药物化学药物的化学结构与体内代谢转化

药物化学药物的化学结构与体内代谢转化
药物化学药物的化学结构与体内代谢转化

药物化学—--药物的化学结构与体内代谢转化

方浩

第一部分概述

对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢.药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。

药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构.在这过程中,也有可能将药物转变成毒副作用较高的产物.因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。

药物代谢在创新药物发现和临床药物合理应用中具有重要的地位.通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。

药物的代谢通常分为两相:即第Ⅰ相生物转化(PhaseⅠ)和第Ⅱ相生物转化(PhaseⅡ)。第Ⅰ相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。第Ⅱ相又称为结合反应(Conjugation),将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物.但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即可排出体外。

第二部分基本概念、基本知识及重点、难点

一、药物代谢的酶(Enzymes forDrug Metabolism)

第Ⅰ相生物转化是官能团化反应,是在体内多种酶系的催化下,对药物分子引入新的官能团或改变原有的官能团的过程.参与药物体内生物转化的酶类主要是氧化-还原酶和水解酶。本节主要介绍细胞色素P—450酶系、还原酶系、过氧化物酶和其它单加氧酶、水解酶。

(一)细胞色素P-450酶系

CYP—450(Cytochrome P-450enzyme system,CYP—450)是一组酶的总称,由许多同功酶和亚型酶组成,是主要的药物代谢酶系,在药物和其它化学物质的代谢、去毒性中起着非常重要的作用。CYP-450存在于肝脏及其它肝脏外组织的内质网中,是一组由铁原卟啉偶联单加氧酶(Heme—coupled monooxygenases)、需要NADPH和分子氧共同参与、主要催化药物生物转化中氧化反应(包括失去电子、脱氢反应和氧化反应)的酶系。它主要是通过“活化”分子氧,使其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧。CYP-450催化的反应类型有烷烃和芳香化合物的氧化反应,烯烃、多核芳烃及卤代苯的环氧化反应,仲胺、叔胺及醚的脱烷基反应,胺类化合物的脱胺反应,将胺转化为N-氧化物、羟胺及亚硝基化合物以及卤代烃的脱卤反应。CYP-450还催化有机硫代磷酸酯的氧化裂解,氧化硫醚成亚砜等的反应(见表1)。

表1CYP-450催化的一些药物代谢的氧化反应类型

底物产物

CYP—450属于体内的氧化—还原酶系,除了催化上述氧化反应外,还能将含重氮和硝基的药物还原成芳香伯胺。

(二)还原酶系

还原酶系主要是催化药物在体内进行还原反应(包括得到电子、加氢反应、脱氧反应)的酶系,通常是使药物结构中的羰基转变成羟基,将含氮化合物还原成胺类,便于进入第Ⅱ相的结合反应而排出体外。

参加体内生物转化还原反应的酶系主要是一些氧化-还原酶系。-这些酶具有催化氧化反应和催化还原反应的双重功能,如CYP-450酶系除了催化药物分子在体内的氧化外,在肝脏微粒体中的一些CYP—450酶还能催化重氮化合物和硝基化合物的还原,生成伯胺。硝基化合物的还原也经历亚硝基、羟胺等中间体过程,因此CYP—450酶系对这些基团也有还原作用。

另一个重要的酶系是醛—酮还原酶,这些酶需要NADPH或NADH作为辅酶。醛—酮还原酶也是双功能酶,一方面催化醛、酮还原成醇,另一方面也会使醇脱氢生成醛、酮(见表2).

表2 药物代谢过程中的还原反应类型

底物产物

在药物代谢中起作用的其它还原酶还有谷胱甘肽还原酶(Glutathione oxidoreductase)和醌还原酶。

(三)过氧化物酶和其它单加氧酶

过氧化物酶属于血红素蛋白,是和CYP-450单加氧酶最为类似的一种酶.这类酶以过氧化物作为氧的来源,在酶的作用下进行电子转移,通常是对杂原子进行氧化(如N—脱烃基化反应)和1,4—二氢吡啶的芳构化.其它的过氧化酶还有前列腺素—内过氧化物合成酶、过氧化氢酶及髓过氧物酶.

单加氧酶中除了CYP—450酶系外,还有黄素单加氧酶(Flavin monooxygenase,FMO)和多巴胺β—羟化酶(Dopamine β—hydroxylase)。FMO和CYP-450酶系一起共同催化药物分子在体内的氧化,但FMO通常催化含N和S杂原子的氧化,而不发生杂原子的脱烷基化反应,如将叔胺、肼类化合物氧化成N—氧化物,仲胺氧化成羟基胺,羟胺氧化成硝基化合物,硫醇氧化成二硫醚,二硫醚氧化生成S—氧化物,硫醚氧化成亚砜和砜(见表3).

表3黄素单加氧酶催化药物代谢的氧化反应

底物产物

(四)水解酶

水解酶主要参与羧酸酯和酰胺类药物的代谢,这些非特定的水解酶大多存在于血浆、肝、肾和肠中。因此,大部分酯和酰胺类药物在这些部位发生水解。哺乳类动物的组织中也含有这些水解酶,使药物发生水解代谢.但是肝脏、消化道及血液具有更大的水解能力。

酯水解酶包括酯酶,胆碱酯酶及许多丝氨酸内肽酯酶。其它如芳磺酸酯酶、芳基磷酸二酯酶、β—葡萄糖苷酸酶和环氧化物酶(Epoxide hydrolase)等和酯水解酶的作用相似。

通常酰胺类化合物比酯类化合物稳定而难水解,水解速度较慢,因此大部分酰胺类药物是以原型从尿中

药物化学---药物的化学结构与体内代谢转化

药物化学---药物的化学结构与体内代谢转化 方浩 第一部分概述 对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。当药物进入机体后,一方面药物对机 体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢。药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。 药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构。在这过程中,也有可能将药物转变成毒副作用较高的产物。因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。 药物代谢在创新药物发现和临床药物合理应用中具有重要的地位。通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。 药物的代谢通常分为两相:即第I相生物转化(Phase I )和第n相生物转化(Phase n )。第I相主要是官 能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。第n相又称为结合反应(Conjugaten),将第I相中药物产生的极性 基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物。但是也有药物经第I相反应后,无需进行第n相的结合反应,即可排出体外。 第二部分基本概念、基本知识及重点、难点 一、药物代谢的酶(En zymes for Drug Metabolism) 第I相生物转化是官能团化反应,是在体内多种酶系的催化下,对药物分子引入新的官能团或改变原有的官能团的过程。参与药物体内生物转化的酶类主要是氧化一还原酶和水解酶。本节主要介绍细胞色素P-450酶系、还原酶系、过氧化物酶和其它单加氧酶、水解酶。 (一)细胞色素P-450酶系 CYP-450(Cytochrome P-450 enzyme system , CYP-450)是一组酶的总称,由许多同功酶和亚型酶组成, 是主要的药物代谢酶系,在药物和其它化学物质的代谢、去毒性中起着非常重要的作用。CYP-450存在于 肝脏及其它肝脏外组织的内质网中,是一组由铁原卟啉偶联单加氧酶(Heme-coupled monooxygenases)、需要NADPH和分子氧共同参与、主要催化药物生物转化中氧化反应(包括失去电子、脱氢反应和氧化反应)的酶系。它主要是通过“活化”分子氧,使其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧。CYP-450催化的反应类型有烷烃和芳香化合物的氧化反应,烯烃、多核芳烃及卤代苯的环氧化反应,仲胺、叔胺及醚的脱烷基反应,胺类化合物的脱胺反应,将胺转化为N-氧化物、羟胺及亚硝基化合物以及卤代烃的脱卤反应。CYP-450还催化有机硫代磷酸酯的氧化裂解,氧化 硫醚成亚砜等的反应(见表1)。 表1 CYP-450催化的一些药物代谢的氧化反应类型 底物产物

基础知识药物化学讲义

第六章药物化学 绪论 绪论包括两个部分: 第一部分:卫生资格考试简介 第二部分:考纲的“绪论”内容 第一部分:卫生资格考试简介 一、考试特点 1.基础知识共有七、八门课放在一起组卷,难度既大又小。 2.卷面共100题,其中药物化学至少占20题或更多。 3.卷面共100分,60 二、考试题型 基础知识只有两种题型,即A1型和B1型。 A1型题(单句型最佳选择题) B1型题(标准配伍题)(2~3题干共用备选答案) 三、卫生资格考试试题类型举例 1.A1型题(单选题) 由1个题干和5个选项组成,题干在前,选项在后。每道题只有1个正确选项,其余均为干扰选项。 在100题中,这种题型约占80题左右。 A1型题(单选题) 哪个是逆转录酶抑制剂类抗艾滋病药 A.金刚烷胺 B.齐多夫定 C.利巴韦林 D.阿昔洛韦 E.沙奎那韦 [答疑编号2356060101] 【答案】B 2.B1型题(共用备选答案单选题,标准配伍题) 由5个选项和2~3个题干组成,选项在前,题干在后。若干道题干共用一组选项,且每个题干对应一个正确选项,选项可以重复选择或不选。 在100题中,这种题型占20题左右。 B1型题(标准配伍题)(2~3个题干共用备选答案) [1~2] A.丙磺舒 B.吡罗昔康 C.对乙酰氨基酚 D.美洛昔康 E.萘普生 1.结构中含有手性碳原子

[答疑编号2356060102] 【答案】E 2.对COX-2选择性强 [答疑编号2356060103] 【答案】D 辅导讲课共分17个部分,每部分前面是考点说明,后面会有少量习题。这些习题均来源于北京大学医学出版社出版的《卫生专业技术资格考试用书》药学[XX]习题集,按不同层次,分成[初级士]、[初级师]和[中级] 共3本。 四、讲课方法 1.紧扣大纲,重点突出。 考纲的要求分三个层次:熟练掌握、掌握、了解。 辅导中多讲熟练掌握和掌握的内容,这些是出题可能性最大的内容,少讲或不讲了解的内容。 需要说明的是:因为作为考试辅导,讲课要忠实于和考纲对应教材内容,因此可能有的内容与当前药化界公认的说法有差异,不要误解。 2.多讲化学,药理内容即用途不做解释。 3.辅导课以考试的考点为主,每部分只用少量习题讲解题思路,考生可以通过看网校题库及有关书籍,做更多的习题。 五、学习方法建议 1.先听课,后做题,做题是用来检验和巩固知识点的,而不能代替学习相关内容。 2.基础知识的内容太多,不可能面面俱到,复习重点放在熟练掌握和掌握的内容上,争取60分。 3.考纲有些内容并不涉及结构式,所以对考纲没有要求掌握药物结构的,不要去抠结构式等纯化学非考点的知识。(说明:讲课中有些不要求掌握结构式的药物,为了解释其性质,加深学员对性质的理解,也会出现结构式。如果在讲课中没有出现考点是结构或结构特征字样,只出现性质,那就是不要求掌握结构式的) 第二部分:考纲的“绪论”部分 绪论 绪论1.药物化学的定义及研究内容药物化学的研究内容掌握 2. 药物化学的任务药物化学的任务掌握 3.药物名称通用名和化学名掌握 一、药物化学的定义及研究内容(掌握)考点:掌握药化研究内容

药物化学课程标准

《药物化学》课程标准 一、前言 (一)课程的性质 该课程是兽药生产与营销专业的专业基础课,目标是让学生现代药物化学基本理论和技能,对常用药物的结构类型、药物合成、理化性质、构效关系及其应用有一个较系统的认识,并了解现代药物化学的发展,为以后在制药实践中合成并合理使用常用药物打下坚实的基础。它是以有机化学和药理学等课程的学习为基础,也是进一步学习药物制剂技术等课程的基础。 (二)设计思路 按教学大纲规定,认真备课,重视启发式教学,课堂教学多采用多媒体教学。通过阅读教材有关内容,结合观看有关教学VCD、多媒体课件等,培养学生的自学能力,以增加学生的感性认识,启迪学生的科学思维。注意运用理论知识指导学习,通过理论的学习加深对实践的理解。 二、课程目标 通过本课程的学习,要求学生掌握常用药物或代表药物的化学结构、化学名、理化性质、合成制备、构效关系;能够熟练、安全地合成药物;熟悉药物发展史和设计思想,研究构效关系和合理设计药物。 通过本课程的实验,学生能根据所学合成原理进行原料药中间体的合成、化学药物的合成、抗生素的合成;能对合成的粗品进行纯化;能鉴别药物中的杂质。 通过理论与实践一体化的教学方式,让学生在完成具体项目的过程中完成相应工作任务,并构建相关理论知识,发展职业能力,使学生获得的知识,技能真正满足化学制药、药物制剂、药品检验不同岗位发展的需求。为学生今后的专业学习和职业生涯发展、在兽药企业工作中奠定坚实的专业信念、知识与技能的基础。 职业能力培养目标: 1.能根据所学的合成原理进行原料药中间体的合成操作。 2.能进行化学药物的合成操作。 3.能进行抗生素的合成操作。 4.能对合成的粗品进行纯化。 5.能鉴别药物中杂质。 6.能按照药物的理化性质判断其储存条件。 7.能熟练对常用药物或代表药物进行鉴别操作。 8.能按照药物的性质给出调剂的要求。

药物化学知识点(1)

第一章绪论 (单选) 1、下列哪一项不属于药物的功能 (A)预防脑血栓(B)避孕 (C)缓解胃痛(D)去除脸上皱纹 (E)碱化尿液,避免乙酰磺胺在尿中结晶 4、下列哪一项不是药物化学的任务 (A)为合理利用已知的化学药物提供理论基础、知识技术。 (B)研究药物的理化性质。 (C)确定药物的剂量和使用方法。 (D)为生产化学药物提供先进的工艺和方法。 (E)探索新药的途径和方法。 6、药物化学的研究对象是()。 A.中药和西药 B.各种剂型的西药 C.不同制剂的药进入人体内的过程 D.化学原料药 (多项选择题) 1、下列属于“药物化学”研究范畴的是: (A)发现与发明新药(B)合成化学药物 (C)阐明药物的化学性质 (D)研究药物分子与机体细胞(生物大分子)之间的相互作用 (E)剂型对生物利用度的影响 2、已发现的药物的作用靶点包括: (A)受体(B)细胞核(C)酶 (D)离子通道(E)核酸 5、下列属于药物化学的主要任务的是()。 A.寻找和发现先导化合物,并创制新药 B.改造现有药物以获得更有效药物 C.研究化学药物的合成原理和路线 D.研究化学药物的理化性质、变化规律、杂质来源和体内代谢等 E.研究药物的作用机理 第二章(教材第十三章)新药设计与开发

新化学实体(NCE)。 NCE是指在以前的文献中没有报道过,并能以安全、有效的方式治疗疾病的新化合物。 第一节药物的化学结构与生物活性的关系 药物构效关系(SAR)是指药物的化学结构与活性之间的关系。 影响药物到达作用部位的因素:药物分子因素(药物的化学结构及由结构所决定的理化性质):溶解度、分配系数、电离度、电子等排、官能团间距和立体化学等 脂水分配系数P:药物的亲脂性和亲水性的相对大小 P=C O/C W 易于穿过血脑屏障的适宜的分配系数log P在2左右。 由Handerson公式得出的经验规律 1)胃中pH为1~1.5,故多数弱酸性药物(pKa3 ~ 7.5)在胃中以分子态存在,易于吸收。 如阿司匹林(pKa 3.5)为弱酸,在胃中99%以分子态存在,故在胃中吸收; 2)肠道pH为7~8,故多数弱碱性药物(pKa7.5 ~ 10)在肠道吸收。如可待因(pKa 8.0), 胃中多以离子态存在而不吸收,只在肠道吸收; 大多数药物通过与受体或酶的相互作用而发挥药理作用,药物结构上细微的改变将会影响药效,这种药物称为结构特异性药物。 (二).影响药物与受体作用的因素 ?立体因素 i.光学异构 ii.几何异构 iii.构象异构 ?药物结构中的各官能团因素 ?药物分子的电荷分布因素 药效构象不一定是药物的优势构象,药物与受体间作用力可以补偿由优势构象转为药效构象时分子内能的增加所需的能量,即维持药效构象所需的能量。 药物分子中引入烃基,可改变溶解度、解离度、分配系数,还可增加空间位阻,从而增加稳定性。 卤素是一强吸电子基团,可影响分子间的电荷分布、脂溶性(如:苯环上每引入一个-X,P 增加4-20倍)及药物作用时间。 引入羟基可增加与受体的结合力;或可形成氢键,增加水溶性,改变生物活性。

药物化学药物结构式

1.地西泮 2.苯妥因钠 3.普罗加比 4.盐酸氯丙嗪 5.氟奋乃静 6.氯普噻吨 7.舒必利 8.吗啡 9.哌替啶 10.咖啡因 11.硫酸阿托品11.麻黄碱 12.苯海拉明 13.马来酸氯苯那敏 14.阿斯咪唑 15.普鲁卡因 16.利多卡因 17.硝苯地平 18.利血平 19.卡托普利20.奎尼丁 21.普萘洛尔 22.美托洛尔 23.(双)氢氯噻嗪 24.甲苯磺丁脲 25.雷尼替丁 26.奥美拉唑 27.昂丹司琼 28.甲氧普胺 29.阿司匹林 30.贝诺酯 31.对乙酰氨基酚 32.吲哚美辛 33.环磷酰胺 34. 5-氟尿嘧啶 35. 紫杉醇 36. 顺铂 37. 青霉素钾 38. 苯唑西林 39.氨苄西林 40. 苯唑西林 42. 头孢氨苄 43. 磺胺嘧啶 44. 甲氧苄啶 45. 诺氟沙星(氟哌酸) 46. 利福平 47.异烟肼 48. 硝酸益康唑 49. 三氮唑核苷 50. 奎宁 51. 青蒿素 52.红霉素 53.链霉素 54.四环素 55.氯霉素 56雄甾烷-3-酮 57. 雌激素 雄激素 氢化可的松 地塞米松 维生素C 吡罗昔康:第一个临床使用的1,2苯并 噻嗪类解热镇痛药 氯氮平:第一个上市的非经典抗精神病 药 哌替啶:苯基哌啶类的第一个合成镇痛 药 洛伐他汀:第一个投放市场的

HMG-CoA还原酶抑制剂 氯沙坦:第一个上市的血管紧张素Ⅱ受体拮抗剂 苯唑西林:第一个耐酸耐酶青霉素,口服、注射均可 克拉维酸:第一个β-内酰胺酶抑制剂阿奇霉素:第一个环内含氮的15元大环内酯抗生素 链霉素:第一个用于抗结核病的药物齐多夫定:美国FDA批准的第一个用于艾滋病及其相关症状治疗的药物 沙奎那韦:第一个批准上市治疗艾滋病的蛋白酶抑制剂 金霉素:第一个四环素类抗生素 碘苷:第一个用于临床的抗病毒核苷类药物 阿昔洛韦:第一个上市的开环鸟苷类似物广谱抗病毒药 氨苄霉素:第一个使用的广谱口服抗生素 酮康唑:第一个口服有效的咪唑类广谱抗真菌药物 帕瑞昔布:全球第一种注射用选择性COX-2 抑制剂 药物化学各类药物分类总结 镇静催眠药7 p; P c6 Z% S# m, 巴比妥类:苯巴比妥、硫喷妥钠 苯二氮卓类:地西泮、奥沙西泮2 K$ 氨基甲酸酯类:甲丙氨酯5 o/ @$ {7 其他类:水合氯醛 抗癫痫药, b) F3 w% k7 `) Q 巴比妥类、 苯并二氮卓类:地西泮. w9 a+ G, L 乙内酰脲类:苯妥英钠* j/ Z3 `; ^6 H0 二苯并氮杂卓类:卡马西平$ e0 h* 脂肪羧酸类:丙戊酸钠 磺酰胺类 抗精神失常药/ {; i' J1 m) Y# N0 吩噻嗪类:氯丙嗪8 K) m+ U9 y% G9 丁酰苯类:氟哌啶醇 二苯并氮卓类:氯氮平) \3 j: b6 p* k* 噻吨类:氯普噻吨 抗抑郁药" |! ~/ k, Y; v* J1 s6 Y1 P7 E 去甲肾上腺素重摄取抑制剂;5-羟色胺重摄取抑制剂;盐酸阿米替林单胺氧化酶抑制剂;非典型抗抑郁 解热镇痛药 水杨酸类:阿司匹林 乙酰苯胺类:对乙酰氨基酚 吡唑酮类 非甾类抗炎药(了解)# ~; ?3 x1 @' f } 水杨酸类:贝诺酯阿司匹林与对乙 酰氨基酚成酯形成的前药,特别适 合于儿童 吡唑酮类 芳基烷酸类:吲哚美辛、双氯芬酸 钠、布洛芬、萘普生 N-芳基邻氨基苯甲酸类:灭酸类 1,2-苯并噻嗪类:美洛昔康 其他类 镇痛药Z$ C ~( x3 B0 V3 i 天然生物碱:盐酸吗啡 半合成镇痛药:磷酸可待因 合成镇痛药:盐酸哌替啶、美沙酮 内源性多肽 胆碱受体激动剂9 v6 Z' [9 {1 U5 a8 S M胆碱受体激动剂:毛果芸香碱 胆碱酯酶复活剂:碘解磷定 胆碱受体拮抗剂 乙酰胆碱酯酶抑制剂:新斯的明 M胆碱受体拮抗剂+ X K; F2 E' r$ z 茄科生物碱:对中枢作用:东莨菪 碱>阿托品>樟柳碱>山莨菪碱 全合成M胆碱受体拮抗剂:硫酸 阿托品、氯琥珀胆碱 肾上腺素能受体激动剂# D$ |+ B0 k, ]3 t8 苯乙胺类:肾上腺素、多巴胺、克 仑特罗、特布他林 苯异丙胺类:麻黄碱、甲氧明 肾上腺素:对α和β受体都有激动 作用。临床用于急性心力衰竭、支 气管哮喘及心搏骤停的抢救。 盐酸多巴胺:多巴胺受体激动剂, 抗休克药。 重酒石酸去甲肾上腺素:主要兴奋 α受体。主要升压,静滴用于休克, 口服用于消化道出血。2 k% E* s/ M" 盐酸异丙肾上腺素:兴奋β受体。 用于支气管哮喘、过敏性哮喘、慢性肺 气肿及低血压等。& s9 L+ T3 Y, D& y 盐酸麻黄碱:α和β受体均有激动作用。 盐酸甲氧明:激动α受体,用于外伤和 周围循环不全时低血压急救 肾上腺素能受体拮抗剂 α受体阻断剂:盐酸哌唑嗪 β受体阻断剂:普萘洛尔、阿替洛尔 降血脂药- C: o A( g6 ~" U! g$ F 分类(掌握)' c! o3 E1 Y* L4 U 苯氧乙酸类:氯贝丁酯、吉非贝齐 烟酸类 羟甲戊二酰辅酶A还原酶抑制剂:洛 伐他丁 其他 抗心绞痛药7 b3 H; f' m+ ^. G! Q6 |6 ` 硝酸酯和亚硝酸酯类:硝酸异山梨酯 钙拮抗剂: a.二氢吡啶类:硝苯地平、尼索地平 b.苯烷基胺类:维拉帕米,左旋体室上 性心动过速的首选药物,右旋体治疗心 绞痛 c.苯噻氮卓类:地尔硫卓 d.二苯哌嗪类:氟桂利嗪、桂利嗪,直 接扩张血管平滑肌 β受体阻断剂I) Q$ {- S% [: R5 O& h. K% h: 抗高血压药% k8 l9 c" P8 u# A3 M ⑴作用于自主神经系统4 ?" q. H/ [; a.外周抗去甲肾上腺素能神经末梢药: 利血平胍乙啶2 ^2 h( N7 c2 c7 Q b.中枢性交感神经抑制药:可乐定 甲基多巴; [( X. L% l% Q2 ] c.直接扩血管药:肼屈嗪硝普钠 d.神经节阻断药:咪噻吩9 ?) y4 e P9 e.肾上腺素α1受体阻断药:哌唑嗪。 ⑵作用于RAS系统 a.血管紧张素转换酶抑制药:卡托普利。 b.血管紧张素Ⅱ受体拮抗剂:氯沙坦。 c.肾素抑制剂:肽类。 ⑶作用于离子通道 钙拮抗药:硝苯地平尼群地平4 K6 钾通道开放剂 抗心律失常药- ^+ S6 D e( W" Y (1)Ⅰ类:钠通道阻滞药- {) [" T1 A' Y! {" ⅠA类:适度阻滞心肌细胞钠通道 奎尼丁; D' S: t# ]: G) d" X8 q

药物化学名词解释

药物—特殊化学品:用来预防、治疗、诊断疾病;为了调节人体生理机能、提高生活质量、保持身体健康 药物化学就是一门发现与发明科学、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞(生物大分子)直接相互作用规律得综合性学科。 先导化合物:具有特定生理活性得化合物,可作为结构修饰与结构改造得模型,从而获得预期药理作用得药物。发现途径与方法:从天然产物得到;以现有药物作为先导化合物;用活性内源性物质作;利用组合化学与高通量筛选得到;利用计算机进行靶向筛选得到。优化方法:采用生物电子等排体进行替换、前药设计、软药设计、定量构效关系研究。 新化学实体(NCE)在以前文献中为未报道过,并且能以安全、有效得方式治疗疾病得新化合物。 新药发现:靶分子得确定与选择,靶分子得优化,先导化合物得发现,先导化合物得优化。ADM E:吸收、分布、代谢、排泄。化学物既定理化性质。 脂水分配系数:药物在正辛醇中与水中分配达到平衡时得浓度比值。P=Co/Cw。 亲水:扩散至血液体液亲脂:通过生物膜 立体化学作用:几何异构,光学异构,构象异构

优势构象:分子势能最低得构象。未必未药效构象,与受体作用实际构象。 药效构象:药物与受体作用就是所采取得实际构象。 构象等效性:药物分子得基本结构不同,但可能会以相同得作用机制引起相同得药理或毒理作用,这就是由于它们具有共同得构象,即构象等效性。 代谢拮抗:设计与生物体内基本代谢物结构有某种相似度得化合物,使与基本代谢物竞争性或干扰基本代谢物被利用,或掺入生物大分子中形成伪生物大分子,导致致死合成,影响细胞生长 计算机辅助药物设计(CADD)利用计算机得快速计算功能,全方位得逻辑制断功能,一目了然得图形显示功能,将量子化学、分子力学、药物化学、生命科学、计算机图形学与信息科学等学科交叉,从药物分子得作用机制入手进行药物设计。 生物靶点:能够与药物分子结合并产生药理效应得生物大分子受体、酶、离子通道、核酸 生物电子等排体:具有相似得物理及化学性质得基团或取代基产生得大致相似、相关或相反得生物活性得一种物质。 如果药物经过化学结构修饰后得到得化合物,在体外没有或很少有活性在生物体或人体内通过酶得作用又转化为原来得药物而发挥药效时,称原来得药物为母体药物,修饰后得到得化合物为前体药物,简称

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

药物化学复习资料(化学结构式)

异戊巴比妥 5-乙基-5-(3-甲基丁基)-2,4,6-(1H ,3H ,5H )嘧啶三酮 地西泮 1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮 N N O Cl 124 5 7 唑吡坦 Zolpidem N N O N 1 3 6 苯妥英钠 5,5-二苯基-2,4-咪唑烷二酮钠盐 N H N O ONa 1 5 卡马西平 酰胺咪嗪 N O NH 2 卤加比 Progabide OH F N Cl NH 2 O 盐酸氯丙嗪 N ,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺 盐酸盐 . HCl N S Cl N 25 10 氟哌啶醇 氯氮平 N N N N H Cl 盐酸丙咪嗪 N ,N-二甲基-10,11-二氢-5H-二苯并[b ,f]氮杂卓-5-丙胺 盐酸盐 N N HCl 氟西汀 O H N F F F HCl * 吗啡 Morphine 17-甲基-4, 5a-环氧-7, 8-二脱氢 吗啡喃 -3, 6a-二醇盐酸盐 三水合物

O OH N HO 13 4 5 67 8 9101112 1314 1516 17. HCl . 3H 2O 盐酸哌替啶 1-甲基-4-苯基-4-哌啶甲酸乙酯盐酸盐 N O O . HCl 盐酸美沙酮 N O . HCl 喷他佐辛 N HO H 咖啡因 Caffeine 1,3,7-三甲基-3,7-二氢-1H - 嘌呤 -2,6-二酮一 水合物 N N N N O O . H 2O 137 吡拉西坦 2-(2-氧代-吡咯烷-1-基)乙酰胺 NH 2N O O 氯贝胆碱 Bethanechol Chloride O O H 2N N +(CH 3)3 Cl -CH 3 毛果芸香碱 N N O H 3C CH 3 O 溴新斯的明 Neostigmine Bromide N +(CH 3)3 Br - O N O H 3C CH 3 多奈哌齐 硫酸阿托品 Atropine Sulphate . H 2SO 4 . H 2O N O OH O CH 3 2 溴丙胺太林 Br - O O O N H 3C CH 3CH 3 CH 3 CH 3 + 哌仑西平

药物化学药物的化学结构与体内代谢转化

药物化学—--药物的化学结构与体内代谢转化 方浩 第一部分概述 对人体而言,绝大多数药物是一类生物异源物质(Xenobiotics)。当药物进入机体后,一方面药物对机体产生诸多生理药理作用,即治疗疾病;另一方面,机体也对药物产生作用,即对药物的吸收、分布,排泄和代谢.药物代谢既是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。 药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排出体外。药物代谢多使有效药物转变为低效或无效的代谢物,或由无效结构转变成有效结构.在这过程中,也有可能将药物转变成毒副作用较高的产物.因此,研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点、作用时程、结构转变以及产生毒性的原因。 药物代谢在创新药物发现和临床药物合理应用中具有重要的地位.通过对近十年来许多创新药物在临床失败的案例,科学家们发现与药物代谢有关的问题是创新药物临床研究失败的重要原因。因此当前进行创新药物研究的过程中,应当在候选药物研究阶段就重视考察其药物代谢的相关问题,并将候选药物的代谢问题作为评判其成药性的重要研究内容。在药理学和生物药剂学课程中,对于药物在体内发生的药物代谢转化反应和代谢产物讲述内容较少。因此我们将在药物化学的讲述中,重点从药物代谢酶角度入手,讨论药物在体内发生的生物转化,以帮助大家更好的认识药物在体内所反应的代谢反应以及其与药物发现和临床合理应用的关系。 药物的代谢通常分为两相:即第Ⅰ相生物转化(PhaseⅠ)和第Ⅱ相生物转化(PhaseⅡ)。第Ⅰ相主要是官能团化反应,包括对药物分子的氧化、还原、水解和羟化等,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基和氨基等。第Ⅱ相又称为结合反应(Conjugation),将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的结合物.但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即可排出体外。 第二部分基本概念、基本知识及重点、难点 一、药物代谢的酶(Enzymes forDrug Metabolism) 第Ⅰ相生物转化是官能团化反应,是在体内多种酶系的催化下,对药物分子引入新的官能团或改变原有的官能团的过程.参与药物体内生物转化的酶类主要是氧化-还原酶和水解酶。本节主要介绍细胞色素P—450酶系、还原酶系、过氧化物酶和其它单加氧酶、水解酶。 (一)细胞色素P-450酶系 CYP—450(Cytochrome P-450enzyme system,CYP—450)是一组酶的总称,由许多同功酶和亚型酶组成,是主要的药物代谢酶系,在药物和其它化学物质的代谢、去毒性中起着非常重要的作用。CYP-450存在于肝脏及其它肝脏外组织的内质网中,是一组由铁原卟啉偶联单加氧酶(Heme—coupled monooxygenases)、需要NADPH和分子氧共同参与、主要催化药物生物转化中氧化反应(包括失去电子、脱氢反应和氧化反应)的酶系。它主要是通过“活化”分子氧,使其中一个氧原子和有机物分子结合,同时将另一个氧原子还原成水,从而在有机药物的分子中引入氧。CYP-450催化的反应类型有烷烃和芳香化合物的氧化反应,烯烃、多核芳烃及卤代苯的环氧化反应,仲胺、叔胺及醚的脱烷基反应,胺类化合物的脱胺反应,将胺转化为N-氧化物、羟胺及亚硝基化合物以及卤代烃的脱卤反应。CYP-450还催化有机硫代磷酸酯的氧化裂解,氧化硫醚成亚砜等的反应(见表1)。 表1CYP-450催化的一些药物代谢的氧化反应类型

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

最新基础知识药物化学讲义

基础知识药物化学讲 义

第六章药物化学 绪论 绪论包括两个部分: 第一部分:卫生资格考试简介 第二部分:考纲的“绪论”内容 第一部分:卫生资格考试简介 一、考试特点 1.基础知识共有七、八门课放在一起组卷,难度既大又小。 2.卷面共100题,其中药物化学至少占20题或更多。 3.卷面共100分,60分即可通过。 二、考试题型 基础知识只有两种题型,即A1型和B1型。 A1型题(单句型最佳选择题) B1型题(标准配伍题)(2~3题干共用备选答案) 三、卫生资格考试试题类型举例 1.A1型题(单选题) 由1个题干和5个选项组成,题干在前,选项在后。每道题只有1个正确选项,其余均为干扰选项。 在100题中,这种题型约占80题左右。 A1型题(单选题) 哪个是逆转录酶抑制剂类抗艾滋病药 A.金刚烷胺 B.齐多夫定 C.利巴韦林 D.阿昔洛韦 E.沙奎那韦 [答疑编号2356060101] 【答案】B 2.B1型题(共用备选答案单选题,标准配伍题) 由5个选项和2~3个题干组成,选项在前,题干在后。若干道题干共用一组选项,且每个题干对应一个正确选项,选项可以重复选择或不选。 在100题中,这种题型占20题左右。 B1型题(标准配伍题)(2~3个题干共用备选答案) [1~2] A.丙磺舒 B.吡罗昔康 C.对乙酰氨基酚 D.美洛昔康 E.萘普生 1.结构中含有手性碳原子

[答疑编号2356060102] 【答案】 E 2.对COX-2选择性强 [答疑编号2356060103] 【答案】D 辅导讲课共分17个部分,每部分前面是考点说明,后面会有少量习题。这些习题均来源于北京大学医学出版社出版的《卫生专业技术资格考试用书》药学[XX]习题集,按不同层次,分成[初级士]、[初级师]和[中级] 共3本。 四、讲课方法 1.紧扣大纲,重点突出。 考纲的要求分三个层次:熟练掌握、掌握、了解。 辅导中多讲熟练掌握和掌握的内容,这些是出题可能性最大的内容,少讲或不讲了解的内容。 需要说明的是:因为作为考试辅导,讲课要忠实于和考纲对应教材内容,因此可能有的内容与当前药化界公认的说法有差异,不要误解。 2.多讲化学,药理内容即用途不做解释。 3.辅导课以考试的考点为主,每部分只用少量习题讲解题思路,考生可以通过看网校题库及有关书籍,做更多的习题。 五、学习方法建议 1.先听课,后做题,做题是用来检验和巩固知识点的,而不能代替学习相关内容。 2.基础知识的内容太多,不可能面面俱到,复习重点放在熟练掌握和掌握的内容上,争取60分。 3.考纲有些内容并不涉及结构式,所以对考纲没有要求掌握药物结构的,不要去抠结构式等纯化学非考点的知识。(说明:讲课中有些不要求掌握结构式的药物,为了解释其性质,加深学员对性质的理解,也会出现结构式。如果在讲课中没有出现考点是结构或结构特征字样,只出现性质,那就是不要求掌握结构式的) 第二部分:考纲的“绪论”部分 绪论 绪论1.药物化学的定义及研究内容药物化学的研究内容掌握 2. 药物化学的任务药物化学的任务掌握 3.药物名称通用名和化学名掌握 说明:这一部分的内容出题的可能性最小,最多1题。 一、药物化学的定义及研究内容(掌握) 考点:掌握药化研究内容

药物化学的知识

药物化学知识是执业药师必备的药学专业知识的重要组成部分。根据执业药师的职责与执业活动的需要,药物化学部分的考试内容主要包括:1.各类药物的分类、结构类型、作用机制、构效关系和代谢特点。 2.代表药物的化学结构、理化性质、稳定性和使用特点。 3.-些重要药物在体内外相互作用的化学变化;药物在体内的生物转化过程及其化学变化和对生物活性的影响。 4.手性药物的立体化学结构、构型和生物活性特点。 5.药物在生产和贮存过程中可能产生的杂质及相应的生物学作用。 6.特殊管理药品的结构特点和临床用途。说明:本部分所列出代表药物的选择依据是《中国药典》(2010年版):二部、2009版《国家基本药物目录(基层医疗卫生机构配备使用部分)》、《国家基本医疗保险、工伤保险和生育保险药品目录》(2009年版)及临床常用的新药-、化学治疗药物(-)抗生素 1.基本要求(1)抗生素的分类、结构类型、作用机制和构效关系、理化性质和代谢特点(2)抗生素的结构特点、理化性质与化学稳定性、毒副作用和耐药性之间的关系 2.β-内酰胺类抗生素(1)β-内酰胺类抗生素药物的结构特点、理化性质和构效关系,推测药物的化学稳定性、抗耐药性的特点、可能产生的毒副作用及使用的注意事项(2)代表药物:青霉素钠(钾)、氨苄西林、阿莫西林、哌拉西林、替莫西林、头孢氨苄、头孢羟氨苄、头孢克洛、头孢哌酮钠、头孢克肟、头孢曲松、头孢呋辛、硫酸头孢匹罗、克拉维酸钾、舒巴坦钠、他唑巴坦、亚胺培南、美罗培南、氨曲南 3.大环内酯类抗生素(1)大环内酯类抗生素药物的结构特点、理化性质,推测药物的化学稳定性、可能产生的毒副

作用及使用的注意事项(2)代表药物:红霉素、琥乙红霉素、罗红霉素、阿奇霉素、克拉霉素 4.氨基糖苷类抗生素(1)氨基糖苷类抗生素药物的结构特点、理化性质,推测药物的化学稳定性、产生毒副作用的机制、产生耐药性的原因及使用的注意事项(2)代表药物:阿米卡星、硫酸依替米星、硫酸奈替米星、硫酸庆大霉素 5.四环素类抗生素(1)四环素类抗生素药物的结构特点、理化性质,推测药物的化学稳定性、产生毒副作用的机制及使用的注意事项(2)代表药物:盐酸四环素、盐酸土霉素、盐酸多西环素、盐酸米诺环素、盐酸美他环素(二)合成抗菌药 1.基本要求(1)结构类型、作用机制、构效关系、理化性质和代谢特点(2)合成抗菌药物的结构特点与化学稳定性和毒副作用之间的关系 2.喹诺酮类药物(1)喹诺酮类药物的结构特点、理化性质和构效关系,推测药物的化学稳定性、体内代谢特点,可能产生的毒副作用及使用特点(2)代表药物:盐酸诺氟沙星、盐酸环丙沙星、盐酸左氧氟沙星(氧氟沙星)、司帕沙星、加替沙星 3.磺胺类药物及抗菌增效剂(1)磺胺类药物及抗菌增效剂的结构特点、理化性质、作用机制,推测药物的化学稳定性、体内代谢特点,可能产生的毒副作用及使用特点(2)代表药物:磺胺嘧啶、磺胺甲噁唑、甲氧苄啶(三)抗结核药 1.基本要求(1)结构类型、构效关系、理化性质和代谢特点(2)抗结核药物的结构特点与化学稳定性和毒副作用之间的关系 2.抗结核抗生素代表药物:硫酸链霉素、利福平、利福喷汀、利福布汀 3.合成抗结核药物(1)合成抗结核药物的结构特点、理化性质,推测药物的化学稳定性、体

药物化学相关药物母核大全

药物化学相关药物母核大全 杂环化合物 环数名称别名及其他信息结构式衍生物 单环 三元环 吖丙啶C2H5N 环氧乙烷C2H4O环氧丙烷环硫乙烷C2H4S 四元环吖丁啶C3H7N 恶丁烷C3H6O 噻丁环C3H6S 五元环含 一 个 杂 原 子 呋喃 含氧五元杂环化合物, 又称氧(杂)茂。 四氢呋喃 呋喃甲醛吡咯 含有一个氮杂原子的五元杂 环化合物, 又称氮(杂)茂。 还原成 二氢和 四氢吡咯噻吩 含有一个硫杂原子的五元杂 环化合物。 四氢噻吩 含 两 个 杂 原 子 吡唑 1,2-二氮唑; 邻二氮杂茂。 咪唑 1,3-二氮杂环戊二烯; 1,3-二氮唑,间二氮茂。 恶唑 含有一个氧和一个氮杂原子 的五元杂环化合物;环中的氧 和氮原子分别占1,3两位,

又称氮代呋喃 异恶唑氧和氮原子分别占1,2位,则称为异恶唑 噻唑噻唑含有一个硫和一个氮杂 原子的五元杂环化合物,分子式C3H3NS。唑字由外文字尾azole译音而来,意为含氮的五元杂环,除吡咯外都称为某唑。硫和氮占1,3两位的称为噻唑。 异噻唑硫和氮占1,2两位的,称为异噻唑。 六元环含 一 个 杂 原 子 吡啶 是含有一个氮杂原子的六元杂 环化合物。可以看做苯分子中的 一个(CH)被N取代的化合物, 故又称氮苯。 六氢吡啶 烟酸 烟酸胺 异烟肼吡喃 含有一个氧杂原子的六元杂 环化合物。 噻喃C5H6S 含 两 个 杂 原 子 哒嗪 1、2位含两个氮杂原子的六元 杂环化合物, 又称邻二氮苯。 嘧啶 1、3两位的称为嘧啶,由2个 氮原子取代苯分子间位上的2个 碳形成,是一种二嗪。

吡嗪占1、4两位的称为吡嗪 哌嗪对二氮己环 七元环及 以上 杂??指环庚三烯正离子 稠环 五元及六元稠杂环 吲哚 吲哚是吡咯与苯并联的化合 物。 苯并咪唑间(二)氮茚。 咔唑9H-咔唑。 喹啉吡啶与苯并联的化合物。 异喹啉 蝶啶 吡嗪和嘧啶并联而成的二杂环 化合物 7H-嘌呤

药物化学药物代谢的化学变化-1

第二章药物代谢 本章提示: 药物代谢是在体内酶的作用下使药物的化学结构发生变化,大多使有效药物转变为低效或无效的代谢物,有时也会产生活性代谢物;也有可能转变成毒副作用较高的产物。而前药设计则是通过代谢转变产生有效药物。执业药师应熟悉药物在体内代谢的化学变化类型,以及药物的化学结构变化后产生生物活性的变化。 药物进入机体后,一方面药物对机体产生诸多生理药理作用,即对疾病治疗作用;另一方面对机体来讲药物是一种外来的化学物质,机体组织将对药物进行作用设法将其排出体外,这就是药物的代谢。药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排泄至体外的过程;是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。因此研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点,作用时程,结构的转变以及产生毒副作用的原因。 药物的代谢通常分为二相:第Ⅰ相生物转化(Phase Ⅰ),也称为药物的官能团化反应,是体内的酶对药物分子进行的氧化、还原、水解、羟基化等反应,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基、氨基等。第Ⅱ相生物结合(Phase Ⅱ),是将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的轭合物。但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即排出体外。其中第Ⅰ相生物转化反应对药物在体内的活性影响最大。 由于催化反应时酶对底物化学结构有一定的要求,因此不同化学结构的药物,其代谢的情况也不一样。 第一节药物的官能团化反应(第Ⅰ相生物转化) 一、含芳环药物的代谢 含芳环的药物主要发生氧化代谢,是在体内肝脏CYP 450酶系催化下,首先将芳香化合物氧化成环氧化合物,然后在质子的催化下会发生重排生成酚,或被环氧化物水解酶水解生成二羟基化合物。生成的环氧化合物还会在谷胱甘肽S-转移酶的作用下和谷胱甘肽生成硫醚;促进代谢产物的排泄。但是环氧化物若和体内生物大分子如DNA或RNA中的亲核基团反应,生成共价键的结合物,而使生物大分子失去活性,则产生毒性。 含芳环药物的氧化代谢是以生成酚的代谢产物为主,芳环上的供电子取代基能使反应容易进行,生成酚羟基的位置在取代基的对位或邻位;吸电子取代基则削弱反应的进行程度,生成酚羟基的位置在取代基的间位。和一般芳环的取代反应一样,芳环的氧化代谢部位也受到立体位阻的影响,通常发生在立体位阻较小的部位。如果药物分子中含有二个芳环时,一般只有一个芳环发生氧化代谢。如苯妥英(Phenytoin)在体内代谢后生成羟基苯妥英失去生物活性。 H H

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化与脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA; ③二碳片段的加入与裂解方式:合成就是以丙二酰ACP加入二碳片段,氧化的裂解方式就是乙酰CoA;④电子供体或受体:合成的供体就是NADPH,氧化的受体就是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成就是柠檬酸转运系统,氧化就是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2与H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+与1molFADH2 分别生成2、5mol、1、5mol的ATP,

因此,1mol甘油彻底氧化成CO2与H2O生成ATP摩尔数为6×2、5+1×1、5+3-1=18、5。 4、1mol硬脂酸(即18碳饱与脂肪酸)彻底氧化成CO2与H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料与关键酶各就是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

相关文档
最新文档