色氨酸发酵工艺原理及工业生产

色氨酸发酵工艺原理及工业生产
色氨酸发酵工艺原理及工业生产

湖北大学

发酵工程与设备课程设计

题目色氨酸发酵工艺

专业年级 08生物工程

学生姓名赵雄峰

学号 2008221107100168

指导老师李亚东

2011 年 6 月 4 日

目录

1前言------------------------------------------------3 2发酵机制--------------------------------------------6

3发酵工艺及特点--------------------------------------7

4菌种的制备及种子的扩大培养--------------------------9

5培养基的组成及制备----------------------------------12 6无菌空气制备系统-----------------------------------13

7部分工艺计算----------------------------------------15 8三废处理--------------------------------------------17 9参考文献---------------------------------------------18

一. 前言

L-色氨酸是种重要的氨基酸,广泛应用于医药、食品和饲料等行业。近年来,各行业对L-色氨酸的需求量日益增加,而现有产量远不能满足国内外市场的需求。因此,开发微生物酶法生产L-色氨酸的工艺路线具有广阔的应用前景。 目前我国市场上销售的[色氨酸主要依靠进口,我国国务院已于2004、 2007年将I 色氨酸生产列入"鼓励外商投资产业目录"之中。直接发酵法生产[色氨酸的研究,对发展我国氨基酸发酵工业具有重大的意义。本文对发酵液中色氨酸的快速测定、出发菌株的生理特征和产酸特性、I 色氨酸高产菌株的选育及发酵条件的优化进行了重点研究。

1.1色氨酸的理化性质

色氨酸属于中性芳香族氨基酸,结构中含有吲哚基,在生物体中,色氨酸以结

合态或游离态存在。其结构式如图1-1所示:色氨酸是手性化合物,有[型和0型两种镜像结构。[色氨酸是人体必须氨基酸,它参与人体与动物的蛋白质合成和代谢网络调节,并广泛的存在于自然界中; 0-色氨酸不能合成蛋白质,在人体内几乎不发生代谢作用。

L-色氨酸化学名为L-2-氨基-3-吲哚基丙酸,别名为L-氨基吲哚丙酸、胰化蛋白氨基酸。其分子式为C 11H 12O 2N 2,相对分子量为204.21,熔点为289℃,等电点PI 为5.89, pKa (25℃)为2.38及9.39, 微苦、呈绢丝光泽六角片状白色结晶,在水中溶解度1.147% (25℃)2.80%(75℃), 微溶于乙醇,不溶于乙醚、氯仿,在碱液中稳定,在强酸中易分解。

1.2 L-色氨酸的用途

L-色氨酸在生物体内不能自然合成,需要从食物中摄取,是动物和一些真菌生命活动中的必须氨基酸。L-色氨酸在蛋白质中含量很低,平均含量约1%或更少。L-色氨酸能调节蛋白质的合成、调节免疫及消化功能,增加

5-羟色胺代谢作用以图1-1色氨酸的结构式

及增强认知能力等,因此在人和动物的新陈代谢、生长发育中有重要作用L-色氨酸的这些营养和药用价值使其被广泛应用于医药、饲料和食品等行业。

1.2.1色氨酸在医学上的应用

在生物体内L-色氨酸是合成生理活性物质及某些激素的前体物(如烟酸、5-羟色胺、色素、吲哚乙酸、辅酶和生物碱等)。这些生理活性物质和激素会参与生物体多种生命活动。例如,吲哚乙酸可以调节植物生长;5-羟色胺是动物的一种神经递质,它可以调节祌经的抑制和兴奋状态、调节血管的收縮,具有抗抑郁、抗高血压、镇痛、促进睡眠等功能;褪黑素可以调节动物毛发生长及性成熟等多种生物节律,并可以选择性影响大脑内不同结构5-羟色胺代谢。吲哚生物碱中的长春碱和长春新碱被广泛的用作抗癌性药物。由于众多代谢途径中涉及到L-色氨酸,所以色氨酸和它的代谢产物在调节胃口、睡眠与清醒节奏和疼痛知觉等神经行为上起着重要作用,从而使其在医药领域的用途成为医学界的研究热门。L-色氨酸代谢功能失调,可引起神经系统的功能障碍。L-色氨酸常常被用作复合氨基酸制剂和氨基酸注射液,用来改善睡眠效果、消除精神紧张、预防、治疗嗜酸细胞增多性肌痛综合症和粗糙病等。到目前为止,L-色氨酸作为治疗精神分裂症、髙血压、抑郁症、癩皮病和镇痛等用途已经得到很好的认可。L-色氨酸还可以与维生素、铁剂等合用提高抗贫血疗效,或与组氨酸合用防治消化道溃疡等。

1.2.2色氨酸在食品和词料添加剂中的应用

由于植物蛋白中比较缺乏L-色氨酸,所以可用L-色氨酸做食品或词料添加剂,使植物蛋白质的利用率得以提高。我国农业部已经将L-色氨酸确认为六种饲料级氨基酸之一,使得L-色氨酸成为继赖氨酸、蛋氨酸之后的第三大饲料添加用氨基酸。L-色氨酸可以调节畜禽生产性能、釆食量以及饲料转化率;减少肝脏中脂肪的积累量、提高蛋白质合成率从而增加畜禽的瘦肉比例;减轻应激反应从而减少畜禽攻击行为;还可以转化为尼克酰胺促进畜禽生长并预防尼克酰胺缺乏症的出现〔等。因此,在动物饲料中添加L-色氨酸,对动物的生长和健康起着重大的作用。在食品方面,L-色氨酸可被用于水解蛋白质和酶解明胶制剂的营养强化剂。L-色氨酸具有抗氧化作用,可以作为防腐剂防止奶粉变质;或是作为鱼类保鲜剂,用以阻止氧化发生,防止蛋白质分解、发霉等。

1.3 色氨酸的生产方法

1.31 水解法

废蚕丝、毛发和血粉等蛋白质原料含有相对相对丰富的L-色氨酸,可以通过酶水解或碱水解法来提取L-色氨酸。由于蛋白质中色氨酸的含量不是很高、材料来源有限、生产周期较长、工艺及产品成分复杂等缺点,现在已经很少使用水解法来生产色氨酸.

1.3.2微生物法

1.3.

2.1酶促转化法

酶促转化法是以廉价碳源来培养微生物,利用微生物产生的[色氨酸合成酶系转化前体合成1色氨酸的方法。该法需要解除生物合成途径中相关酶所受到的反馈调节,使这些酶大量合成,才能使[色氨酸得以高浓度积累。由于所添加的前体物大多对微生物生长有抑制作用,因此筛选前体物抗性突变株往往有利于提高前体物的添加量。此外,采用分批少量添加前体物的方式也可以减轻高浓度前体物对微生物生长的抑制

酶促转化法的前体物可以通过化工来合成,从而能够利用有机合成技术优势。该法产物浓度、纯度以及收率都较髙,同时反应周期短、分离提纯容易,副产物少,使得该法生产成本较低,是L-色氨酸的生产中较为广泛采用的一种方法。在氨基酸生产大国日本,几家大公司如三乐、三井东压、味之素和三菱油化等均采用酶促转化法生产L-色氨酸.酶促转化法生产L-氨酸也有自身的缺点:色氨酸合成酶会受到底物吲哚的强烈抑制,甚至会完全失活;底物L-酸价格较高;吲哚水溶性较差,转化率不高.

1.3.

2.2直接发酵法

直接发酵法是指利用[L-色氨酸高产菌种,采用葡萄糖等廉价碳源做原料,控制在合适的发酵条件,直接发酵积累L-色氨酸。由于L-色氨酸的生物合成途径的代谢流比较微弱,再加上L-色氨酸的合成需要多种前体物的供给(如[丝氨酸、磷酸核糖焦磷酸、L-谷氨酰胺等、只有提高这些前体物的量,才能有效的提高L-色氨酸产量,使得该法很长时间内不能达到工业化要求。此外,L-色氨酸生物合成途径中存在这较为复杂的调节机制,弱化子系统以及多重反馈调节的存在使得L-色氨酸的发酵生产成为氨基酸发酵工业中的一大难题。从自然界中分离到可以大量积累L-色氨酸的菌株的可能性极小,因此L-色氨酸高产菌种的选育是直接发酵法成功的关键。

直接发酵法几乎全是使用细菌的突变菌株。不同技术分离得到的突变株主要

是芳香族缺陷型或抗代谢突变株。国内外对L-色氨酸生产菌株的诱变育种进行了

大量的研究。

1.4论文的主要研究内容

L-色氨酸的发酵机制,发酵工艺及特点,菌种的制备及种子的扩大培养,,

培养基的组成及制备,无菌空气制备系统,部分工艺计算以及三废处理。

正文部分

一.L-色氨酸发酵机制

谷氨酸棒杆菌中芳香族氨基酸的生物合成途径及其代谢调节机制如图1-2所示。其中,在第一个在分支处倾向于邻氨基苯甲酸的优先合成;在第二个分支处倾向于对羟基苯丙酮酸的优先合成。

图1-21色氨酸的生物合成及调节机制

二.发酵工艺及特点

L-色氨酸发酵工艺包括从菌种的筛选,种子的制备,培养基的选择,种子罐培养,发酵装置,无菌空气制备,产品的分离纯化,检测,包装以及销售等部分。

以下是发酵条件影响色氨酸产量的

以谷氨酸棒杆菌FC22为出发菌株,经过紫外线诱变和磺胺胍的抗性平板筛选,定向选育出1株遗传性状稳定的L-色氨酸高产菌株FC22其遗传标记为Phe-十Tyr-十5MT- 十SG-通过发酵培养基与发酵条件的优化,确定了该菌株的最佳培养基组成为葡萄糖8%,硫酸铵2.5%,玉米浆干粉, 5, 5%,磷酸二氛钾0, 25%,磷酸氢二钾0.25%,硫酸镁0.05%,最佳的发酵条件为

培养基初始PH6,8?7,0,发酵温度30 ℃,摇床转速

260r/min在此条件下摇瓶发酵3 d,突变株FC22产色氨酸最高可达8, 6 g/l,比原菌株提高了约110%。

三.菌种的制备及种子的扩大培养

通过微生物直接发酵的方法过量生产L-色氨酸,必须打破芳香族氨基酸共同合成途径和L-色氨酸分支途径的特定代谢调节机制。可以选取枯草芽孢杆菌、

谷氨酸棒杆菌等做出发菌株,通过定向选育,使这些突变株从遗传角度解除芳香族氨基酸合成途径和L-色氨酸分支途径的正常代谢调节机制,从而过量的积累L-色氨酸。总的来说,高产L-色氨酸菌株的获得需要通过传统育种和重组L-入技术,逐级的积累菌株有利的遗传和表型特征。

选育缺陷型菌株

合适的缺陷型菌株有利于增加前体的积累,可以使碳源更多的流向芳香族途径和L-色氨酸分支途径,从而达到积累L-色氨酸的目的。

具体方法有:

选育有利于前体积累的菌株。PEP和E4P是合成芳香族的共同前体,加强HMP 途径有利于PEP和E4P的合成。为了积累更多的PEP可以选育丧失丙酮酸激酶活力的突变株,或选育丧失磷酸烯醇式丙酬酸羧化酶活力的突变株,或选育丙酮酸羧化酶系辅酶硫胺素缺陷型菌株等。为了积累更多的E4P,可以选育磷酸葡萄糖异构酶活力低的菌株。

选育切断其它支流代谢的菌株。为了节约碳源,使中间产物分支酸更多地转向L-色氨酸的合成,可以切断由分支酸到COQ.VK.预苯酸的代谢支路。支路的切断还可以解除L-酪氨酸、L-苯丙氨酸对合成途径中DAHP合成酶的反馈调节,使L-色氨酸得到进一步积累,因此可选育酪氨酸缺陷、L-苯丙氨酸缺陷、预苯酸缺陷、维生素K缺陷、COQ缺陷等突变株。

选育消耗L-色氨酸量少的菌株。如选育色氨酸酶缺失突变株、色氨酸脱羧酶缺失突变株、色氨酰I皿合成酶缺失突变株以及不分解利用L-色氨酸的突变株等。

选育调节突变型菌株

选育L-色氨酸结构类似物的抗性突变株,可以解除其自身的反馈调节,使色氨酸得以积累。L-色氨酸的结构类似物包括:色氨酸氧肟酸盐、吲哚霉素、4-甲基色氨酸、6-甲基色氨酸、 6-氟色氨酸、 5-氟色氨酸以及5-甲基色氨酸等。

选育L-酪氨酸和L-苯丙氨酸结构类似物的抗性突变株,可以解除L-酪氨酸和L-苯丙氨酸对DS的反馈调节,有利于DAHP和分支酸的积累。L-酪氨酸和L-苯丙氨酸的结构类似物包含:肉桂酸、酪氨酸氧肟酸盐、苯丙氨酸氧肟酸盐、对氟苯丙氨酸、 4-噻嗯基丙氨酸、3-氨基酪氨酸、对氨基苯丙氨酸和D-酪氨酸等。

选育磺胺胍抗性突变株有利于分支酸的积累。分支酸可以与L-色氨酸竞争结合AS,降低L-色氨酸对AS的抑制,从而有利于L-色氨酸的积累。

种子的扩大培养

通过以谷氨酸棒杆菌FC22为出发菌株,经过紫外线诱变和磺胺胍的抗

性平板筛选,定向选育出1株遗传性状稳定的L-色氨酸高产菌株FC22其遗传标记为Phe-十Tyr-十5MT-十S G-,再经过种子罐的发酵扩大培养以达到发酵所需的种子数量。发酵设备以及过程见下图:

四.培养基的组成及制备

培养基

1、碳源:淀粉水解糖、糖蜜、醋酸、乙醇、烷烃

碳源浓度过高时,对菌体生长不利,氨基酸的转化率降低。

菌种性质、生产氨基酸种类和所采用的发酵操作决定碳源种类2、氮源:铵盐、尿素、氨水;

同时调整pH值。

营养缺陷型添加适量氨基酸主要以添加有机氮源水解液。

需生物素和氨基酸,以玉米浆作氮源。

尿素灭菌时形成磷酸铵镁盐,须单独灭菌。可分批流加。

氨水用pH自动控制连续流加

3、合适C/N

氮源用于调整pH。

合成菌体

生成氨基酸,因此比一般微生物发酵的C/N高

4、磷酸盐:对发酵有显著影响。不足时糖代谢受抑制。

5、镁:是已糖磷酸化酶、柠檬酸脱氢酶和羧化酶的激活剂,并促进葡萄糖-6-磷酸脱氢酶活力。

6、钾:促进糖代谢。谷氨酸产酸期钾多利于产酸,钾少利于菌体生长。

7、钠:调节渗透压作用,一般在调节pH值时加入。

8、锰:是许多酶的激活剂。

9、铁:是细胞色素、细胞色素氧化酶和过氧化氢酶的活性基的组成分,可促进谷氨酸产生菌的生长。

10、铜离子:对氨基酸发酵有明显毒害作用。

生长因子:生物素

作用:影响细胞膜透性和代谢途径。

浓度:过多促进菌体生长,氨基酸产量低。过少菌体生长缓慢,发酵周期长。

与其它培养条件的关系:氧供给不足,生物素过量时,发酵向其它途径转化。

种类:玉米浆、麸皮水解液、甘蔗糖蜜和甜菜糖蜜为来源。

pH对氨基酸发酵的影响及其控制

作用机理:主要影响酶的活性和菌的代谢。

控制pH方法:流加尿素和氨水

流加方式:根据菌体生长、pH变化、糖耗情况和发酵阶段等因素决定。

控制:

(1)菌体生长或耗糖慢时,少量多次流加尿素,避免pH过高

(2)菌体生长或耗糖过快时,流加尿素可多些,以抑制菌体生长。

(3)发酵后期,残糖少,接近放罐时,少加或不加尿素,以免造成氨基酸提取困难。

(4)氨水对pH影响大,应采取连续流加。

温度对氨基酸发酵的影响及其控制

菌体生长达一定程度后再开始产生氨基酸,因此菌体生长最适温度和氨基酸合成的最适温度是不同的。

菌体生长温度过高,则菌体易衰老,pH高,糖耗慢,周期长,酸产量低。

采取措施:少量多次流加尿素,维持最适生长温度,减少风量等,促进菌体生长。

五.无菌空气制备系统

在发酵工业中,绝大多数是利用好气性微生物进行纯种培养,空气则是微生物生长和代谢必不可少的条件。但空气中含有各种各样的微生物,这些微生物随着空气进入培养液,在适宜的条件下,它们会迅速大量繁殖,消耗大量的营养

物质并产生各种代谢产物;干扰甚至破坏预定发酵的正常进行,使发酵产率下降,甚至彻底失败。因此,无菌空气的制备就成为发酵工程中的一个重要环节。空气净化的方法很多,但各种方法的除菌效果、设备条件和经济指标各不相同。实际生产中所需的除菌程度根据发酵工艺要求而定,既要避免染茵,又要尽量简化除菌流程,以减少设备投资和正常运转的动力消耗。合理选择除菌方法,决定除菌流程以及选用和设计满足生产需要的除菌设备等。

发酵工厂采用的空气过滤设备大多数是深层过滤器和玻璃纤维过滤纸

过滤器,所用的过滤介质一般是棉花、活性炭,也有用玻璃纤维、焦炭和超细玻璃纤维、维尼龙等。对不同的材料、不同规格、不同填充情况,都会得到不同的过滤效果。

空气溶胶的过滤除菌原理与通常的过滤原理不一样,一方面是由于空气溶胶中气体引力较小,且微粒很小,常见悬浮于空气中的微生物粒子在

0.5~2μm之间,深层过滤所用的过滤介质----棉花的纤维直径一般为16~20μm,填充系数为8%时,棉花纤维所形成的孔隙为20~50μm;超细玻璃纤维滤板因纤维直径很小,为1~1.5μm,湿法抄制紧密度较大,所形成的网格孔隙为0.5~5μm。微粒随气流通过滤层时,滤层纤维所形成的网格阻碍气流直线前进,使气流无数次改变运动速度和运动方向,绕过纤维前进。这些改变引起微粒对滤层纤维产生惯性冲击、重力沉降、阻拦、布朗扩散、静电吸引等作用而将微粒滞留在纤维表面上。

过滤除菌装置工艺流程

空气过滤除菌设备一般是把吸气口吸入的空气先进行压缩前过滤,然后进入空气压缩机。从空气压缩机出来的空气(一般压力在0.2MPa以上,温度120~160°C),先冷却至适当温度(20~25°C)除去油和水,再加热至30~35°C,最后通过总空气过滤器和分过滤器(有的不用分过滤器)除菌,从而获得洁净度、压力、温度和流量都符合工艺要求的灭菌空气。

在上述工艺过程中,各种设备系围绕两个目的:一是提高压缩前空气的质量(洁净度);另一个是去除压缩空气中所带的油和水。

六.工艺计算

1.1 饲料级最终产品规格

纯度95±2%,白色或略带黄色叶片状结晶或粉末,水中溶解度1.l4g(25℃),溶于稀酸或稀碱,在碱液中较稳定,强酸中分解。微溶于乙醇,不溶于氯仿、乙醚。

1.2医药级产品规格

2 USP XXX

2干燥品含量: ≥98.5%

2 pH (1% 水溶液): 5.5-7.0

2干燥损失(105°Cx 3 hours): ≤0.3%

2炽灼残渣: ≤0.1%

2. 市场

容量: 80,000 吨/年 (2004), 每年以10%速度增长。

市场价格:22美元/公斤

3. 技术指标

菌株和专有技术可从清华大学国际技术转移中心获得。

终浓度(效价):35±3 g/L

发酵时间:50±5 hrs

收率:饲料级≥85%

药品级≥70%

糖酸转化率: 12-15%

色氨酸通过液体培养制得,在完成实验室培养后,接入生产发酵罐(例如容积150 m3, 工作容积112.5m3)。控制搅拌及通风保持溶解氧的最佳量。需要进行补料来控制工艺过程。进行pH自动控制,发酵后,发酵液进入回收阶段。

4.发酵工艺参数表

发酵类型补料分批发酵

发酵时间hr 50±5

间歇hr 12

周期hr 62±5

发酵容积m 3 150

发酵终体积 m 3 112.5

最终产品量(kg) 3712.5

最终产品浓度[g/l] 33

糖酸转化率 [%] 12-15

饲料级收率[%] 85

医药级收率 [%] 70

最大通风(VVM) 1

通风(kWh/kg) 12

最大安装功率(kW/m3) 3-3.5

能量: 搅拌+冷却 (kWh/kg) 20

蒸汽(kg/kg活性单位) 20

七.三废的处理

八.参考文献

1.色氨酸工厂发酵与分离工艺过程控制司晶星著

2.L-色氨酸生产技术及市场行情调研报告(2011版)(报告编号:D7767)

3.现代工业发酵调控学第二版化学工业出版社储炬李友荣编著

4.发酵过程优化原理与技术化学工业出版社陈坚刘立明编著

5.微生物重要代谢产物--发酵生存与过程分析化学工业出版社陈坚堵国成编著

6.微生物工程技术原理化学工业出版社程殿林主编

7.发酵工程中国农业大学出版社李玉英编著

8.发酵产品工艺学化学工业出版社陶兴无主编江贤君副主编

9.发酵工程关键技术及其应用化学工业出版社欧阳平凯曹竹安等编

10.发酵过程优化原理与实践化学工业出版社陈坚著

11.新编生物工艺学俞俊棠唐孝宣等编

12.微生物工程工艺原理姚汝华周世水主编

13.生物工程设备梁世中主编

14.百度文库

15.百度图片(以上所有图片)

青霉素的生产工艺

青霉素生产工艺 摘要:青霉素是一种重要的抗生素,在目前的制药工业中占有举足轻重的地位,生产规模非常大。通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病,增强了人类治疗传染性疾病的能力。研究和优化其生产工艺对人类健康有重要意义。 关键词;青霉素;生产工艺 抗生素在目前的制药工业中仍占有举足轻重的地位,尤其是下游半合成抗生素的发展,进一步刺激了上游的工业发酵。一些抗生素的工业生产规模非常大,如β-内酰胺类的青霉素、头孢菌素C,大环内酯类的红霉素、利福霉素,氨基环醇类的链霉素、庆大霉素。其它的一些抗生素,如林可霉素、四环素、金霉素、万古霉素等,单个发酵罐容积越来越大,100 m3的发酵罐被普遍采用,200 m3甚至更大容积的发酵罐经常可见报道。 抗生素的工业生产包括发酵和提取两部分。工艺流程大致如下:菌种的保藏、孢子制备、种子制备、发酵、提取和精制。种子和发酵培养基的常用碳源有:葡萄糖、淀粉、蔗糖、油脂、有机酸等,主要为菌体生长代谢提供能源,为合成菌体细胞和目的产物提供碳元素。有机氮源多用玉米浆、黄豆饼粉、麸质粉、蛋白胨、酵母粉、鱼粉等,硫酸铵、尿素、氨水、硝酸钠、硝酸铵则是常用的无机氮源。另外,培养基中还得添加无机盐、微量元素以及消沫剂,部分抗生素还得加入特殊前体,如青霉素的前体是苯乙酸,大环内酯类抗生素的前体是丙酸盐。发酵过程普遍补加一种碳源、氮源物质,如葡萄糖和硫酸铵。pH值通过流加氨水进行调节,很多抗生素在发酵中后期流加前体,对提高产量非常有益。抗生素发酵绝大多数为好氧培养,必须连续通入大量无菌空气,全过程大功率搅拌。发酵液的预处理,一般加絮凝剂沉淀蛋白,过滤去除菌丝体,发酵滤液的提取常用溶媒萃取法、离子交换树脂法、沉淀法、吸附法等提纯浓缩,然后结晶干燥得纯品。现在来介绍一下青霉素的生产工艺。 一、青霉素概述 青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。最初青霉素的生产菌是音符型青霉菌,生产能力只有几十个单位,不能满足工业需要。随后找到了适合于深层培养的橄榄型青霉菌,即产黄青霉(P. chrosogenum),生产能力为100U/ml。经过X、紫外线诱变,生产能力达到1000-1500U/ml。随后经过诱变,得到不产生色素的变种,目前生产能力可达66000-70000U/ml。青霉素是抗生素工业的首要产品。中国为青霉素(penicillin)生产大国,国内生产的青霉素,已占世界产量的近70%,国内较大规模的生产企业有华药、哈医药、石药、鲁抗,单个发酵罐规模均在100 m3以上,发酵单位在70000 U/ml左右,而世界青霉素工业发酵水平达100000 U/ml以上。 青霉素应用 临床应用:40多年,主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。 二、发酵条件下的生长过程

L-5-羟基色氨酸化学合成可行性研究

L-5-羟基色氨酸化学合成可行性研究 一合成原理 由于色氨酸环2位带负电荷时破坏了苯环共轭结构,而3位带负电荷时不破坏苯环共轭结构,因此亲电取代反应先在3位进行,当3位被取代时在2位进行,当2位被取代时在苯环5位进行。(见有机化学-色氨酸相关内容) 据以上原理,先用磺酸基占据2位。虽然2-磺酸色氨酸钠受热和在水溶液中不稳定,容易被还原。但由于2-磺酸色氨酸钠被分离出来时是以H2O·2-磺酸色氨酸钠形式存在的,稳定性大大增强。通过延长搅拌时间、减少乙醇用量、加大水体积和缓慢加入亚硫酸氢钠可以提高2-磺酸色氨酸钠的收率。加磺酸基反应为可逆反应(见有机化学-苯环亲电取代相关内容)。 随后的乙酰化反应目的是降低苯环反应活性。苯环由于形成了共轭结构,电子云密度大,而吲哚环上的N与苯环进一步共轭,使苯环更容易发生亲电取代反应,加成和氧化反应不容易进行。(见有机化学-苯环亲电取代、苯胺相关内容)。在进行硝基取代时,如果苯环反应活性高,容易发生除5位外其他位置的取代反应,为降低反应活性,有必要将N乙酰化降低反应活性。酸和碱加热后都可以去掉乙酰基(见有机化学-苯胺相关内容)。 在接下来5位的硝化反应中,按目前4种常规的硝化反应进行5位硝化,得到的收率仅为40%。Crivello报道的硝化反应失败的原因可能是1-乙酰2-磺酸色氨酸钠在反应溶剂中的溶解度不高所致。用发烟硝酸和冰醋酸进行1-乙酰2-磺酸色氨酸钠的硝化被证明确实可行。 在氨基化反应中,在碱性条件下的聚合反应可以防止富含电子的2位和3位发生二聚化和三聚化反应。次硫酸钠(又名:连二亚硫酸钠或保险粉)为强还原剂,作漂白用,在水或酸性溶液中燃烧,溶于碱溶液起还原作用。 之后进行重氮化-水解反应得到L-5-羟基色氨酸。 二重氮化-水解反应的讨论 ①硫酸的用量 在重氮化反应中,硫酸的作用是:一方面,1mol硫酸与胺反应形成可溶性盐,另外1mol 硫酸与亚硝酸钠反应生成亚硝酸;另一方面,由于重氮盐不稳定易分解,只有在酸溶液中才稳定,若酸量不足,生成的重氮盐容易与未反应的方胺耦合,生成重氮氨基化合物。所以硫酸浓度一般为40%,氨基化合物:硫酸摩尔比为1:3。

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

年产1000吨色氨酸发酵工厂的设计毕业论文

年产1000吨色氨酸发酵工厂的设计毕业论文 第一章绪论 色氨酸的分子式为:C11H12N2O2分子量为214.21,含氮13.72%,仅一氨基氮6.86%。色氨酸有三种光学异构体,L-色氨酸呈绢丝光泽、六角片状自色晶体,无臭,有甜味,水中溶解度1.14 g/l(25℃),溶于稀酸或稀碱,在碱液中较稳定,强酸中分解,微溶于乙醇,不溶于氯仿、乙醚。 色氨酸具有重要的生理作用。它是人体和动物生命活动中必需的氨基酸之一,对人和动物的生长发育和新代谢起着重要的作用。被称为第二必需氨基酸。广泛应用于医药、食品和饲料等方面。在生物体从L-色氨酸出发可合成4 一羟基色胺等激素以及色素、生物碱、辅酶、植物激素等生理活性物质。可预防和治疗糙皮病。同时具有消除精神紧、改善睡眠效果等功效。另外,由于色氨酸是一些植物蛋白中比较缺乏的氨基酸。用它强化食品和傲饲料添加剂对提高植物蛋白质的利用率具有重要的作用。它是继蛋氨酸和赖氨酸之后的第三大饲料添加氨基酸。 1.1 设计项目概述 (1)设计课题:年产1000t色氨酸工厂初步设计 (2)厂址:皖南地区 (3)重点车间:提取车间 (4)重点设备:发酵罐 (5)需要完成的设计图纸:全厂工艺流程图、全厂平面布置图、重点车间平面布置图,重点车间侧视图。 1.2 设计依据 (1)学校下达的毕业设计任务书和相关可行性报告,以及可靠的设计资料; (2)我国现行的有关设计和安装设计的规与标准; (3)其他氨基酸的发酵工艺及色氨酸的特性发酵。 1.3 设计围 (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员); (2)产品的生产方案、生产流程、及技术条件的制定; (3)重点车间详细工艺设计、工艺论证、设备选型及计算; (4)全厂物料、能量衡算; (5)车间布置和说明; .专业.专注.

色氨酸

色氨酸 现代快节奏的生活,环境污染,工作压力和精神压力不断加大,这些因素不断刺激机体的神经系统和内分泌系统,使人产生各种应激,进而导致机体抗氧化能力下降、免疫系统紊乱等不良反应。当应激超过一定限度时,会导致机体功能的损伤。 应激是机体接受应激原刺激后所表现出来的一系列非特异性反应,包括行为、神经、内分泌和免疫等方面。研究表明,长期慢性应激会导致机体免疫系统处于抑制状态,从而使机体免疫力降低;同时HPA (下后脑-垂体-肾上腺皮质系统)轴功能亢进,交感神经兴奋分泌促肾上腺髓质激素,产生大量的去甲肾上腺素。若应激持续存在则HPA轴继续亢进,机体相应会出现抑郁症状,如情绪低落、学习和记忆能力下降、快感缺乏、思维迟缓、运动迟滞、食欲降低、睡眠减少等。 色氨酸是动物的必需氨基酸,参与痛觉、睡眠、摄食和体温等生理功能的调节,具有调节基因表达、缓解应激等多种作用。正常情况下,机体对色氨酸的需要量并不大,但机体在受到应激等刺激下,由于代谢通路的改变,分解速度加快,机体需求加大。色氨酸又是一种对许多氧化剂高度敏感的色氨酸,在体内的分解途径主要有两种,即氧化脱羧生成5-羟色胺(5-HT)和经犬尿氨酸途径最终转变为二氧化碳和水。 在机体受到应激时,体内会产生大量自由基,导致机体产生氧化应激反应,造成氧化损伤。有些自由基同时又是信号分子,能影响免疫系统。在应激状态下,体内色氨酸分解代谢加快,脑中5-HT水平也随之下降。5-HT作为一种重要的神经递质影响大脑的神经系统,帮助机体应对不同的情况。

此外,国外已有研究发现5-HT与机体免疫调节有关,5-HT 对免疫的调节作用包括对T细胞、B细胞、NK细胞、巨噬细胞活性的激活或抑制效应。 研究表明褪黑素有助于维持机体炎症-抗炎症平衡,使机体免受炎症损伤。而褪黑素是色氨酸5-HT通路的代谢产物,由此推论,色氨酸可以通过其相关代谢产物对小鼠免疫器官发挥作用。色氨酸对机体的抗氧化功能及免疫的调节,主要通过其代谢产物5-HT和褪黑素等来实现,但其具体作用机制还有待进一步研究。

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

色氨酸营养研究进展

色氨酸营养研究进展 四川农业大学动物营养所 崔 芹 南京农业大学动物科学院 崔 山 1 色氨酸的代谢 动物体色氨酸代谢池内的色氨酸有两个来源:一个是组织蛋白质分解的内源氨基酸,约占2/3;另外一个是从日粮中消化吸收的外源性氨基酸,约占1/3。色氨酸代谢途径也有两个:一个是合成组织蛋白质,另一个则是分解代谢。色氨酸的吸收半周期为1 73h,清除半周期为0 73~ 0 74h,其生物利用率为76%。 1 1 5-羟色胺 色氨酸经氧化脱羧后可转变为5-羟色胺,主要存在于脑组织、胃肠壁中,血液中含量较少。5-羟色胺的生理作用是使微血管收缩和血压升高,亦有作为神经递质、中和肾上腺素和去甲肾上腺素等作用。当色氨酸代谢失调时,可引起神经系统的功能障碍。 血清尿素氮水平是衡量猪、鸡色氨酸需要量的一个敏感指标。当日粮中色氨酸水平适宜时,血清尿素氮的水平最低。色氨酸通过血脑屏障不只与血液中的色氨酸的浓度有关,还与其他支链氨基酸和芳香族氨基酸(亮氨酸、异亮氨酸、缬氨酸、苯丙氨酸和酪氨酸等中性氨基酸)的量有关。这些氨基酸与色氨酸发生竞争性吸收,影响色氨酸进入脑中的量及其代谢产物5-羟色胺的量(Fernstrom,1985)。尽管色氨酸进入脑中的量及其代谢产物的量变化范围很大,但是对动物的行为影响很小,皮质醇的变化也不大(Meunier等, 1991)。隔日限饲能引起肉用畜禽持续的血浆皮质酮的增长,增加日粮中的色氨酸可控制它的分泌模式。这可能是血清素激活系统和下丘脑-垂体-肾上腺的相互作用的结果(Mench,1991)。Herry等(1992)研究指出,色氨酸与LNAA(大分子中性氨基酸)的比值不平衡时,下丘脑中的5-羟色胺的总浓度降低,这在母鸡身上体现最为明显。但当色氨酸与LNAA的比值减小时,去势猪的生长性能最好。这可能与血清素激活作用有关(Herry等,1995)。Angel指出,5-羟色胺是促性腺激素释放和青春期开始的重要因子。色氨酸急性或严重缺乏,对转甲状腺素和白蛋白的水平无影响,但转铁蛋白水平稍微下降(Bleiberg等, 1990)。补加色氨酸可使脑中色氨酸、5-羟色胺和5-羟基吲哚乙酸的浓度增加,后者对睡眠潜伏期有积极作用,从而影响神经行为(Sar war等, 2001)。色氨酸对肝核蛋白合成的促进作用是与L-色氨酸在体内分配后与特殊的核酸色氨酸受体的结合能力有关(Sidransky等,1996)。Corta mita 等(1991)认为,日粮色氨酸缺乏降低了肌肉和肝蛋白的合成率,这与营养素吸收率下降而使饭后胰岛素的释放减少有关。在亚硝酸盐作用下,色氨酸的吲哚环或苯环中引入一个羟基会增加其诱变功能,诱发多种疾病。 1 2 烟酸 色氨酸经氧化可转变为烟酸,它是合成NAD和NADP的前体,NAD和NADP是不需氧的脱氢酶的辅酶,参与体内氧化还原反应。在人和动物体内,色氨酸可转化为烟酸,不同品种动物、不同生长阶段转化率有所不同。雏鸡转化率为45 1,种母鸡转化率为187 1;反刍动物可把50 mg色氨酸转化成1mg烟酸。在种蛋内烟酰胺含量为0 73mg/kg时,转化率可达18 1。在一定范围内,种蛋内较高的烟酰胺含量对色氨酸-烟酰胺转化有一定的诱导作用。日粮中烟酸水平会直接影响蛋中的烟酸量。当色氨酸向烟酸的转化量减少时,糖原的分解速度减慢,腺苷酸环化酶的活性受到抑制,但磷酸二酯酶的活性却提高了(Shi bata,1995)。当饲喂色氨酸与烟酸缺乏的日粮时,动物生长会受到抑制,补加其中任何一种都会改善动物的生长状况并可使尼克酸的缺乏症状消失。

青霉素生产工艺 (1)

青霉素生产工艺 摘要:青霉素是人类最早发现的一种极其重要的抗生素,其杀伤革兰氏阳性细菌的神奇功效在二战中挽救了众多士兵的生命。它的发现对药物学乃至整个人类发展的重要意义。本文将对青霉素的生产工艺及其提取进行深入的讲解。 关键词:青霉素生产工艺发酵提取 一、青霉素的生物学特性 青霉素类抗生素是β-内酰胺类中1种,在分类上属于A类,酶的活性位点 上有丝氨酸,又称活性位点丝氨酸酶,其作用机制是水解β-内酰胺类抗生素 的β-内酰胺环,使抗生素失去活性。由于β-内酰胺类作用于细菌的细胞壁, 而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应 外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生 的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾 盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以 免注入人体形成高血钾而抑制心脏功能,造成死亡。 二、青霉素的发酵 青霉素的发酵生产的一般工艺流程: 青霉素生产菌不同,发酵工业也有区别。 丝状菌的青霉素发酵工艺流程:沙土管→斜面母瓶(孢子培养,25℃,6~ 7d)→大米孢子斜面(孢子培养,25℃,6~7d)→种子罐(种子培养,25℃,

40~45h)→繁殖罐(种子培养,25℃,13~15h)→发酵罐(发酵,26℃,6~7d)→放罐 球状菌的青霉素发酵工艺流程:冷冻管→斜面母瓶(孢子培养,25℃,6~8d)→大米孢子斜面(孢子培养,25℃,8~10d)→种子罐(种子培养,28℃,50~60h)→发酵罐(发酵,26℃,6~7d)→放罐 青霉素的分批发酵分为菌丝生长和产物合成两个阶段,进入合成阶段的必要条件是降低菌丝的生长速率。影响青霉素发酵产率的因素有环境和生理因素两个方面,前者包括温度、PH、培养基种类及浓度、溶解氧饱和度等;后者包括菌体浓度、菌体生长速率、菌丝形态等。 菌体生长和青霉素合成最适温度并不相同,一般前阶段略高于后阶段。因此,在菌体生长阶段可以采取较高温度,以缩短生长时间,而到达产物合成阶段,应适当降低温度,以利于青霉素的合成。青霉素发酵的最适PH一般在左右,由于青霉素在碱性条件下不稳定,容易发生水解,因此应尽量避免PH超过。 三、青霉素发酵过程控制 反复分批式发酵,100m3发酵罐,装料80m3,带放6-10次,间隔24h。带放量10%,发酵时间24h。发酵过程需连续流加补入葡萄糖、硫酸铵以及前体物质苯乙酸盐,补糖率是最关键的控制指标,不同时期分段控制。 在青霉素的生产中,让培养基中的主要营养物只够维持青霉菌在前40h生长,而在40h后,靠低速连续补加葡萄糖和氮源等,使菌半饥饿,延长青霉素的合成期,大大提高了产量。所需营养物限量的补加常用来控制营养缺陷型突变菌种,使代谢产物积累到最大。 (1)培养基 青霉素发酵中采用补料分批操作法,对葡萄糖、铵、苯乙酸进行缓慢流加,维持一定的最适浓度。葡萄糖的流加,波动范围较窄,浓度过低使抗生素合成速度减慢或停止,过高则导致呼吸活性下降,甚至引起自溶,葡萄糖浓度调节是根据pH,溶氧或CO2释放率予以调节。 碳源的选择:生产菌能利用多种碳源,乳糖,蔗糖,葡萄糖,阿拉伯糖,甘露糖,淀粉和天然油脂。经济核算问题,生产成本中碳源占12%以上,对工艺影响很大;糖与6-APA结合形成糖基-6-APA,影响青霉素的产量。葡萄糖、乳糖结合能力强,而且随时间延长而增加。通常采用葡萄糖和乳糖。发酵初期,利用快效的葡萄糖进行菌丝生长。

(完整版)青霉素生产工艺过程

青霉素生产工艺过程 一、青霉素的发酵工艺过程 1、工艺流程 (1)丝状菌三级发酵工艺流程 冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:1.5vvm)——一级种子培养液(27℃,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26℃,发酵,7天,1:0.95vvm)——发酵液。 (2)球状菌二级发酵工艺流程 冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24℃,发酵,7天,1:0.8vvm)——发酵液。 2、工艺控制 (1)影响发酵产率的因素 基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。目前,糖浓度的检测尚难在线进行, 故葡萄糖 释放率予以调节。的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C0 2 (2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。(3)pH值:青霉素发酵的最适pH值一般认为在6.5左右,有时也可以略高或略低一些,但应尽量避免pH值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。在缓冲能力较弱的培养基中, pH值的变化是葡萄糖流加速度高低的反映。过高的流加速率造成酸性中间产物的积累使pH值降低;过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起pH值上升。 (4)溶氧:对于好氧的青霉素发酵来说,溶氧浓度是影响发酵过程的一个重要因素。当溶氧浓度降到30%饱和度以下时, 青霉素产率急剧下降, 低于10%饱

发酵法生产色氨酸

发酵法生产色氨酸的研究 刘辉 047111230 摘要:色氨酸是人和动物生命活动中8种必需氨基酸之一,对人和动物的生长发育、新陈代谢起着非常重要的作用。随着市场需求的不断增加,提高色氨酸生产能力成为全球热点。本文综述了色氨酸应用及生产技术包括发酵生产色氨酸的菌种选育、发酵培养基原料和发酵工艺等方面的研究进展。 关键词:发酵法色氨酸 1、发酵法生产色氨酸过程中的菌种选育 生产菌种选育是发酵工业中最为关键的工作,受到普遍的重视。过去发酵法生产色氨酸采用的是在培养基中添加吲哚或邻氨基苯甲酸的方法,此法因必须采用高价的吲哚或邻氨基苯甲酸做前体物质,使色氨酸的生产存在着成本高的缺点。而且由于这些前体物质对微生物的生长有毒害作用,故不能大量使用[1]。目前,利用糖质原料直接发酵生产色氨酸的国内外报道不多[2-3],主要是因为色氨酸在微生物体内代途径较长且存在着多种严格的调节机制,致-色氨酸的生产菌种产酸较低,达不到工业化生产的要求。色氨酸的生产菌种有谷氨酸棒杆菌(Corynebacterium glutanicum)、黄色短杆菌(Bre-vibacteriumflavum)、枯草芽孢杆菌(Bacillus sub-tilis)、大肠杆菌(Escherichia coli)、产朊假丝酵母(Candida utilis)等,其中绝大多数为细菌[1]。 2、发酵法生产色氨酸过程中的发酵条件的选择 色氨酸发酵过程中菌种的质粒稳定性对发酵水平高低有严重影响,维持发酵高产酸就要保证发酵过程菌种质粒稳定。在培养过程可以通过调节适当罐压、培养温度、溶氧控制水平、底料中酵母抽提物添加量等方面进行控制,保证发酵过程中不发生质粒丢失现象。 色氨酸发酵液中乙酸浓度高时对色氨酸生产菌的生长和产酸均有抑制作用,发酵过程中可以通过调节溶氧控制水平、初始葡萄糖浓度、发酵葡萄糖浓度及控制菌体比生长速率等方面进行控制,减少发酵液中乙酸的生成。 色氨酸发酵过程中产大量的热,为了维持发酵温度的稳定,必须采取适当的降温措施,在发酵罐外部加上冷却盘管,采用冰水降温,控制发酵温度33℃左右。 色氨酸发酵过程中由于无机盐的消耗及产酸引起PH 变化,所以发酵过程中适当流加氨水或液氨调节PH,控制最佳PH 值在 6.9 左右。 色氨酸发酵为耗氧发酵,并且产酸过程中用氧量比较大,溶氧的多少直接影响着代谢的方向,进而影响产酸和转化率,溶氧低于20%容易发生菌体自溶、乙酸产量增加,所以在主发酵过程中必须控制溶氧大于20%,这要求我们采用先进的通风搅拌装置,设计合理的发酵罐径高比,增加通气量提高溶解氧。 色氨酸发酵过程中,采用高糖流加技术,使发酵糖浓度始终处于低浓度,从而有效减少残糖对发酵产生的抑制作用,避免发酵后期产生乙酸上升的现象,保证高产酸及转化率。此外,色氨酸发酵生产可采用先进的培养基连消技术,高精度空气膜滤技术,使发酵污染程度控制最低水平,确保发酵产酸水平;对发酵车间的环境定期进行消毒,提高环境清洁度,对排污要控制,对排污口要用漂白粉处理,对空气过滤系统要定期清理,减少染菌机率。[4]3、发酵法生产色氨酸过程代谢控制 芳香族氨基酸的生物合成存在着特定的代谢调节机制,因此不可能从自然界中找到大量积累色氨酸的菌株,但是可以黄色短杆菌、谷氨酸棒杆菌等为出发菌株,设法得到从遗传角度解除了芳香族氨基酸生物合成正常代谢调节机制的突变菌株,用微生物直接发酵法生产色氨酸"这些方法包括:解除菌体自身反馈调节、切断支路代谢、增加前体物的合成等。[5] 4、发酵法生产色氨酸产物提取工艺

年产1000吨色氨酸发酵工厂的毕业设计

年产1000吨色氨酸发酵工厂的毕业设计 1.1 设计项目概述 (1)设计课题:年产1000t色氨酸工厂初步设计 (2)厂址: (3)重点车间:提取车间 (4)重点设备:发酵罐 (5)需要完成的设计图纸:全厂工艺流程图、全厂平面布置图、重点车间平面布置图,重点车间侧视图。 1.2 设计依据 (1)学校下达的毕业设计任务书和相关可行性报告,以及可靠的设计资料; (2)我国现行的有关设计和安装设计的规范与标准; (3)其他氨基酸的发酵工艺及色氨酸的特性发酵。 1.3 设计范围 (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员); (2)产品的生产方案、生产流程、及技术条件的制定; (3)重点车间详细工艺设计、工艺论证、设备选型及计算; (4)全厂物料、能量衡算; (5)车间布置和说明; (6)重点设备的选型和计算; (7)对生产、环境保护提出可行方案。 1.4工厂设计原则[7] (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要做到精心设计,投资省,技术新,质量好,收效快,回收期短,使设计工作符合社会主义经济建设的总原则。设计的安全性和可靠性是工程项目设计工作的第一要务,是设计人员进行生物工程项目设计的根本出发点和落脚点。 (2)设计工作必须认真进行调查研究。需大量查阅文献,搜集设计的技术基础资料并

进行分析,从实际出发。 (3)要解放思想,突出创新,力求设计在技术上具有现实性和先进性,在经济上具有合理性,环境保护上有可行性。 (4)设计必须结合实际,因地制宜,工厂设计要体现其通用性和独特性相结合的原则。(5)设计需遵守国家的相关规定,要明确设计进度。 1.5 工厂组成 工厂的组成一般包括以下内容: (1)生产车间:糖化、发酵等车间; (2)辅助车间; (3)动力车间; (4)行政部门; (5)绿化区域; (6)道路等运输设施和各类地上、地下工程管网; (7)三废治理。 1.6 产品生产方案及建设规模 (1)生产方案:以淀粉为原料,经糖化生产可发酵性糖,然后利用色氨酸高产菌,在适宜的生产条件下进行生产发酵,生产L-色氨酸。并通过后续工作,使产品达到国家规定。 (2)建设规模:年产1000吨,生产天数300天,连续生产。 1.7 生产方法及产品规格 (1)生产方法:L-色氨酸的生产最早主要是依靠化学合成法和蛋白质水解法制造。随对微生物法生产色氨酸的研究的不断发展,人们开始利用微生物法发酵生产色氨酸。现已走向实用并且处于主导地位。微生物法大体可分为微生物发酵法和酶促转化法。近年来还出现了直接发酵法和化学合成法,直接发酵法和转化法相结合生产色氨酸的研究。另外,基因工程、酶的固定化和高密度培养等技术在微生物育种和酶工业上的应用极大地推动了直接发酵法和酶法生产色氨酸的工业化进程[15]。 本设计采用微生物直接发酵法生产色氨酸,因为这种工艺简单,适合大规模生产。且成本较低,易实现经济最大利益化。 (2)产品规格:食品级色氨酸,纯度95%,白色或淡黄色粉末,易溶于水。水中溶解度1.l4g(25℃),溶于稀酸或稀碱,在碱液中较稳定,强酸中分解。微溶于乙醇,

L-色氨酸

L-色氨酸的生产及其代谢控制育种 摘要本文综述了利用微生物生产L-色氨酸的各种方法和L-色氨酸的生物合成 途径及其代谢调控机制,并介绍了利用重组DNA技术选育L-色氨酸高产菌的研究现状。 L-色氨酸是含有吲哚基的中性芳香族氨基酸,为白色或略带黄色叶片状结晶或粉末,水中溶解度1.l4g(25℃),溶于稀酸或稀碱,在碱液中较稳定,强酸中分解。微溶于乙醇,不溶于氯仿、乙醚。它是人体和动物生命活动中必需的氨基酸之一,对人和动物的生长发育、新陈代谢起着重要的作用,被称为第二必需氨基酸,广泛应用于医药、食品和饲料等方面。在生物体内,从-色氨酸出发可合成5-羟基色胺等激素以及色素、生物碱、辅酶、植物激素等生理活性物质,可预防和治疗糙皮病,同时具有消除精神紧张、改善睡眠效果等功效。色氨酸代谢失凋会引起糖尿病和神经错乱,因此在医学上被用作氨基酸注射液和复合氨基酸制剂。另外,由于色氨酸是一些植物蛋白中比较缺乏的氨基酸,用它强化食品和做饲料添加剂对提高植物蛋白质的利用率具有重要的作用,它是继蛋氨酸和赖氨酸之后的第三大饲料添加氨基酸。 1.色氨酸的生产方法 色氨酸的生产最早主要依*化学合成法和蛋白质水解法,但是随着对微生物法生产色氨酸研究的不断深入,这种方法已经走向实用并且处于主导地位。微生物法大体上可以分为直接发酵法、微生物转化法和酶法。近年来还出现了将直接发酵法与化学合成法相结合、直接发酵法与转化法相结合生产色氨酸的研究。另外,重组DNA技术在微生物育种和酶工业上的应用极大地推动了直接发酵法和酶法生产色氨酸的工业化进程。 1.1微生物转化法 亦称前体发酵法。这种方法使用葡萄糖作为碳源,同时添加合成色氨酸所需的前体物如邻氨基苯甲酸、吲哚等,利用微生物的色氨酸合成酶系来合成色氨酸。这种方法同直接发酵法一样,需要解除生物合成途径中大部分酶所受到的反馈调节,以使色氨酸能够高浓度蓄积。另外,所添加的前体物大都是抑制微生物生长的,因此添加量不可过高,一般采取分批少量添加的方法。同时可以筛选前体物的抗性突变株来提高前体物的添加量。例如采用枯草杆菌的5-FT抗性突变株SD-9在15L含6%葡萄糖的培养基中培养,在培养过程中每次添加少量6%的邻氨基苯甲酸溶液共2L,经120h后可生产色氨酸9.6g/L。微生物转化法的不足在于当转化液中前体物浓度较高时,转化率有所下降。另外,前体物的价格比较昂贵,不利于降低成本。 1.2酶法

青霉素生产工艺过程

青霉素生产工艺过程 Document number:PBGCG-0857-BTDO-0089-PTT1998

青霉素生产工艺过程 一、青霉素的发酵工艺过程 1、工艺流程 (1)丝状菌三级发酵工艺流程 冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:)——一级种子培养液(27℃,种子培养,24h,1:)——二级种子培养液(27~26℃,发酵,7天,1:)——发酵液。 (2)球状菌二级发酵工艺流程 冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:)——种子培养液(26~25-24℃,发酵,7天,1:)——发酵液。 2、工艺控制 (1)影响发酵产率的因素 基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。目前,糖浓度的检测尚难在线进

行, 故葡萄糖的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C02释放率予以调节。 (2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。 (3)pH值:青霉素发酵的最适pH值一般认为在左右,有时也可以略高或略低一些,但应尽量避免pH值超过, 因为青霉素在碱性条件下不稳定, 容易加速其水解。在缓冲能力较弱的培养基中, pH值的变化是葡萄糖流加速度高低的反映。过高的流加速率造成酸性中间产物的积累使pH值降低;过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起pH值上升。 (4)溶氧:对于好氧的青霉素发酵来说,溶氧浓度是影响发酵过程的一个重要因素。当溶氧浓度降到30%饱和度以下时, 青霉素产率急剧下降, 低于10%饱和度时, 则造成不可逆的损害。溶氧浓度过高,说明菌丝生长不良或加糖率过低,造成呼吸强度下降, 同样影响生产能力的发挥。溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。 (5)菌丝浓度:发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。青霉素发酵的临界菌体浓

色氨酸

色氨酸(Tryptophan),β-吲哚基丙氨酸,为白色或微黄色结晶或结晶性粉末;无臭,味微苦。水中微溶,在乙醇中极微溶解,在氯仿中不溶,在甲酸中易溶,在氢氧化钠试液或稀盐酸中溶解。色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。 1、3-吲哚乙腈与氨基脲缩合后,氰加成、水解得到外消旋色氨酸。 2、以3-吲哚甲醛与苯胺缩合,然后与a-硝基乙酸脂缩合,经氢化水解得到DL-色氨酸。 3、丙烯醛-苯肼法:丙烯醛与N-丙二酸基乙酸胺在乙醇钠存在下缩合,然后与苯肼缩合、环化,经水解脱羧得到外消旋产品(此方法是最常用、最具经济的生产方法)。 氯化物取本品0.25g,依法检查(附录ⅧA),与标准氯化钠溶液5.0ml制成的对照液比较,不得更浓(0.02%)。 硫酸盐取本品1.0g,依法检查(附录ⅧB),与标准硫酸钾溶液2.0ml制成的对照液比较,不得更浓(0.02%)。 铵盐取本品0.10g,依法检查(附录ⅧK),与标准氯化铵溶液2.0ml制成的对照液比较,不得更深(0.02%)。 其他氨基酸取本品0.30g,加1mol/L盐酸溶液1ml,加水适量使溶解,并稀释成20ml,作为供试品溶液;精密量取适量,加水稀释成每1ml中含75μg的溶液,作为对照溶液。照薄层色谱法(附录ⅤB)试验,吸取上述两种溶液各2μl,分别点于同一硅胶G薄层板上,以正丁醇-冰醋酸-水(3:1:1)为展开剂,展开后,晾干,喷以茚三酮的丙酮溶液(1→50),在80℃干燥10分钟,立即检视,供试品溶液所显杂质斑点的颜色与对照溶液的主斑点比较,不得更深(0.5%)。 干燥失重取本品,在105℃干燥3小时,减失重量不得过0.2%(附录ⅧL)。 炽灼残渣取本品1.0g,依法检查(附录ⅧN),遗留残渣不得过0.1%。 铁盐取本品1.0g,炽灼灰化后,残渣加盐酸2ml,置水浴上蒸干,再加稀盐酸4ml,微热溶解后,加水30ml与过硫酸铵50mg,依法检查(附录ⅧG),与标准铁溶液2.0ml制成的对照液比较,不得更深(0.002%)。 重金属取炽灼残渣项下遗留的残渣,依法检查(附录ⅧH第二法),含重金属不得过百万分之十。 砷盐取本品2.0g,加盐酸5ml与水23ml溶解后,依法检查(附录ⅧJ第一法),应符合规定(0.0001%)。 热原取本品,加氯化钠注射液制成每1ml中含10mg的溶液,依法检查(附录ⅪD),剂量按家兔体重每1kg注射10ml,应符合规定。

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

年产2000吨色氨酸的工厂设计

年产2000吨色氨酸的工厂设计 发酵工程课程设计 报告书 题 目年产2000吨色氨酸的工厂设计 分工安排: 生物工程102班第一组 专业: 生物工程指导教师:金大勇 完成日期:2013.06.20分组安排: 第一组 1009082046-47(摘要、前言、工艺论证) 第二组1009082050-55(物料衡算、热量衡算、水平衡计算) 第三组 1009082040-45(设备选型及计算) 第四组1009082048-49(CAD绘图) 第五组1009082056-59(整理总结) 摘要 色氨酸是人和动物生命活动中八种必需氨基酸之一,对人和动物的生长发育、新陈代谢起着重要作用。色氨酸的生产方法有多种,其中以微生物直接发酵法最具发展前途。 随着色氨酸的需求量日益增加,决定设计一个年产2000吨色氨酸的工

厂。本设计以大肠杆菌为生产菌株,利用微生物直接发酵法制备色氨酸,采用深层发酵的方式,采用过滤、三效浓缩、冷却结晶、离心烘干的方法,最终获得99%的色氨酸。本设计对工艺流程进行了物料衡算,并对主要生产设备进行了选型。 关键词:色氨酸,发酵法,工艺,设备选型 ABSTRACT Tryptophan is one of eight kinds of essential amino acids in human and animal life activity, It is useful for growth of people and animal. There are many methods to product tryptophan, and among them the microbial fermentation is the most promising. With the increasing demand of tryptophan , we decided to design an annual output of 2000 tons of tryptophan factory. We design the product with Escherichia coli strains, using microbial fermentation , the method of deep fermentation, filtration, three-efficient concentration, cooling crystallization, centrifugal and drying, and eventually get 99% degrees of purity of tryptophan. The design perform the material balance based on the technological processes, and select the main production equipment. Key words: tryptophan, fermentation, process, selection of equipment, 目录 摘要 (Ⅰ)

相关文档
最新文档