增强:在信噪比上一般增强100倍或更多 ·特异性增强:只检测染料标签,将非特异性干扰降到最低 ◆选择增强型SPR(SAMP-SPR)-一种新颖的标记方法用于增强光学生物传感器性能 小分子模型系统的竞争性分析。使用生物大分子相互作用分析仪SAMP-SPR采用竞争分析的方式分析小分子,在没有大分子标记的情况下将SPR的灵敏度提升到以往不可企及的水平。竞争性分析小的染料标签有助于: ·测定平衡常数和亲和力排名 ·进行竞争动态分析

应用红外光谱研究生物大分子的结构

应用红外光谱研究生物大分子的结构 谢孟峡刘媛 北京师范大学分析测试中心,北京100875,xiemx@https://www.360docs.net/doc/5914287177.html, 一、蛋白质二级结构的测定 蛋白质的空间结构主要有四级,其结构层次示意图见图1。稳定蛋白质三维结构的主要作用力有五种,分别是盐键、氢键、疏水作用、范德华力和二硫键。这些都是共价键相互作用,其中对于二级结构,最重要的作用力是蛋白质分子中的氢键。 图1 蛋白质结构层次示意图 其中:Q为四级结构,T/α为由结构域组成的三级结构或亚基,D/T为结构域或三级结构, sS为超二级结构,S为二级结构,A为组成一级结构的氨基酸 在所有已测定的蛋白质中,都有广泛的二级结构存在。蛋白质的二级结构形式主要包括α-螺旋、β-折叠、β-转角和无规卷曲四种。这些二级结构中将螺旋看成蛋白质复杂构像的基础,

β-折叠是蛋白质中又一种普遍存在的规则构像单元。无论是α-螺旋还是β-折叠都存在着许多氢键,致使规则的二级结构都具有相当的刚性,如果一段肽链中没有氢键或其他相互作用,那么各个残基之间就有更大的自由度,转角就是典型的介于此两种情况之间的一种二级结构,是一种部分规则的构像(见图2)。此外还有一些肽段相对于前面的三种二级结构是无规则,它们有更大的任意性,可是这些肽段的构像又不是完全任意的,因为每种蛋白质肽链中存在的这一类型空间构像几乎是相同的,所以蛋白质中无规卷曲也是具有其特定构像的。 α-螺旋 平行和反平行β-折叠

β-转角 图2、蛋白质典型二级结构示意图 蛋白质二级结构特征与氢键的形成方式紧密相关,无论α-螺旋、β-折叠、β-转角或其它构象,都有其特定的氢键结构,而这种氢键结构的差异能够在对于氢键敏感的红外光谱中得到反映,主要表现为谱带峰位及半峰宽的变化。这使我们有可能利用峰位不同的谱带来识别不同的二级结构及其组成情况。 图3 人血清白蛋白(HSA)在重水中的红外吸收谱

生物药物分析知识点总结资料

生物药物分析知识点 总结

题库一 1、什么是药物? 药物是指用于预防、治疗、诊断人的疾病,有目的地调节人的生理功能并规定有适应证和用法、用量的物质。 2、药物的学科包括哪些? 药物分析(pharmacenticalanalysis)、药理学(pharmacology)、药剂学(pharmaceutics)、药物化学(pharmacentical chemistry) 3、什么是生物药物? 生物药物是利用生物体,生物组织或组成生物体的各种成分,综合应用多门学科的原理和方法,特别是采用现代生物技术,进行加工、制造而形成的一大类用于预防、治疗和诊断的药物。广义的生物药物包括:(1)从动植物和微生物中直接提取的各种天然生理活性物质;(2)人工合成或半合成的天然物质类似物。 4、生物药物的性质(Properties of biological) (1)结构相近;(2)药理有效;(3)医疗效果好;(4)浓度低,杂质高;(5)大分子稳定;(6)有一定的敏感性(对热、重金属、酸碱和ph变化等敏感) 5、药典的定义?药典的简称、版本、三部和内容? (1)定义:记载着各种药品标准和规格的国家法典,是国家管理药品生产与质量的依据,一般由一个国家的卫生行政部门主持编写、实施颁布。 (2)简称:Ch.P (3)版本:1953、1963、1977、1985、1990、1995、2000、2005、2010 (4)三部:中药、化学药、生物制品。 (5)内容:凡例,正文,附录,索引。 6、什么是ADME?各代表什么单词? ADME:药代动力学;A:吸收(absorption);D:分布(distribution);M:代谢(metabolism);E:排泄(excretion) 题库二 1、标准物质的定义 标准物质是一种或多种确定了高稳定度的物理、化学和计量学特性,并经正式批准,可作为标准使用,用来校准测量器具、评价分析方法或给材料赋值的物质或材料。包括化学成分分析标准物质、物理性质与物理化学特性测量标准物质,工程技术特性测量标准物质。 2、精密度控制图及准确度控制图的上下警告限及 上下控制限是怎样定义的? (1)精密控制图,即均值控制图。以测定结果的平均值X为控制图的中心线,并计算出测量值的标准偏差S,以X ±2S作为上下警告限,用虚线表示;X±3S作为上下控制限绘成。(上警告限:UWL,下警告限:LWL,上控制限:UCL,下控制限:LCL) (2)准确控制图,也称回收率控制图,向不同浓度的样品中加入不同的已知量的标准物,积累测得的回收率数据,计算百

分子生物学分析

2.6分子生物学分析 目前较常采用的微生物学分析方法有两种,一种是使用传统的微生物培养技术(culture)将微生物富集、分离,然后通过一般的生物化学性状或表现型来分析的间接途径。然而使用传统的微生物培养技术存在许多困难,尤其是环境中大多数微生物生长缓慢,例如本论文研究中针对的anammox菌的培养富集时间均在2年以上,同时对培养条件要求极为苛刻,客观上阻碍了采用这种方法对其的研究。第二种途径依靠聚合酶链式反应(Polymerase Chain Reaction,PCR)技术及应用进化和功能基因探针直接从环境样品中检测和分析目标微生物,不需富集培养。分子生物技术有简洁、快速、精确等特点,广泛应用于微生物生态学研究中。尤其是目标微生物主要功能基因的DNA序列数据库和PCR技术结合在一起,使许多分子生态学手段可以直接应用于环境样品的研究中,,推动了环境中微生物生态学研究。本论文研究中采用了第二种途径中的定量PCR技术手段。下面将根据实验中的具体操作进行叙述。 2.6.1DAN提取 本文研究中主要采用的是试剂盒提取方法。DAN提取盒使用美国MP公司的土壤DNA提取试剂盒(FastDNA SPIN Kit for Soil,MP Biomedicals, Santa Ana, USA)。提取方法依据说明书进行微小变动,即向污泥中先加入Sodium Phosphate Buffer(磷酸钠缓冲液),再将其移至Lysing Matrix E管中,具体操作方法如下:(1)向 1.5ml取回污泥离心(10000rpm×10分钟)的湿污泥加入978 μl Sodium Phosphate Buffer(磷酸钠缓冲液),然后将其移到Lysing Matrix E管中(尽可能将其全部加入),然后加入122 μl MT Buffer(MT缓冲液)。 注:因为FastPrep?仪器的剧烈运动,在Lysing Matrix E管内会形成巨大的压力,样品和基质的总体积不能超过管体积的7/8;留一些空间也会提高混匀效果。 (2)在FastPrep?中处理上述离心管,速度6.0,40秒。 (3)Lysing Matrix E管离心14000g×15分钟。 (4)将上清液转移到一个新的2ml离心管(自备)中,加入250μl PPS,并用手上下颠倒10次进行混合。 (5)离心14000g×10分钟,至形成白色状沉淀物,将上清液转移到一个新的10ml离心管(自备),并加入1ml Binding Matrix Suspension(在用之前重悬Binding Matrix Suspension,一定要摇匀到瓶底看不见沉淀为止,加5个摇一次以

最全药物分析知识点归纳总结整理

最全药物分析知识点归纳总结整理 药物分析是一门利用分析测定手段,发展药物的分析方法研究药物的质量规律,对药物进行全面检验与质量控制的科学。 药品质量应从药品的性状、真伪、有效性、均一性、安全性、纯度和有效成分的含量进行综合评价。 第一节药品质量标准 药品质量标准是国家对药品质量、规格及检验方法所做的技术规定,是药品生产、供应、使用、检验和药政管理部门共同遵循的法定依据。 常见的国家标准: 国内:《中华人民共和国药典》(Ch.P) 其他药品标准; 常见国外药品标准: 美国药典(USP)、美国国家处方集(NF)、英国药典(BP)、日本药局方(JP)、欧洲药典(Ph.Eur)和国际药典(Ph.Int)。 一、《中国药典》 1.历史沿革: 1953、1963、1977、1985、1990、1995、2000、2005、2010、2015年版。

2.基本结构和主要内容 凡例:为解释和使用中国药典,正确进行质量检验提供的指导原则。 正文包括所收载药品或制剂的质量标准 通则包括制剂通则、通用检测方法和指导原则 (1)检验方法和限度 ◆检验方法:《中国药典》规定的按药典,采用其他方法的要与药典方法对比。仲裁以《中国药典》方法为准。 ◆限度: (2)标准品和对照品 相同点: 用于鉴别、检查、含量或效价测定测定的标准物质。 不同点: 标准品 用于生物检定或效价测定的标准物质,其特性量值一般按效价单位(或μg)计。 对照品 指采用理化方法进行鉴别、检查、含量测定的标准物质。其特性量值一般按纯度(%)计。 (3)精确度 药典规定取样量的准确度和试验精密度。 ◆“精密称定”指称取重量应准确至所取重量的千分之一。 ◆“称定”指称取重量应准确至所取重量的百分之一。 ◆取用量为“约”若干时,指取用量不得超过规定量的±10%。 ◆“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精密度要求; ◆“量取”系指可用量筒或按照量取体积的有效数位选用量具。

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody ,mAb )和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug ConjUgate, ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等, 与传统小分子药物(相对分子质量为200 ~ 700)相比, 其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗透性。但蛋白酶抑制剂容易造成体内蛋白酶的缺乏,而吸收促进剂容易损坏生物膜造成局部炎症。此外,载药系统如纳米、微球、脂质体以及衍生化或化学修饰也是研究如何实现生物大分子药物口服用药的主要方法。环孢素是一种预防同种异体器官或组织移植发生排斥反应的药物,特殊的环肽结构使得其口服后具有较好的生物利用度。一项meta 分析数据表明,山地明(环孢素的普通制剂)是新山地明(环孢素微乳

2020年(生物科技行业)生物大分子的结构与功能

(生物科技行业)生物大分子的结构与功能

第壹篇生物大分子的结构和功能 第壹章氨基酸和蛋白质 壹、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时能够只记第壹个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、俩性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能和酸或碱类物质结合成盐,故它是壹种俩性电解质。在某壹PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数和蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基和茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小和氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 俩分子氨基酸可借壹分子所含的氨基和另壹分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有仍原性,可作为体内重要的仍原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的壹级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质仍包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

生物大分子样品制备总结

生物样品制备 SHANG YING 蛋白质、酶和核酸这三大类物质都是生物大分子,它们都具有十分重要的生理功能。酶是生物催化剂,核酸是遗传信息的携带者,蛋白质是生命现象的基础。因此对生物大分子的结构与功能的研究,具有十分重要的理论和实践意义。而这研究的首要条件是制备高纯度的生物大分子,否则对其结构与功能的研究就无从谈起。 1.制备方法的分类: 依理化性质,分离、纯化生物大分子的方法可分四个类型: (1)按分子大小和形态:采用高速离心、过滤、分子筛、透析等方法。 (2)按溶解度:采用盐析、溶剂抽提、分配层析、逆流分配、结晶等方法。 (3)按电荷差异:采用电泳、电渗析、等电点沉淀、离子交换层析、吸附层析等方法。 (4)按生物功能专一性:采用亲和层析法。 2.制备的总体思路: 一般可分为六个阶段: (1)材料选择与预处理:动物、植物和微生物都是制备生物大分子的材料,选什么材料主要依靠实验的目的而定,选材料时应注意以下几个问题: ①使用的目的:从科学实验的特殊需要出发,选材时需求能符合实验预定目标即可。 ②材料的生理状态差异:选材时要注意植物的季节性,微生物的生长期和动物的生理状态。 如:微生物生长的对数期,酶与核酸的含量较高。 材料选定后,通常要进行预处理,如动物组织要剔除结缔组织,脂肪组织等非活性部位,植物种子先行去壳、除脂、微生物需将菌体和发酵液分离开,暂时不用材料尚需冰冻保存。 (2)细胞的破碎及细胞器的分离 ①细胞的破碎:除了提取液和细胞外某些多肽激素、蛋白质和酶不需破碎细胞膜,对于细胞内和多细咆生物组织中各种生物大分子的分离提纯都需要事先将细胞和组织破碎,使生物大分子充分释放到溶液中,不同生物体,或同一生物体的不同组织,其细胞破碎难易不一致,因此使用方法也不完全相同,通常两种方法共同使用。 A.高速组织捣碎机玻璃匀浆器研磨机械切力的作用 物理方法:反复冻融法冷热交替法超声波处理法加压破碎法 B.化学及生物化学法自溶法溶菌酶处理法表面活性剂处理法改变细胞膜透性法但是,不管采用哪种方法,都需要在一定稀盐溶液或缓冲溶液中进行,且需加某些保护剂,以防止生物大分子的变性及降解。 ②细胞器的分离:制备某种生物大分子时,往往需要采用细胞中某一部分为材料;或者为了纯化某一特定细胞器上的生物大分子,通常破碎细胞后,先分离各组分,以防干扰,这对制备—些高

生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究 生物大分子药物(包括多肽、蛋白质、抗体、聚糖与核酸等)多用于治疗肿瘤、艾滋病、心脑血管病、肝炎等重大疾病,被认是为21世纪药物研究开发中最有前景的领域之一。欲使中国跻身于国际医药开发大国之列,从事生物大分子药物高效化的基础研究己明显成为在竞争中必须抢攻的战略制高点。 日前在北京香山饭店召开了以“生物大分子药物高效化的基础研究”为主题的香山科学会议第282次学术讨论会。天津大学王静康教授、中国医学科学院医药生物技术研究所甄永苏研究员、美国密歇根大学、天津大学杨志民教授以及四川大学张志荣教授担任本次会议执行主席,来自全国近30个单位的40余位专家学者参会。会议中心议题为生物大分子药物在重大疾病方面的应用前景与展望,生物大分子药物高效传送系统,生物大分子药物形态学及其稳定性基础研究等。 杨志民教授作了“生物大分子药物高效化的意义与研究展望”的主题评述报告。他指出,生物大分子药物已被国际公认为21世纪药物研究开发中最有前景的领域之一,在重大疾病的治疗中已经取得重要的进展。但是,目前在生物大分子药物的施用方面仍存在亟待解决的难题与障碍:如难以穿透细胞膜、强免疫原性、难以有效地穿透实体瘤、形态学复杂(存在多晶型、多构象和多尺度问题)、分离纯化困难、稳定性低等问题。因此破解现存问题,实现“生物大分子药物高效化”是当前国际科技界竞相研究的前沿,在从事生物大分子高效化的过程中,除了致力于传送系统的研究、设计与构建外,药物本身的分子结构导致的特殊性质也不容忽视,如目前在使用的依靠高分子聚合物载体(像PLGA,PLA等)来传送生物大分子药物(如蛋白质疫苗、激素等)的系统中,因为其中所包含的药物形成聚合体而丧失药物活性或是无法从载体中完全释放出来的例子层出不穷。另外有关生物大分子药物在纯化与分离过程中因界面/表面与溶剂或分离物质相互作用而引起的结构和活性的缺损以及免疫原性增强方面的报告也屡见不鲜。因此在生物大分子药物高效化研究的过程中,特别是蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化以及在分离纯化过程中的高效复性也均是需要重点研究的科学问题。 克服存在的问题,实现生物大分子药物高效化是当前研究的发展趋向。而设计与构建高效化的生物大分子药物传送系统无疑是解决问题的关键所在。 生物大分子药物在重大疾病方面的应用前景与展望 生物大分子药物目前主要用于治疗癌症、艾滋病、冠心病、糖尿病和一罕见的遗传疾病等,天津医科大学郝希山教授在“恶性肿瘤流行趋势分析及生物大分子药物的应用”的报告中,指出临床治疗癌症的方法主要是手术切除、放疗和化疗,而近十年来,肿瘤的生物治疗及靶向治疗已经成为目前最有前景和最活跃的领域。生物大分子药物作为其中最有发展前途的生物治疗和靶向治疗的手段之一,已经在肿瘤治疗中得到了广泛认可。他强调:生物大分子药物因为其反应性明确及作用的高效率,在肿瘤治疗领域具有较强的优势,显示出强大的应用前景。寻找新的治疗靶点,对生物大分子药物的改造与修饰,以及高效化药物传送系统的创建是亟待解决的问题。 天津药物研究院刘昌孝研究员在“生物大分子药物的生物医学评价”的报告中,强调

生物大分子仪器分析方法

仪器分析法的特点: (1)、仪器分析法一般都有较强的检测能力。 方法的绝对检出限可达: 微克数量级(10_6g) 纳克数量级(10_9g) 皮克数量级(10_12g) 飞克数量级(10_15g) 方法的相对检出限可达: 微克数量级每毫升(μg?ml-1) 纳克每毫升(ng?ml-1 ) 皮克每毫升(pg?ml-1 ) 适于痕量组分(<0.1%)的测定 化学分析法只适于常量组分(>1%)及微量组分(0.01% ~ 1%)的分析 2)、仪器分析的取样量一般较少。 固体:从几mg ~几μg 液体:从几μl ~几nl 可用于微量分析(0.1~10mg 或0.01~1ml )、超微量分析(<0.1mg 或<0.01ml) 化学分析方法取样量较大,可用于常量分析(>0.1g 或10ml)和半微量分析(0.01g~0.1g 或1~10ml) (3)、仪器分析法具有很高的分析效率。 如:流动注射AAS 120个样品/h,光电直读光谱仪20个元素/min 化学分析法分析效率较低一般为数min ~数h,只能分析1~2个样品。 4)、仪器分析具有更广泛的用途,不但可用于成分分析,而且也可用于价态分析、状态分析、结构分析、无损分析、表面分析 化学分析只能用于离线的成分分析。 (5)、仪器分析法的准确度一般不如化学分析法。 化学分析法的相对误差<0.2%; 仪器分析法的相对误差一般为1%~5%,甚至达到10%。 (6)、仪器分析的仪器一般比较复杂;而化学分析所用设备比较简单。

仪器分析的主要性能指标: 精密度 准确度 灵敏度 检出限 标准曲线及其线性范围 定量校准 精密度:是指在规定的条件下同一样品平行分析结果相互之间的接近程度。精密度一般用标准差和相对标准差(CV)表示。 精密度有不同的表现方式,即重现性、重复性、中间精密度。 重现性:是指在不同实验室,不同检测人员测定结果的精密度。中间精密度:是指在同一实验室中,不同时间由不同检测人员在不同检测设备上测定结果的精密度。重复性:是指在相同条件下,由一个分析人员重复测定所得结果计算出的精密度。 准确度:是指用该方法平行测定所得的均数与样品真实值或参考值的吻合程度,一般用百分回收率表示。准确度是分析过程中系统误差和随机误差的综合反映,它决定着分析结果的可靠程度,方法有较好的精密度且消除了系统误差后,才有好的准确度。 灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度,用S表示。 选择性:表示共存组分对待测组分分析的影响程度。共存组分影响愈小,方法对分析组分的选择性愈高。 检出限:某一方法在给定的条件下能够检出被测物质的最小质量或最小浓度,称为这种方法对该物质的检出限。以浓度表示的叫相对检出限,以质量表示的叫绝对检出限。 方法的灵敏度越高,精密度越好,检出限就越低。检出限是方法的灵敏度和精密度的综合指标,它是评价仪器性能及分析方法的主要技术指标。 线性范围:是指在能够达到规定的精密度、准确度和线性的条件下,测试方法适用的最高到最低限待测物质浓度或量的区间。

生物药物分析方法研究与进展

生物药物分析方法研究与进展 生物药物是指运用物理学、化学、生物化学、生物技术和药学等学科的原理和方法从生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品,包括生物技术药物和原生物制药。随着基因工程技术的迅速发展,基于重组DNA技术、细胞和发酵技术基础上的生物技术药物制造业已经取得了巨大进步,并正在成为当今药物领域发展的前沿1。 以美、日、欧为代表的生物技术领先国家在生物药物生产与销售上取得较大的发展2。以美国为例,生物技术药物1999-2008年10年间平均年增长率8.3%,其中2006、2007年分别净利91亿和36亿美元,2008年收入达880.5亿美元,比上期增长11.5%,2008年生物技术药物占全部医药收入的20.6%。我国生物制药也与世界生物技术同步发展,近10年来生物制药生产与销售每年平均增长达29.7%。 基因工程技术目前是实现生物药物制备的主要途径,它通过对核酸分子的插入、拼接与重组而使遗传物质重新组合,采用病毒、细菌、质粒或其它载体将目的基因转移到新的宿主细胞系统,并实现目的基因在新的宿主细胞系统内的复制和表达。采用基因工程技术生产的生物药物包括有重组蛋白质类药物、多肽类、单克隆抗体、疫苗和治疗基因等,除疫苗和治疗基因外,其余生物药物均属于生物大分子药物,也是目前分析化学研究的主要领域之一,因此本章主要介绍蛋白质类药物、多肽类药物及单克隆抗体类药物等生物大分子相关的分析方法及其发展前景。 与化学药物相比,蛋白质多肽类等药物具有分子量大、结构复杂、稳定性差(如蛋白质容易发生水解、氧化、沉淀、变性等)等特点,使得这类生物药物分子的分析面临着诸多挑战。分析方法的发展可以为这类药物的分析解决三个方面的问题。一是蛋白质及多肽类药物的药代动力学的研究必须有相应的分析方法。由于这类药物在体内存在大量结构相似的内源性物质,给体内药物分析的灵敏度、特异性与准确性带来了很大挑战;二是在体外药物分析方面,建立标准化的方法与设立可靠的标准品是实现药物质量控制的关键;三是 1

生物的技术药物制剂

新疆医科大学教案首页编号:_1-33_

第十八章生物技术药物制剂 第一节概述 一、生物技术的基本概念 1、生物技术或称生物工程(biotechnology),是应用生物体(包括微生物、动物细胞, 植物细胞)或其组成部分(细胞器和酶),在最适条件下,生产有价值的产物或进行有益过程的技术。 2、现代生物技术主要包括基因工程、细胞工程与酶工程、发酵工程(微生物工程)与生 化工程。 二、生物技术药物的结构特点与理化性质 (一)蛋白质的结构特点 蛋白质的组成和一般结构(一、二、三、四级结构) (二)蛋白质的理化性质 1.蛋白质的一般理化性质:旋光性、紫外吸收、蛋白质两性本质与电学性质 (1)旋光性:蛋白质分子总体旋光性由构成氨基酸各个旋光度的总和决定,通常是右旋,它由螺旋结构引起。蛋白质变性,螺旋结构松开,则其左旋性增大。 (2)紫外吸收:大部分蛋白质均含有带苯核的苯丙氨酸、酪氨酸与色氨酸,苯核在紫外280nm有最大吸收。氨基酸在紫外230nm显示强吸收。 (3)蛋白质两性本质与电学性质:蛋白质除了肽链N-末端有自由的氨基和C-末端有自由的羧基外,在氨基酸的侧链上还有很多解离基团,如赖氨酸的 -氨基,谷氨酸的γ羧基等。这些基团在一定pH条件下都能发生解离而带电。因此蛋白质是两性电解质,在不同

pH条件下蛋白质会成为阳离子、阴离子或二性离子。 2.蛋白质的不稳定性 (1)由于共价键引起的不稳定性:水解、氧化和消旋化,此外还有蛋白质的特有反应,即二硫键的断裂与交换 (2)由非共价键引起的不稳定性:聚集(aggregation)、宏观沉淀、表面吸附与蛋白质变性 (三)蛋白质类药物的评价方法: 多种分析方法:液相色谱法、光谱法、电泳、生物活性测定与免疫测定 第二节蛋白质类药物制剂的处方与工艺(注射剂型) 一、蛋白质类药物的一般处方组成:一类为溶液型注射剂,另一类是冻干粉注射剂 二、液体剂型中蛋白质类药物的稳定化:①改造其结构;②加入适宜辅料 蛋白类药物的稳定剂:缓冲液、表面活性剂、糖和多元醇、盐类、聚乙二醇类、大分子化合物、组氨酸、甘氨酸、谷氨酸和赖氨酸的盐酸盐等、金属离子 1.缓冲液因为蛋白质的物理化学稳定性与pH值有关,通常蛋白质的稳定pH值范围很窄,应采用适当的缓冲系统,以提高蛋白质在溶液中的稳定性。例如红细胞生成素采用枸橼酸钠-枸橼酸缓冲剂,而α-N3干扰素则用磷酸盐缓冲系统,人生长激素在5mmol/L 的磷酸盐缓冲液可减少聚集。缓冲盐类除了影响蛋白质的稳定性外,其浓度对蛋白质的溶解度与聚集均有很大影响。组织溶纤酶原激活素在最稳定的pH条件下,药物的溶解度不足以产生治疗效果,因此加入带正电荷的精氨酸以增加蛋白质在所需pH值下的溶解度。 2.表面活性剂由于离子型表面活性剂会引起蛋白质的变性,所以在蛋白质药物,

相关文档
最新文档